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Algebraic Partial equations

We generalized the concept of hyperbolic and trigonometric functions to the third and the fourth case which gives rise to the parametrization of the orbifold defined by x 3 + y 3 + z 3 -3xyz = 1 in the third case.

Introduction

The trigonometric functions (cosinus and sinus) were historically discovered as real and imaginary parts of the complex exponential function which solves the first order partial equations. In addition, the hyperbolic functions are the results of the trigonometric function with imaginary arguments. Even if the trigonometric functions were find before the hyperbolic ones, try to imagine that this is the trigonometric which cames from the trigonometric ones.

Because the exponential function is defined as

e z = ∞ k=0 z k k! (0.1)
It seems to be natural to generalized the exponential function as

e p (z) = ∞ k=0
z pk (pk)! (0.2) that we have call the p-exponential function in [START_REF] Arm | The p-Arm Theory[END_REF]. Here we recognize the hyperbolic cosinus if we take p = 2. In comparaison with the hyperbolic functions, we remarks that the p-th exponential (0.2) can be written as

e p (z) = 1 p p-1 k=0 e ω k p z (0.3)
where ω p is the p-th root of unity.

Hence the hyperbolic and the trigonometric functions each satisfie a partial equation y 2 -∂y ∂z 2 = 1 (0.4) for the hyperbolic functions and the sames with a minus for the trigonometric ones.

By the way those functions are viewed as the unique solutions of two manifolds whom defining equations are

x 2 -y 2 = 1 (0.5) which defines a hyperbol for the hyperbolic functions and the sames with a minus which defines a circle for the trigonometric ones.

As a consequence, we searched for the partial equation solved by the third exponential.

To this end, we showed the equivalent addition relation for the case p = 3. In the same way we find (0.4) when we put b = -a in the trigonometric addition formulae (cosh(a + b)), we have put b = ja, c = j 2 a in this equivalent trigonometric addition formulae ( 3 (a + b + c)) and we have find the partial equation

y(z) 3 + ∂y ∂z 3 + ∂ 2 y ∂z 2 3 -3 y(z) ∂y ∂z ∂ 2 y ∂z 2 = 1 (0.6)
Thereby, the third exponential is the unique parametric solution of the orbifold defined by the implicit equation

x 3 + y 3 + z 3 -3xyz = 1 (0.7)
The generalization of (0.6) leads to the equation

p-1 q=0 p-1 k=0 ω -kq p y (k) (z) = 1 (0.8)
for each p ∈ N with y(z) = e p (z).

In a first time, we recall definitions of the third exponential and we give some expressions of this one. In a second time we give generalized hyperbolic parity and addition formulaes of this third exponential. In a third time, we arbitrarly put 0 in the argument of the generalized hyperbolic addition relations to obtain the defining equation of the emerging orbifold and the partial equation solved by the third exponential. In a fourth time, we give a defintion of the hypercomplex number which are a generalization of the complex ones. Finally, we completely solve the case of the fourth exponential and give the orbifold and the partial equation solved in the general case.

The p-exponential

We recall the definition of the p-exponential given in [START_REF] Arm | The p-Arm Theory[END_REF] by :

e p (z) = ∞ k=0 z pk (pk)! = 1 p p-1 k=0 e ω k p z (1.1)
where ω p is the p-th root of unity. We have shown in [START_REF] Arm | The p-Arm Theory[END_REF] Example : For p=3, the set of 3-exponential are

e 3 (z) = ∞ k=0 z 3k (3k)! (1.4) e 3 (z) = ∞ k=1 z 3k-1 (3k -1)! (1.5) e 3 (z) = ∞ k=1 z 3k-2 (3k -2)! (1.6)
which can also be written e 3 (z) = e z + e jz + e j 2 z 3 (1.7) e 3 (z) = e z + je jz + j 2 e j 2 z 3 (1.8) e 3 (z) = e z + j 2 e jz + je j 2 z 3 (1.9)

or since j = e 2iπ 3 = -1+i √ 3 2
is the 3th root of unity 2 Trigonometric relations for the third exponential Proof : From de definition (5.54), we obtain these relations. For example, to show e 3 (jz) = je 3 (z) 3e 3 (jz) = e jz + j 2 e j(jz) + je j 2 (jz) = e jz + j 2 e j 2 z + je z = j(j 2 e jz + je j 2 z + e z ) 3e 3 (jz) = 3je 3 (z)

