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ABSTRACT  

Aim Extensive development of human activities in combination with ocean warming are rapidly 

modifying marine habitats in the Arctic and North Atlantic regions. In order to understand the 

potential impacts on marine biodiversity, there is an urgent need to determine distributions and 

habitat preferences of potentially vulnerable species, and to identify sensitive hotspots that might 

require particular protection. Our aims were to track one of the most abundant seabirds of the world, 

the little auk (Alle alle) to provide a large, meta-population scale overview of its non-breeding 

distribution, and to document potential threats to this species from human activities and other 

environmental changes. 

Location Arctic North Atlantic. 

Methods Using light-level geolocators, we investigated the 2010/11 non-breeding distribution of 65 

little auks from four major colonies distributed throughout the Arctic North Atlantic. Bird 

distribution during the moulting, wintering and pre-breeding periods was compared with (1) the 

extent of the marginal ice zone and (2) the areas covered by the main shipping lanes, and oil and gas 

activity licences. 

Results We identify several hotspots for this species, including two key areas located in the 

Greenland Sea and off Newfoundland. Crucially, we show that some of these hotspots overlap 

extensively with areas of intensive human activities, including oil and gas extraction and shipping. 

As little auks, which spend the major part of their time on the sea surface, are extremely vulnerable 

to marine pollution, our results emphasize the risk associated with the projected expansion of these 

activities.  

Main conclusions We conclude that management of further human enterprises in the Arctic needs 

to be based on more thorough risk assessment, requiring a substantial improvement in our 

knowledge of the distribution of sensitive species.  
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INTRODUCTION 

 

North Atlantic and Arctic marine habitats are changing rapidly, reflecting the combined effects of 

climate change and anthropogenic activities (ACIA 2004; AMSA 2009; AMAP 2011). These 

changes are, in turn, bound to have important impacts on marine biodiversity, regionally affecting 

community structure and dynamics (Pauly et al. 1998; Reid et al. 2000; Beaugrand et al. 2010; Gilg 

et al. 2012). In this context, there is a pressing need to improve our understanding of species-

environment interactions, and individual responses to environmental variability, in order to predict 

consequences of habitat modification and anthropogenic pressure for their survival and population 

dynamics. Such investigations are often constrained by our limited knowledge of species 

distribution in these remote regions, yet the latter is a pre-requisite for effective prediction of future 

impacts.  

Seabirds are an essential component of marine ecosystems, including in the North Atlantic and 

Arctic, where they are highly abundant (Barrett et al. 2006). They exert a strong predation pressure 

on lower trophic levels and therefore play a key role in marine food webs (Karnovky & Hunt 2002; 

Brooke 2004; Barrett et al. 2006). Despite this ecological importance, many seabirds are threatened, 

exposed to the impacts both of climate change and anthropogenic activities, and their protection is a 

major concern (Butchart et al. 2004; Croxall et al. 2012). For instance, the rapid decrease of multi-

year ice extent in the Arctic Ocean might restrict feeding habitats for some species and lead to a 

general northward shift in distribution (Gilg et al. 2012). The retreat of sea ice is also opening new 

shipping routes and increasing opportunities for extractive industries, targeting hydrocarbons, sea-

floor minerals and unexploited fish stocks (AMSA 2009), thereby increasing the risk of oil 

pollution and incidental mortality of seabirds at sea. Determining seabird movements and 

distribution is therefore of pivotal importance in order to define sensitive areas requiring particular 
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attention with respect to recent and future development of human activities (McFarlane Tranquilla 

et al. 2013). This will also provide essential information for predicting the impacts of environmental 

modification on the Arctic seabird community. 

In this study, we investigate the non-breeding distribution of the little auk (Alle alle), a small (150g) 

and abundant [>80 million individuals (Egevang et al. 2003)] high-Arctic seabird. Initial 

investigations showed that during their non-breeding season, little auks concentrate within 

particular hotspots located in the Greenland Sea and in the northwest Atlantic. There, millions of 

birds become exposed to local environmental perturbations (Mosbech et al. 2012; Fort et al. 2012a). 

