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We generalized the concept of hyperbolic
and trigonometric functions to the
third and the fourth case which
gives rise to the parametrization
of the orbifold defined by
2>y + 23— 3ryz =1
in the third case.
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Introduction

The trigonometric functions (cosinus and sinus) were historically discovered as real and imaginary
parts of the complex exponential function which solves the first order partial equations. In addition,
the hyperbolic functions are the results of the trigonometric function with imaginary arguments. Even
if the trigonometric functions were find before the hyperbolic ones, try to imagine that this is the
trigonometric which cames from the trigonometric ones.

Because the exponential function is defined as

ep(z) = Z (;I];), (0.2)

that we have call the p-exponential function in [I]. Here we recognize the hyperbolic cosinus if we take
p = 2. In comparaison with the hyperbolic functions, we remarks that the p-th exponential (0.2]) can

be written as .
1 - k
eyp(z) = — e“r ? 0.3
RO 03

k=0

=

where w,, is the p-th root of unity.

Hence the hyperbolic and the trigonometric functions each satisfie a partial equation

y? — @2)2 =1 (0.4)

for the hyperbolic functions and the sames with a minus for the trigonometric ones.

By the way those functions are viewed as the unique solutions of two manifolds whom defining

equations are
-y =1 (0.5)

which defines a hyperbol for the hyperbolic functions and the sames with a minus which defines a
circle for the trigonometric ones.

As a consequence, we searched for the partial equation solved by the third exponential.



To this end, we showed the equivalent addition relation for the case p = 3. In the same way we
find (0.4) when we put b = —a in the trigonometric addition formulae (cosh(a + b)), we have put
b = ja,c = j2a in this equivalent trigonometric addition formulae (e3(a + b+ ¢)) and we have find the

partial equation
() + (32) -+ (32) ~3(w0) (3) (5) = 00

Thereby, the third exponential is the unique parametric solution of the orbifold defined by the implicit
equation
By -3y =1 (0.7)

The generalization of leads to the equation

p—1 p—1
H <Z wp*kp y(k)(z) ) =1 (0.8)
k=0

q=0

for each p € N with y(2) = e,(2).

In a first time, we recall definitions of the third exponential and we give some expressions of this
one. In a second time we give generalized hyperbolic parity and addition formulaes of this third
exponential. In a third time, we arbitrarly put 0 in the argument of the generalized hyperbolic addition
relations to obtain the defining equation of the emerging orbifold and the partial equation solved by
the third exponential. In a fourth time, we give a defintion of the hypercomplex number which are
a generalization of the complex ones. Finally, we completely solve the case of the fourth exponential
and give the orbifold and the partial equation solved in the general case.



1 The p-exponential

We recall the definition of the p-exponential given in [I] by :

ep(z) = i a1 piewp’“z (1.1)
. k) — p \&Z

k=0

where wy, is the p-th root of unity. We have shown in [I] that the p-exponential is solution of the
partial equation

OPe
2 = ol2) (12)
and .
p— k
d%e
> 82’5) = ¢ (1.3)
k=0
Example : For p=3, the set of 3-exponential are
o Z3k
= 1.4
63(2) kz_o (3]{})' ( )
o0 53k—1
, 0 53k—2
= 1.6
which can also be written
€% + eI7 4 ¢’z
eslz) = S (L.7)
e* +jejz +j26j22
e3(z) = 3 (1.8)
z 2 9z ey
ehz) = LA (1.9)
or N .
since j =es = *HT“/E is the 3th root of unity

2 Trigonometric relations for the third exponential

For p=3, we generalized the parity relations for the third exponential

Proposition 1. The parity relations are given by

e3(jz) = e3(2) e3(j%2) = e3(z) (2.10)
es(jz) = j%e5(2) e5(5%2) = jes(z) (2.11)
e3(jz) = jes(z) e3(jz) = jes(z) (2.12)



— e3(x)
— &3(x)