(2.13) From (2.13), we obtain the other relation of (2.12) by successive derivations or by doing the same reasonment. Developping the expression of e 3 , e 3 , e 3 from their definition (5.54), we have the relations 9e 3 (a)e 3 (b) = e a+b + e a+jb + e a+j 2 b + e ja+b + e ja+jb + e ja+j 2 b + e j 2 a+b + e j 2 a+jb + e j 2 a+j 2 b 9e 3 (a)e 3 (b) = e a+b + je a+jb + j 2 e a+j 2 b + je ja+b + j 2 e ja+jb + e ja+j 2 b + j 2 e j 2 a+b + e j 2 a+jb + je j 2 a+j 2 b 9e 3 (a)e 3 (b) = e a+b + j 2 e a+jb + je a+j 2 b + j 2 e ja+b + je ja+jb + e ja+j 2 b + je j 2 a+b + e j 2 a+jb + j 2 e j 2 a+j 2 b

Now, we generalized the addtion relations for the third exponential

(2.17) and 9e 3 (a)e 3 (b) = e a+b + je a+jb + j 2 e a+j 2 b + e ja+b + je ja+jb + j 2 e ja+j 2 b + e j 2 a+b + je j 2 a+jb + j 2 e j 2 a+j 2 b 9e 3 (a)e 3 (b) = e a+b + j 2 e a+jb + je a+j 2 b + e ja+b + j 2 e ja+jb + je ja+j 2 b + e j 2 a+b + j 2 e j 2 a+jb + je j 2 a+j 2 b 9e 3 (a)e 3 (b) = e a+b + j 2 e a+jb + je a+j 2 b + je ja+b + e ja+jb + j 2 e ja+j 2 b + j 2 e j 2 a+b + je j 2 a+jb + e j 2 a+j 2 b

(2.18) and 9e 3 (a)e 3 (b) = e a+b + e a+jb + je a+j 2 b + je ja+b + je ja+jb + je ja+j 2 b + j 2 e j 2 a+b + j 2 e j 2 a+jb + j 2 e j 2 a+j 2 b 9e 3 (a)e 3 (b) = e a+b + e a+jb + e a+j 2 b + j 2 e ja+b + j 2 e ja+jb + j 2 e ja+j 2 b + je j 2 a+b + je j 2 a+jb + je j 2 a+j 2 b 9e 3 (a)e 3 (b) = e a+b + je a+jb + j 2 e a+j 2 b + j 2 e ja+b + e ja+jb + je ja+j 2 b + je j 2 a+b + j 2 e j 2 a+jb + e j 2 a+j 2 b

(2.19) Using (2.18) and (2.19), we have In the same way, using (2.18) and (2.19), we have In the same way, using (2.18) and (2.19), we have 9(e 3 (a)e 3 (b) + e 3 (a)e 3 (b)) = 2e a+b -je a+jb -j 2 e a+j 2 b -je ja+b +2j 2 e ja+jb -e ja+j 2 b -j 2 e j 2 a+b -e j 2 a+jb + 2je j 2 a+j 2 b = 3(e a+b + j 2 e ja+jb + je j 2 a+j 2 b ) -(e a+b + je a+jb + j 2 e a+j 2 b + je ja+b +j 2 e ja+jb + e ja+j 2 b + j 2 e j 2 a+b + e j 2 a+jb + je j 

Orbifold emerging of the trigonometric relations

Example : For p=3, we have Proposition 3. The vector (x, y, z) = (e 3 , e 3 , e 3 ) is the solution of the equation such that 

x 3 + y 3 + z 3 -3xyz = 1 (3.