Although valuable, both these studies focused on a single population located on the east coast of 

Greenland. However, little auks are widely distributed in the North Atlantic, with a breeding 

distribution that extends from the eastern Canadian coast to the Russian Arctic (Gaston & Jones 

1998). Areas used by non-breeding birds might differ among populations, reflecting regional 

differences in oceanography and habitat preferences. Recent studies of other seabirds emphasise the 

importance of considering such variability for an adequate assessment of relative risks associated 

with human activities (Frederiksen et al. 2012; McFarlane Tranquilla et al. 2013). Similarly, only by 

carrying out large-scale investigations at the meta-population level will it be possible to identify the 

key non-breeding areas for little auks and to assess the potential future impacts of anthropogenic 

and other environmental change. 

Using miniaturised bird-borne technology, the present study therefore aimed to (1) define the 

overall non-breeding distribution, and key moulting and wintering hotspots of adult little auks at a 

meta-population scale, and (2) document potential threats to this species from human activities 

(associated with oil or gas extraction, and shipping) and other environmental changes. 
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METHODS 

 

Study sites 

The non-breeding distribution of little auks was investigated in 2010/11 by tracking birds from 

colonies in northwest Greenland, east Greenland, Spitsbergen and Bjørnøya (Bear Island), hereafter 

referred to as NWG, EG, SP and BI, respectively (see Fig. 1 and Appendix S1 in Supporting 

Information for details). These four colonies represent the largest known breeding aggregations for 

little auks, world-wide, and cover most of the occupied range in the Arctic sector of the North 

Atlantic (Stempniewicz 2001). Non-breeding locations were estimated for a total of 65 birds using 

geolocators (Global Location Sensors or GLS) deployed in summer 2010 and retrieved in the 

following season (see Appendix S1 for details). Adult birds were captured at all colonies using 

noose carpets or by hand in their nest crevices, weighed and fitted with a GLS from the British 

Antarctic Survey (BAS, UK), mounted on a metal or plastic leg ring. Birds were released after <10 

minutes of handling. Recaptures followed the same procedure. Four different models of GLS were 

used: Mk14, Mk18L, Mk12 and Mk10B (1.0-1.5g; all <2% of birds’ body mass). During recapture, 

a small amount of blood was collected for subsequent molecular sexing. 

To determine potential impacts of logger deployment, resighting rates of birds fitted with loggers in 

2010 were compared with those of control birds (un-instrumented) in 2008 and 2009. Control adult 

little auks were captured following the same methods as instrumented birds and individually 

marked with a color ring. The following years, 61% and 57% of these birds were recaptured, 

respectively. These recapture rates of control little auks are similar to those obtained for equipped 

birds between 2010 and 2011 (Appendix S1). Only at SP was the rate lower, which was related to 

site-specific conditions and limited recapture effort precluding the recapture of all resighted birds. 

In addition, body mass of little auks at the time of logger deployment was compared with that 
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recorded when the device was retrieved the following year. We observed no significant difference 

(t-test: t = -1.34, df = 137, p = 0.18; means 2010 vs 2011: NWG: 147g vs 144g, EG: 152g vs 156g, 

SP: 167g vs 168g, BI: 156g vs 155g). This suggests that there was no substantial effect of the GLS 

on body condition. 