— e3"(x)
FI1GURE 1 — The 3-exponential and its two derivatives
Proof :
From de definition (5.53)), we obtain these relations.
For example, to show €4(jz) = je4(z)
— ejz +j26j2z —|—j€z
= (7 + e + &)
3es3(jz) = 3jes(z) (2.13)
From ([2.13), we obtain the other relation of (2.12)) by successive derivations or by doing the same
reasonment.
¢
Now, we generalized the addtion relations for the third exponential
Proposition 2. The addition relations are given by
es(a+b) = ez(a)es(b) + e5(a)es(b) + e3(a)es(b) (2.14)
es(a+b) = ef(a)es(b) + e4(a)es(b) + ez(a)es(b) (2.15)
es(a—+b) = es(a)es(b) + es(a)es (b) + e4(a)es(b) (2.16)

Proof :



Developping the expression of es, e, ¢4 from their definition (5.53]), we have the relations

9es(a)es(b) = ettt 4 gatib 4 0 ti%b + edatb 4 jatib 4 eJati’h + el ath + pdatib + ed2atih

Qeg(a)eg(b) _ ea+b+jea+jb+j26a+j2b+j€ja+b+j26ja+jb+eja+j2b+j26j2a+b+ej2a+jb+jej2a+j2b

9¢(a)el(b) = 0l _|_j2€a+jb+jea+j2b_|_j2€ja+b+jeja+jb+eja+j2b_|_jej2a+b+ej2a+jb+j2ej2a+j2b
(2.17)

and

Qeg(a)eg(b) _ €a+b+jea+jb+j26a+j2b+eja—i—b+j€ja+jb+j2€ja+j2b+€j2a+b+jej2a+jb+j26j2a+j2b

963(&)6%’([)) _ ea-‘rb+j26a+jb+jea+j2b+eja+b +j2€ja+jb+jeja+j2b+ej2a+b +j2€j2a+jb+j€j2a+j2b

9eg(a)e/3/(b) _ €a+b+j2€a+jb+j6a+j2b+jeja+b_|_eja+jb+j26ja+j2b+j2€j2a+b+j6j2a+jb+ej2a+j2b
(2.18)

and

9es(a)es(b) = e@tb 4 eatib 4 je‘”jzb + jedath 4 jesatib 4 jeja“% + erjz‘”b + j2ej2a+jb + j2ej2a+j2b

9es(a)es(b) = eath 4 gatib | gati®h jlelatb 4 j2edatib 4 j2€ja+j2b + jej2“+b + jej2“+jb + jej2“+j2b

9eg’(a)eg(b) _ ea+b+jea+jb+j26a+j2b+j2eja+b+eja+jb+j€ja+j2b+jej2a+b+j26j2a+jb+ej2a+j2b

(2.19)
Using (2.18) and (2.19), we have
9(ch(a)ef(b) + ef(a)eh(b) = 2e0FP — eatib (i proth
42eiatib _ giati®h _ gifatb _ jfatib | gpi?ati?h
= 3(eatd 4 edatib _|_€j2a+j2b) (ot eatib 4 pati%b
eIty glatib | oJatith | pitath y pitatkib 4 oitatih)
9(eh(a)es(b) + es(a)es (b)) = 9es(a+ b) — 9es(a)es(b)
which gives
es(a+b) = es(a)es(b) + ez(a)es(b) + e5(a)es(b) (2.20)

which the first relation of (2.16]).

In the same way, using (2.18) and (2.19)), we have
9(es(a)ef(b) + ef(a)es(b)) = 27T — jReHib — jeoti® _ j2eiath
12jedatib eJati®b _ jej2a+b _ eifatib 2j26j2a+j2b
— 3(6a+b +jeja+jb +j2€j2a+j2b) . (€a+b +j2ea+jb +
jeOtI?h 4 j2edatb  sedatib 4 pjati®h 4 jeifath y pifatib | j20i%atihy
9(es(a)es(b) +ez(a)es(b)) = 9ez(a+b) — 9el(a)es (D)

which gives

ez(a+b) = e(a)ez(b) + ez(a)es(b) + es(a)es(b) (2.21)
which the second relation of (2.16]).