An interesting factorization

From the definition of the orbifold emerging of the third exponential

x 3 + y 3 + z 3 -3xyz = 1 (4.27)
and because of the identity

x 3 + y 3 + z 3 -3xyz = 1 2 (x + y + z) (x -y) 2 + (y -z) 2 + (z -x) 2 (4.28) we obtain 1 2 (x + y + z) (x -y) 2 + (y -z) 2 + (z -x) 2 = 1 (4.29)
Now we expand the second factor which gives (5.39)

(x + y + z) x 2 + y 2 + z 2 -xy -yz -xz = 1 (x + y + z) x 2 + y 2 + z 2 + (j + j 2 )xy + (j + j 2 )yz + (j + j 2 )xz = 1 (x + y + z) x 2 + j 2 xy + j xz + y 2 + j yx + j 2 yz + z 2 + j 2 zx + j zy = 1 (x + y + z) (x + j y + j 2 z)(x + j 2 y + j z) = 1 (4.
with ω p the p-th root of unity. Now we deduce from (5.39) the generalized parity relation e (q) p (ω p z) = ω q(p-1) p e (q) p (z) (5.40) or e (q) p (ω p z) = ω -q p e (q) p (z) (5.41) From (5.41), we obtain The orbifold (5.43) is n -1 dimentional when n is prime. When n is not prime we have the two equivalent decomposition if n = qq has two prime factors :

1 -ω qq p 1 -ω p = 1 + ω q p + (ω q p ) 2 + ... + (ω q p ) q -1 (5.44)
which has q term or 1 -ω qq p 1 -ω p = 1 + ω q p + (ω q p ) 2 + ... + (ω q p ) q-1 (5.45) which has q term. In doing this by recurrence, we see that the dimension of the orbifold (5.43) is n minus the number of prime factor of n because only the number of term matters.

Remark 1. If we define the Armian of a vector e = (e 1 , ..., e n ) ∈ R n :

Arm(e) = n q=1 e q (5.46)

we can write (5.37) as Arm ( W e p ) = 1 (5.47)

with e p =            e p (z) e p (z) . . . e (q) p (z) . . . e (n) p (z) 
          
(5.48)

and W = (ω e -iθ = e 4 (θ) + ie 4 (θ) -e 4 (θ) -ie 4 (θ)

-(k-1)(q-1) p ) 1≤k,q≤p or W =            1 . . . 1 . . . 1 1 . . . ω -(k-1) p . . . ω -(p-1) p . 
(5.59)

Here we can see the W matrix

W =     1 1 1 1 1 -i -1 i 1 -1 1 -1 1 i -1 -i     (5.60) Using       
x = e 4 (θ) y = e 4 (θ) z = e 4 (θ) t = e 4 (θ)

(5.61)

we can write e θ e -θ = 1

(x + y + z + t)(x -y + z -t) = 1 (x + z) 2 -(y + t) 2 = 1 (5.62
) and e iθ e -iθ = 1

(x -iy + z + it)(x + iy + z -it) = 1 (x -z) 2 + (y -t) 2 = 1 (5.63)
Combining (5.62) and (5.64), we obtain e θ e -θ e iθ e -iθ = 1

(x -z) 2 + (y -t) 2 (x + z) 2 -(y + t) 2 = 1
the defining equation of the fourth exponential

(x 2 -z 2 ) 2 + (y 2 -t 2 ) 2 + 4(xy -zt)(zy -xt) = 1
(5.64)

Arm Algebras

Let a be a generator of the n order cyclic group C n Z/nZ which is in the symetric group S n .

Proposition 4. We define an n-order Arm algebra as the commutative algebra constitued with all power of a generator of the n order cyclic group.

All the following theorems work with each generator of the cyclic group, but we decide to consider the easiest generator of the cyclic group : (123.. where m is n minus the number of prime factors of n.