 

Light-level data analyses 

Light-level data were extracted from GLS loggers, linearly corrected for clock drift and processed 

with a threshold method (Wilson et al. 1992) using the BASTrak software package (BAS, 

Cambridge). We used threshold light intensity of 10, an angle of sun elevation of -3.0º, and applied 

the compensation for movements. The angle of sun elevation was determined following a two-step 

procedure: (1) a first range of possible angles was selected by visually inspecting locations derived 

from a variety of elevation angles and by considering that little auks do not occur inland during the 

non-breeding period. (2) The angle of sun elevation was then chosen following the ‘Hill-Ekstrom 

calibration’ method (Lisovski et al. 2012), assuming similar average shading intensity for the entire 

study period. This method was shown to provide the most accurate latitude estimations (Lisovski et 

al. 2012). Contrary to the ‘in-habitat calibration’, it can be used when no information is available 

for long periods from birds from a known location (e.g. at the breeding site; see Frederiksen et al. 

2012), and is therefore suitable for high-Arctic marine species that breed in constant daylight areas. 

The method consisted of plotting estimated latitudes over time using a range of sun elevation angles 

(see above), and selecting the angle that minimized the variance of latitudes around the equinox 

periods. 

Kernel analyses were performed to determine high density aggregations (hotspots) for the tracked 

birds during three distinct periods of the non-breeding season: (1) fall - 15 August to 15 September, 

the post-breeding period when this species is assumed to moult (Mosbech et al. 2012); (2) winter - 
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December and January, when birds are assumed to occupy their main wintering range (Fort et al. 

2012a); and (3) spring - April, when little auks are thought to migrate back to their breeding site. 

Hotspots were delimited by the 50% kernel density contours. Kernel analyses were performed using 

the Animal Movement extension to ArcView 3.2 (ESRI) (Hooge & Eichenlaub 1997) with the 

bandwidth parameter (h factor) determined by least-squares cross validation, and  a cell size of 

50km. Results were mapped using ArcMap 10 (ESRI, Redlands, CA, USA). The first locations in 

the immediate post-breeding period were not always available starting 15 August, particularly for 

birds from SP and BI. Indeed, the constant daylight at high latitudes during summer precludes the 

calculation of geographic coordinates, and the date of first points therefore depended on colony 

latitude and the timing of latitudinal movements by the tracked birds.  

 

Distribution of sea ice and human activities 

Little auk distribution during the three distinct periods in the non-breeding season (see above) was 

compared with: (i) the extent of the marginal ice zone (10% ice concentration) on the 1 September 

2010, 18 December 2010 and 15 April 2011, respectively, obtained from the NOAA National Ice 

Center (http://www.natice.noaa.gov/products/products_on_demand.html), (ii) the area covered by 

oil and gas activity licences for exploration, production and significant discovery off Newfoundland 

and Nova Scotia on the 15 February 2013 , issued by the Canada-Newfoundland & Labrador 

Offshore Petroleum Board and Canada-Nova Scotia Offshore Petroleum Board, and (iii) the main 

shipping lanes off Newfoundland.    

 

 

 

 

http://www.natice.noaa.gov/products/products_on_demand.html
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RESULTS 

Little auk non-breeding distribution 

Non-breeding little auks adopted different strategies according to their colony of origin, with only 

slight differences observed between sexes (Appendix S2). After breeding, tracked birds from NWG 

all moved south to a relatively small area in the northwest of the Davis Strait, where they remained 

from mid-August to mid-September (Figs. 1A and 2). In October, they continued their southward 

migration to reach the wintering area off Newfoundland in early December (Figs. 1B and 2), which 

was occupied for >3 months before the start of their northward migration (Fig. 2). In April, birds 

were still in the northwest Atlantic, in similar areas to those used during winter (Fig. 1C). 

Birds from EG and SP spent the post-breeding period (probably moulting) in broadly the same area 

in the Greenland Sea (Fig. 1A). Three birds from SP adopted a different movement pattern, 

travelling east after the breeding season to spend several weeks in the Barents Sea south of Franz 

Josef Land (Fig. 1A). In mid-October, birds from EG migrated ~3000 km to the southwest, and 

reached their winter quarters off Newfoundland in early December (Figs. 1B and 2). Thus, their 

winter distribution overlapped extensively with that of birds from NWG. After three months, birds 

from EG returned north towards their colony (Fig. 2). In April, most were off the northeast coast of 

Iceland, and the remainders were further south in the North Atlantic (Fig. 1C). Unlike Greenlandic 

birds, tracked individuals from SP adopted two different movement patterns in winter; four of them 

(44%) moved west to spend the winter in the marginal ice zone south of the Davis Strait, and the 

rest (66%) remained in the Greenland Sea off the northern coast of Iceland (Fig. 1B). In April, all 

birds from SP were resident in the Greenland Sea (Fig. 1C).  