In the same way, using (2.18) and (2.19)), we have

9(es(a)ey(b) + efa)es(h) = 2eH0— et — ot — jeloth
1+2j2edatib _ eJatib _ j2ej2a+b _ eitatib 2jej2a+j2b
= 3(eHb 4 jRedotib jej2a+j2b) — (%t 4 jeatib 4 jReati%h 4 jedath
1 j2edatib | pJati®b +]-2€j2a+b 4 ei?atib _|_j€j2a+j2b)
9(es(a)ez(b) + ez(a)es(b)) = 9es(a+b) — 9es(a)es(b)
which gives
e3(a+b) = e5(a)es(b) + ez(a)es (b) + e5(a)es(b) (2.22)
which the third relation of .

¢
3 Orbifold emerging of the trigonometric relations
Example :
For p=3, we have
Proposition 3. The vector (z,y, z) = (e3, €4, €4) is the solution of the equation such that
w3y 428 - Bayz =1 (3.23)
The equation defines an orbifold.
Proof :
From the addition relation, we have
es(a+b+c) = esg(a)es(b+c)+es(a)es(b+c)+es(a)es(b+c)
— ca(0) (caleale) + SO + 040 )
+ebl@) (0165 (0) + ealese) + e B)ea(c))
@) (404(6) + eheatc) + eatv)es(o))
(3.24)



If we impose b = ja and ¢ = j2a and using (2.12)), we find
calatjat ) = eaa) (ealaela) +ickl@)ch(a) + Pef(alei(a)
e (e + Pestare) + oyt
+eflo) (o) + 4a)esta) + des(eko)
1 = <63(a)>3 + (eg(a))3 + (eg(a)>3 + G+ +i+577+ 7+ 5Des(a)es(a)es(a)
So we find

<eg<a>>3 ¥ (eg<a>)3 " (e§<a>)3 ~ Bes(a)eb(a)eh(a) = 1 (3.25)

So y(z) = e3(z) is the solution of the partial equation

() () () ) (D) () e

FIGURE 2 — Implicit plot of 2% + 1 + 23 — 3zyz =1



4 Hypercomplex numbers
From the definition of the orbifold emerging of the third exponential
By -3y =1

and because of the identity

1
® +yP + 2% = 3ayr = 3 @+y+2) [(x—y)2+(y—z)2+(z—x)2}
we obtain

2

Now we expand the second factor which gives

3Oty (w2 e-o?| =1

(r+y+2) [m2+y2+22—xy—yz—mz =
(z+y+2) [x2+y2+z2+(j+j2)wy+(j+j2)yz+(j+j2>xz =

(x4+y+2) [x2+j2xy+sz+y2+jyx+j2yz+22+j2zx+jzy =

(@ +y+2) [<x+jy+j2z><a:+j2y+jz> _

So if we parametrize

We can write (4.30) as

since

! = e3(0) +e5(0) + e (h)
= es(0) +57 ey(0) +J €5(0)
I = e3(0)+5 eh(0) + 524 (0)

Then we can define the hypercomplex numbers

S:{x+jy+j2,z€(C with x,y,zeR}

(4.27)

(4.28)

(4.29)

(4.30)



5 Generalization

Theorem 1. The p-exponential y(z) = ep(z) is the solution the p — 1 order partial equation

p—1 p—1
11 ( w, P y““(z)) =1 (5.38)
q=0 k=0
This relation defines an orbifold O :
p—1 p—1
11 (Z wp, P ack) =1 (5.39)
q=0 “k=0

where (20, ..., Tn_1) = (ep(z),e;(z), ...,e;’”(z)).