Example :

For p = 2, the realization of the 2-order cyclic group is the (12) permutation matrix : Here (6.81), we recognize that the 2-Arm Group is homeomorph to the group O(1, 1).

a = 0 1 1 
For p = 3, the realization of the 3-order cyclic group in the symetric group are the matrices of the permutations (123) and (132) : Here we can note that det (exp(ax) = 1 is equivalent as (y 2 1 -y 2 3 ) 2 + (y 2 2 -y 2 4 ) 2 + 4(y 1 y 2 -y 3 y 4 )(y 3 y 2 -y 1 y 4 ) = 1 (6.83)

a =   0 0 1 1 0 0 0 1 0   a 2 =   0 1 0 0 0 1 1 0 0   ( 
with y 1 = e 4 (x), y 2 = e 4 (x), y 3 = e 4 (x), y 4 = e 4 (x) which is the relation (5.64).

For p=3, we generalized the parity relations for the third exponential Proposition 1 .Figure 1 -

 11 Figure 1 -The 3-exponential and its two derivatives

Proposition 2 .

 2 The addition relations are given by e 3 (a + b) = e 3 (a)e 3 (b) + e 3 (a)e 3 (b) + e 3 (a)e 3 (b) (2.14) e 3 (a + b) = e 3 (a)e 3 (b) + e 3 (a)e 3 (b) + e 3 (a)e 3 (b) (2.15) e 3 (a + b) = e 3 (a)e 3 (b) + e 3 (a)e 3 (b) + e 3 (a)e 3 (b) (2.16) Proof :

9(e 3

 3 (a)e 3 (b) + e 3 (a)e 3 (b)) = 2e a+b -e a+jb -e a+j 2 b -e ja+b +2e ja+jb -e ja+j 2 b -e j 2 a+b -e j 2 a+jb + 2e j 2 a+j 2 b = 3(e a+b + e ja+jb + e j 2 a+j 2 b ) -(e a+b + e a+jb + e a+j 2 b +e ja+b + e ja+jb + e ja+j 2 b + e j 2 a+b + e j 2 a+jb + e j 2 a+j 2 b ) 9(e 3 (a)e 3 (b) + e 3 (a)e 3 (b)) = 9e 3 (a + b) -9e 3 (a)e 3 (b) which gives e 3 (a + b) = e 3 (a)e 3 (b) + e 3 (a)e 3 (b) + e 3 (a)e 3 (b) (2.20) which the first relation of (2.16).

9(e 3

 3 (a)e 3 (b) + e 3 (a)e 3 (b)) = 2e a+b -j 2 e a+jb -je a+j 2 b -j 2 e ja+b +2je ja+jb -e ja+j 2 b -je j 2 a+b -e j 2 a+jb + 2j 2 e j 2 a+j 2 b = 3(e a+b + je ja+jb + j 2 e j 2 a+j 2 b ) -(e a+b + j 2 e a+jb + je a+j 2 b + j 2 e ja+b + je ja+jb + e ja+j 2 b + je j 2 a+b + e j 2 a+jb + j 2 e j 2 a+j 2 b ) 9(e 3 (a)e 3 (b) + e 3 (a)e 3 (b)) = 9e 3 (a + b) -9e 3 (a)e 3 (b) which gives e 3 (a + b) = e 3 (a)e 3 (b) + e 3 (a)e 3 (b) + e 3 (a)e 3 (b) (2.21) which the second relation of (2.16).

  2 a+j 2 b ) 9(e 3 (a)e 3 (b) + e 3 (a)e 3 (b)) = 9e 3 (a + b) -9e 3 (a)e 3 (b) which gives e 3 (a + b) = e 3 (a)e 3 (b) + e 3 (a)e 3 (b) + e 3 (a)e 3 (b) (2.22) which the third relation of (2.16).
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 232 Figure 2 -Implicit plot of x 3 + y 3 + z 3 -3xyz = 1

Theorem 1 .