After breeding, birds from BI all moved eastward into the Barents Sea, dispersing along the ice 

edge between south Spitsbergen and Novaya Zemlya (Fig. 1A). At the end of September, they 

moved west towards their winter quarters. Like birds from SP, those from BI divided into two 
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groups during autumn migration. Three birds (14%) crossed the North Atlantic to waters off 

southwest Greenland, 2900 km from their colony, where they stayed for almost four months until 

early March (Figs. 1B and 2). All others (86%) spent the winter in the Greenland Sea and along the 

northern coast of Iceland, in a similar area to that occupied by birds from SP during the same 

period.  

 

Use of the marginal ice zone by little auks 

The only little auks tracked from Greenland that appeared to use the marginal ice zone were birds 

from EG during the immediate post-breeding period. In contrast, the distribution of birds from both 

SP and BI overlapped considerably with the sea ice edge. In September, when little auks are 

assumed to moult, individuals from both SP and BI occupied an area located along the marginal ice 

zone in the Greenland Sea and the Barents Sea, respectively (Fig. 1A). Similarly, during winter, the 

northern limit of the main area occupied by little auks from SP and BI in the Greenland Sea was 

along the marginal ice zone (Fig. 1B). Birds from SP that overwintered in the Davis Strait were also 

close to the sea ice limit, as were the majority of birds from SP and BI in April (Fig. 1C). 

 

Little auk distribution and human activities off Newfoundland 

During winter and spring, the hotspots for Greenlandic birds (NWG and EG in winter and NWG in 

spring) included large areas off Newfoundland where offshore oil industry licenses have been 

issued. Indeed, both production and significant discovery license blocks are located entirely within 

the winter and spring hotspots used by the tracked birds. Exploration licenses, which might result in 

future production activities, also occupied a large part of the birds’ core distribution (6% and 11% 

of EG and NWG winter hotpots respectively, and 7% of NWG spring hotspots; Fig. 3). Moreover, 

major shipping routes off Newfoundland transect the hotspots used by Greenlandic birds (Fig. 3).  
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DISCUSSION 

 

Thanks to the rapid development of miniaturized geolocators over the last decades, the tracking of 

non-breeding seabirds has become a major field of research, including several recent studies of 

North Atlantic species (Frederiksen et al. 2012; Fort et al. 2012b; Magnusdottir et al. 2012). A main 

objective of these investigations has been to identify the hotspots at sea where large concentrations 

of seabirds occur, and to assess whether they need particular attention for the conservation of 

threatened species.  

Our results supplement these investigations and provide for the first time a multi-colony overview 

of the non-breeding movements and distribution of little auks, for which very little information was 

available (but see Mosbech et al. 2012; Fort et al. 2012a). Despite past ringing effort, there are few 

ring recoveries of little auks away from colonies, probably because most birds die at sea in remote 

areas (Lyngs 2003). This lack of information is unfortunate since little auks, the most abundant 

seabirds of the North Atlantic, play an essential role in this ecosystem (Karnovsky & Hunt 2002) 

and are highly sensitive to environmental perturbation (Robertson et al. 2006; Wilhelm et al. 2007; 

Karnovsky et al. 2010). By the use of geolocators, we show that this species can perform large-scale 

movements during the non-breeding season, typically travelling up to 3500 km to reach the 

wintering grounds (Fig. 2). This confirms that non-gliding seabirds with high energetic costs of 

flight such as alcids (Pennycuick 1987) can perform long migrations to reach profitable wintering 

grounds (Guilford et al. 2011, Fort et al. 2013, McFarlane Tranquilla et al. 2013). This is important, 

as it shows that birds breeding in Svalbard reach the Canadian and the south-eastern coast of 

Greenland, which was unsuspected for this small species until our study. Our findings also highlight 

the existence of common areas used by different little auk populations during the same time periods. 