Proof : From the definition of the p-exponential, we have

1 r! k
ep(z) = ;) e¥r ?
k=0
~1
1P
e(z) = = wpk e’ 2
P s
1 ‘
ep(q)(z) - = wqu o'
P iz
1 r k
ep(")(z) = = wp"k er (5.40)
P iz

with w, the p-th root of unity. Now we deduce from ([5.40) the generalized parity relation

ep(q) (wpz) = wpfl(p—l)ep(Q)(z) (5.41)
or

ep(Q) (wpz) = wpfqep(q) (2) (5.42)



From ([5.42)), we obtain

p—1
e = ep(k)(z)
k=0
p—1
et = wpfk ep(k)(z)
k=0
p—1
err = wpqu ep(k)(z)
k=0
p—1
e E wpfnk ep(k)(z)
k=0
Using ([5.58)) we obtain
1—wyP
€< liwpp )Z = 1
e Zz;é wpq z 1
p—1
H er ¥ =1
q=0
p—1 p—1
—qk k
11 (Z w, e ><z>) =1
q=0 k=0

which is the relation (5.38)).

Remark 1. If we define the Armian of a vector e = (e, ...,en) €R,, -

Arm(e) = H eq
q=1

we can write as
Arm (Wep) = 1

10

(5.43)

(5.44)

(5.45)

(5.46)



with

and W = (wp_(k_l)(q_l))lgk,qu or

1

ep(2)

ep(2)
€p = ep(q.)(z)

& (2)

1 1

o D D
oy D@D e
e N A

Using the Vondermonde determinant formula, we can check

det(W) =

Example :
For p=4, the set of 4-exponential are

ei' (6)

or

H (wp—(j—l) _ wp—(z‘—l))

1<i<j<p

60 +6i0 + 6—9 +6—i0

4
B 69 + iei@ _ 6—9 _ ,L'e—ie
N 4
69 _ ei@ + 6_9 _ e—z’@
N 4
_ e —ie? —e= 0 4 je=1
N 4

( cos(f) + cosh(6) )
( —sin(@) + sinh(0) )

( —cos(f) + cosh(8) )

NN =N =N

( sin(f) + sinh(f) )

11

(5.47)

(5.48)

(5.49)

(5.50)
(5.51)
(5.52)

(5.53)

(5.54)
(5.55)
(5.56)

(5.57)



We have

e’ = eq(0) +ey(0) + €l (0) +€) (0)
e? = ey (0) —ie)(0) — e (0) + Z€Z/<9)
el = eald) — 40) + ¢{(0) — ¢(6)
e = ey() +iey(0) — () — zeZ’(H)
(5.58)
Here we can see the W matrix
1 1 1 1
1 — =1 1
W = 1 -1 1 -1 (5.59)
1 ¢ -1 —
Using
x = eq()
y = ey)
T (5.60)
t = €/
we can write
e = 1
(x+y+z+t)(z—y+2z—-1t) = 1
(z+2)?2—-Ww+t)? = 1 (5.61)
and
R ]
(x—iy+z+it)(zc+iy+z—1it) = 1
(x—2P2+@w—t)? =1 (5.62)
Combining (5.61)) and -, we obtain
R R
[(z =2+ (-0 [(e+2)°—(y+1)°] = 1
the defining equation of the fourth exponential
(2% — 222 + (y? — 2)2 + d(zy — 2t)(zy —at) = 1 (5.63)

12



Conclusion

In fact there is a probleme with the parametrization of 22 + y3 + 22 — 3xyz = 1 with the curve
(e3(x),e4(x), es(x)). It is because why I have written this paper using z € C because e3(z) is two
dimentional like 23 4+ 3 4+ 23 — 3zyz = 1. At the time I am writting those lines, I do not have solved
this problem.

The dimension of the emerging orbifold seems to depend on the independance of the p-th root of
unity back the previous roots of unity. You can see it in the fourth exponential case where

-2

w2 =i =—1=wy 5.64
4

Hence we have two defining equations for the orbifold emerging of the fourth exponential whereas we

find only one implicit equation for the orbifold emerging of the third exponential case. This gives us the
good dimensional number since the generalized exponential are defined on C which is two dimensional.

Furthermore, I choose to give the generalized theorem for each p € N to say that it is true for each
p but I only formally prove it only for the third and the fourth exponential.

By the way, if somebody want to study the topology or the metric of the orbifold 23433+ 2% —3zyz =
1, please contact me, I would be happy to work on it.

13
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