 1 can write (4.30) as e θ e jθ e j 2 θ = 1 (4.32) since e θ = e 3 (θ) + e 3 (θ) + e 3 (θ) (4.33) e jθ = e 3 (θ) + j 2 e 3 (θ) + j e 3 (θ) (4.34) e j 2 θ = e 3 (θ) + j e 3 (θ) + j 2 e 3 The p-exponential y(z) = e p (z) is the solution the p -1 order partial equation where (x 0 , ..., x n-1 ) = e p (z), e p (z), ..., e(n) p (z) .This orbifold is n minus the number of prime factor of n.Proof : From the definition of the p-exponential, we have e p (z

  the set of 4-exponential are e 4 (θ) = e θ + e iθ + e -θ + e -iθ 4 (5.51) e 4 (θ) = e θ + ie iθ -e -θ -ie -iθ 4 (5.52) e 4 (θ) = e θ -e iθ + e -θ -e -iθ 4 (5.53) e 4 (θ) = e θ -ie iθ -e -θ + ie -iθ 4 θ = e 4 (θ) + e 4 (θ) + e 4 (θ) + e 4 (θ) e iθ = e 4 (θ) -ie 4 (θ) -e 4 (θ) + ie 4 (θ) e -θ = e 4 (θ) -e 4 (θ) + e 4 (θ) -e 4 (θ)

Proposition 5 .

 5 We have that the exponential of the generator aexp(ax) = n k=0 e (k) n (x) a k (6.66)for ∀x ∈ R defines a group.Theorem 2. The relation (5.37) is equivalent to det(exp(ax)

∀x 1 ∀x 1

 11 6.73)So, in the case p = 3, an element of the 3-Arm Group is exp (ax) = e 3 (x)Id 3 + e 3 (x) a + e 3 (x) x) e 3 (x) e 3 (x) e 3 (x) e 3 (x) e 3 (x) e 3 (x) e 3 (x) e 3 (x) we can note that det (exp(ax) = 1 is equivalent as (e 3 (x)) 3 + (e 3 (x)) 3 + (e 3 (x)) 3 -3e 3 (x)e 3 (x)e 3 (x) = 1 (6.76) which is the relation (3.25).Then we can see that the Arm algebra is {a, a 2 } gives the general solution of an element of the 3-Arm Group : exp ax 1 + a 2 x 2 =   e 3 (x 1 ) e 3 (x 1 ) e 3 (x 1 ) e 3 (x 1 ) e 3 (x 1 ) e 3 (x 1 ) e 3 (x 1 ) e 3 (x 1 ) e 3 (x 1 ) x 2 ) e 3 (x 2 ) e 3 (x 2 ) e 3 (x 2 ) e 3 (x 2 ) e 3 (x 2 ) e 3 (x 2 ) e 3 (x 2 ) e 3 (x 2 ) , x 2 ∈ R. Calculating (6.77), we obtain the general parametrization of the relation (3.23) , x 2 ∈ R.For p = 4, the 4-order cyclic group in the symetric group S 4 are ((1234), (1243), (1324), (1342), (1423), (1432)) where we arbitrarly choose a as the realization of the easiest permutation(1234) : the case p = 4, an element of the 4-Arm Group is exp (ax) = e 4 (x)Id 4 + e 4 (x) a + e 4 (x) a 2 + e 4 (x) a 3 x) e 4 (x) e 4 (x) e 4 (x) e 4 (x) e 4 (x) e 4 (x) e 4 (x) e 4 (x) e 4 (x) e 4 (x) e 4 (x) e 4 (x) e 4 (x) e 4 (x) e 4 (x)

  

Conclusion

I choose to give the generalized theorem for each p ∈ N to say that it is true for each p but I only formally prove it only for the third and the fourth exponential.

By the way, if somebody want to study the topology or the metric of the orbifold x 3 +y 3 +z 3 -3xyz = 1, please contact me, I would be happy to work on it.