The Greenland Sea is one of two important regions, occupied by birds from East Greenland and 
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Spitsbergen (EG and SP) during fall (immediate post-breeding period) when moulting occurs, by 

both populations (SP and BI) from Svalbard during winter, and by birds from Spitsbergen (SP) 

during spring. The other crucial area are the waters east of Newfoundland, where all Greenlandic 

birds (NWG and EG) overwintered. Over 30 million pairs, almost the entire population of little auks 

from Greenland, breed in the Thule district on the west, and Scoresby Sund on the east (where 

NWG and EG birds were sampled); the remainder (a small minority) breed in the Uppernavik 

District (Stempniewicz 2001; Egevang et al. 2003). Therefore, tens of millions of individuals most 

likely spend the bulk of the non-breeding season within a rather concentrated area off 

Newfoundland, highlighting the key importance of this region for little auks. While there were 

strong suspicions that, with its high winter productivity (Fort et al. 2012a), waters off 

Newfoundland constituted a significant wintering ground for North Atlantic seabirds (e.g. Fifield et 

al. 2009, Gaston et al. 2011), it was not appreciated that the Greenland Sea might also be a major 

destination for non-breeding birds. The latter should now be confirmed at a community scale by 

combining multi-species tracking studies with at-sea surveys to determine the importance of this 

region for Arctic seabirds in general. Indeed, there is an increasing realization that large-scale multi-

colony studies are required for widely distributed species in order to consider potential variation in 

non-breeding strategies among populations. These provide a more comprehensive overview of 

seabird distribution, and highlight biodiversity and resource hotspots that might be included in 

protected area networks (Grémillet & Boulinier 2009, Magnusdottir et al. 2012). 

By focusing on four of the largest colonies located around the North Atlantic in areas where >90% 

of the global population is estimated to breed (Stempniewicz 2001; Egevang et al. 2003), we are 

confident that highlighted hotspots reflect the general non-breeding distribution for adult little auks. 

Moreover, our results are corroborated by previous investigations performed over three additional 

years at the EG colony (Mosbech et al. 2012; Fort et al. 2012a; Fort et al. unpublished). 
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Nevertheless, further studies focused on additional colonies (e.g. the Russian populations), more 

individuals, and several years are needed to confirm whether these non-breeding hotspots are used 

consistently, and whether they are representative of the entire little auk population. Furthermore, we 

emphasize that hotspots identified in this study only represent the distribution of breeding little 

auks. Although size limitations, and the difficulties involved in ensuring long-term attachment 

without deleterious effects, currently preclude the use of satellite-transmitters on little auks, 

additional investigations will have to be performed to determine if juveniles, immatures or non-

breeders occupy similar areas to breeding adults during the non-breeding period.  

 

Non-breeding little auks and sea ice 

Recent studies suggested the importance of sea ice for little auks when it occurs in proximity to 

their colony (e.g. Jakubas et al. 2012), perhaps because it provides a particular source of prey such 

as sympagic amphipods (Fort et al. 2010) from which birds might benefit. Our findings suggest that 

the marginal ice zone also might be a key habitat for some little auk populations during the non-

breeding season. Indeed, the distribution of birds from both study colonies in Svalbard overlapped 

closely with the location of the ice edge, year-round, particularly in the Greenland Sea, the Barents 

Sea and the southwest Davis Strait. However, our data do not allow us to assess whether the ice 

edge is specifically targeted by little auks or whether it merely represents a physical barrier 

constraining their northern distribution. These results have implications for our understanding of 

environmental pressures on little auks, and for investigations of the effects of future climate change. 

Recent studies suggested that during summer, climate change will affect the energy budgets, 

breeding success and distribution of many seabirds and other vertebrates in the Arctic (Gilg et al. 

2012). These modifications will partly be due to a change of the sea ice extent that might allow 

access to new breeding and feeding sites, or modify prey availability (see Gilg et al. 2012 and 
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references therein). Here, we speculate that the predicted decrease in sea ice extent will also have a 

major effect on little auks during their non-breeding season. It will open new, potentially suitable 

wintering habitats in the Greenland Sea, or force individuals relying on the sea ice edge as feeding 

grounds to move northwards, following its retreat. In all cases, it is highly likely that the predicted 

reduction of sea ice will affect the distribution of little auks from Svalbard by modifying their 

winter habitat.   

 

Human activities as a potential threat for Arctic seabirds 

Seabirds from the alcid family are known to spend a large proportion of their time outside the 

breeding season in contact with the water surface, either resting or diving (Gaston & Jones 1998; 

Mosbech et al. 2012). During that time, they are therefore very sensitive to marine pollution, 

particularly oil spills resulting from illegal discharges from shipping, or accidental discharges from 

both shipping and oil and gas exploitation (Wiese & Robertson 2004; Wilhelm et al. 2007; Hedd et 

al. 2011). Here, we show that a major proportion of the global population of little auks (most likely 

millions of birds; see above) winters off Newfoundland within an area where the level of current 

and projected human activities, and therefore oil-related risks, are high. With its strategic shipping 

lanes and several offshore oil production platforms, the waters off Newfoundland are some of the 

most vulnerable areas in the sub-Arctic (Halpern et al. 2008). Recent studies involving bird-borne 

technology or at-sea surveys indicate that several seabird species gather in this region during winter 

in huge numbers, including common guillemots (Uria aalge), Brünnich’s guillemots (U. lomvia), 

kittiwakes (Rissa tridactyla) and little auks (Fifield et al. 2009, Hedd et al. 2011; Frederiksen et al. 

2012; McFarlane Tranquilla et al. 2013; this study); and chronic oil pollution from shipping has 

been shown to have significant deleterious effects on these species, killing thousands of individuals 

each year (Wiese & Robertson 2004). In the case of little auks, the combination of little apparent 
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variability in migration strategies (e.g. only one hotspot observed for all tracked birds from 

Greenland) and a relatively concentrated distribution might enhance this sensitivity, and hence even 

a single-point, small-scale pollution event could be detrimental to huge numbers of birds. 

Accordingly, little auks are among the species worst affected by oil spills in the North Atlantic 

(Heubeck 2006; Robertson et al. 2006). In addition to pollution around platforms, little auks might 

also be sensitive to the artificial light (including flares) generated by oil exploitation activities, 

which attract seabirds like little auks, increasing the risk of collisions with man-made structures and 

hence mortality (Wiese et al. 2001). For little auks, the main regions occupied during winter are 

located where the daylight period is short and light levels extremely low, and hence the 

attractiveness of artificial lights might be especially high. The fishing industry is also expected to 

expand in the Arctic with the opening of new fishing grounds as the seasonal extent of sea ice 

declines. While this might become a major threat to piscivorous seabirds by increasing the risk of 

accidental bycatch (Hedd et al. 2011), this should have limited impact on little auks during winter.  

 

Crucially, seasonal overlaps between the marine industries (shipping and oil extraction) that are the 

source of oil pollution and seabird hotspots will almost inevitably increase in the Arctic, as sea ice 

retreats and human activities rapidly expand northwards. The predicted reduction of sea ice extent 

(IPCC 2007) will increase the number of days that existing Arctic shipping lanes are used, and open 

other routes (AMSA 2009; Fig. 4). Oil exploration, which has already expanded throughout the 

North Atlantic sector of the Arctic (Fig. 4), will certainly result in the deployment of additional oil 

platforms. In this context, it is essential to understand the large-scale distribution of seabirds, 

particularly as hotspots for these species are usually indicative of high resource availability and 

wider biodiversity, which should be protected before the establishment of new human industries. 

Additional efforts to define seabird habitat preference are also essential to investigate how a 
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warming climate could change the distribution of biodiversity and resource hotspots, because 

conservation strategies will need to cope with probable long-term changes in the overlap with, and 

hence pressure from, human industries. Seabird distribution can be related to specific environmental 

factors such as prey availability or temperature regimes (Fort et al. 2012a). Changes to 

oceanographic conditions as the climate warms (e.g. Beaugrand et al. 2002, 2010) could therefore 

cause a major redistribution of both prey and predator (Gilg et al. 2012). The conservation of their 

key feeding grounds and the establishment of stringent management strategies that reflect the 

pivotal role of seabirds within the ecosystems of the Northern Atlantic are of critical importance, as 

recently highlighted by several international initiatives by the Arctic Council and the International 

Maritime Organization (e.g. Arctic Council 2009). 
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Fig. 1. Main areas occupied by little auks (Alle alle) in the 2010/11 non-breeding season, 

represented by 50% kernel density contours. (a) moulting (15 August – 15 September) distribution, 

(b) winter (December-January) distribution, (c) spring (April) distribution. On each map, colored 

stars represent the breeding colonies where birds were equipped, with the same color used for 

kernel density contours for that colony. The dark grey area indicates the extent of the marginal ice 

zone on 1 September 2010, 18 December 2010 and 15 April 2011. Ice data are from NOAA 

National Ice Center. Map projection: equidistant conic. 
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Fig. 2. Weekly distance (mean (SE), km) to the colony of origin for tracked little auks (Alle alle) 

from each of the four study sites. For SP and BI, black-filled circles represent weekly distance to 

colony of birds wintering in the Greenland Sea, and open circles represent birds wintering off the 

west coast of Greenland (see results).  Data around equinox periods (from 15 September 2010 to 15 

October 2010 and from 01 March 2011 to 01 April 2011) were excluded.    
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Fig. 3. Distributions in (a) winter (December 2010 and January 2011), and (b) spring (April 2011) 

of tracked little auks (Alle alle) from NWG (light blue) and EG (red) in relation to human activities 

off Newfoundland. Hotspots in bird distributions are the 50% kernel density contours. Production 

(purple), Significant Discovery (pink) and Exploration (light grey) license blocks were provided by 

the Canada-Newfoundland & Labrador Offshore Petroleum Board. Main shipping lanes (dark blue) 

are adapted from Lock et al. (1994). Map projection: Mercator. 
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Fig. 4. Overlap between the non-breeding distribution of tracked little auks (Alle alle) and the 

development of future human activities in the Arctic (oil/gas activities and shipping routes). Little 

auk hotspots are defined by kernel 50% density contours in autumn (15 September/15 August – 

blue kernels), winter (December and January – red kernels) and spring (April – brown kernels). 

Black areas represent licensed exploration blocks in Canada (Newfoundland, Labrador and Nova 

Scotia), Iceland, Greenland, United Kingdom, Norway and Faroe Islands. License positions were 

provided by the Canada-Newfoundland & Labrador Offshore Petroleum Board, the Canada-Nova 

Scotia Offshore Petroleum Board, the National Energy Authority of Iceland, the Bureau of Minerals 

and Petroleum for Greenland (http://en.nunagis.gl/), the Norwegian Petroleum Directorate 

(http://www.npd.no/), the Department of Energy and Climate Change for UK licences 

(http://og.decc.gov.uk/), and the Faroese Earth and Energy Directorate (http://www.jardfeingi.fo/), 

respectively. Schematisation of future main Arctic shipping routes is adapted from AMSA (2009). 

Map projection: equidistant conic. 
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