
HAL Id: hal-01099514
https://hal.science/hal-01099514v1

Submitted on 4 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Boosting local consistency algorithms over oating-point
numbers

Mohammed Said Belaid, Claude Michel, Michel Rueher

To cite this version:
Mohammed Said Belaid, Claude Michel, Michel Rueher. Boosting local consistency algorithms over
oating-point numbers. Principles and Practice of Constraint Programming. 18th International Con-
ference, CP 2012, Oct 2012, Quebec, Canada. pp.127-140, �10.1007/978-3-642-33558-7_12�. �hal-
01099514�

https://hal.science/hal-01099514v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Boosting local consistency algorithms over

�oating-point numbers?

Mohammed Said Belaid, Claude Michel, and Michel Rueher

I3S (UNS/CNRS)
2000, route des Lucioles - Les Algorithmes - bât. Euclide B - BP 121

06903 Sophia Antipolis Cedex - France
{MSBelaid, Claude.Michel}@i3s.unice.fr, Michel.Rueher@gmail.com

Abstract. Solving constraints over �oating-point numbers is a critical
issue in numerous applications notably in program veri�cation. Capa-
bilities of �ltering algorithms over the �oating-point numbers (F) have
been so far limited to 2b-consistency and its derivatives. Though safe,
such �ltering techniques su�er from the well known pathological prob-
lems of local consistencies, e.g., inability to e�ciently handle multiple
occurrences of the variables. These limitations also have their origins in
the strongly restricted �oating-point arithmetic. To circumvent the poor
properties of �oating-point arithmetic, we propose in this paper a new
�ltering algorithm, called FPLP, which relies on various relaxations over
the real numbers of the problem over F . Safe bounds of the domains
are computed with a mixed integer linear programming solver (MILP)
on safe linearizations of these relaxations. Preliminary experiments on a
relevant set of benchmarks are promising and show that this approach
can be e�ective for boosting local consistency algorithms over F .

1 Introduction

Critical systems are more and more relying on �oating-point (FP) computations.
For instance, embedded systems are typically controlled by software that store
measurements and environment data as �oating-point number (F). The initial
values and the results of all operations must therefore be rounded to some nearby
�oat. This rounding process can lead to signi�cant changes, and, for example,
can modify the control �ow of the program. Thus, the veri�cation of programs
performing FP computations is a key issue in the development of critical systems.

Methods for verifying programs performing FP computations are mainly de-
rived from standard program veri�cation methods. Bounded model checking
(BMC) techniques have been widely used for �nding bugs in hardware design [3]
and software [11]. SMT solvers are now used in most of the state-of-the-art BMC
tools to directly work on high level formula (see [2, 9, 11]). The bounded model
checker CBMC encodes each FP operation of the program with a set of logic
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functions on bit-vectors which requires thousands of additional variables and be-
comes quickly intractable [6]. Tools based on abstract interpretation [10, 22] can
show the absence of run-time errors (e.g., division by zero) on program working
with FP numbers. Tools based on abstract interpretation are safe since they
over-approximate FP computations. However, over-approximations may be very
large and these tools may generate many false alerts, and thus reject many valid
programs. For instance, Chen's polyhedral abstract domains [7] rely on coarse
approximations of �oating-point operations that do not take advantage of the
rounding mode. Constraint programming (CP) has also been used for program
testing [13, 14] and veri�cation [8]. CP o�ers many bene�ts like the capability to
deduce information from partially instantiated problems or to exhibit counter-
examples. The CP framework is very �exible and simpli�es the integration of
new solvers for handling a speci�c domain, for instance FP solvers. However, it
is important to understand that solvers over real numbers (R) cannot correctly
handle FP arithmetic. Dedicated constraint solvers are required in safe CP-based
framework and BMC-SMT tools for testing or verifying numerical software1.

Techniques to solve FP constraints are based on adaptations of classical con-
sistencies (e.g. box-consistency and 2B-consistency) over R [21], [20, 5]. However
FP solvers based on these techniques do not really scale up to large constraint
systems. That is why we introduce here a new method to handle constraints
over the FP numbers by taking advantage of solvers over R. The basic tenet
is to build correct but tight relaxations over R of the FP operations. To en-
sure the tightness of the result, each FP operation is approximated according to
its rounding mode. For example, assume that x and y are positive normalized
FP numbers2, then the FP product x ⊗ y with a rounding mode set to −∞, is
bounded by α× (x× y) < x⊗ y ≤ x× y where α = 1/(1 + 2−p+1) and p is the
size of the signi�cand. Approximations for special cases have also been re�ned,
e.g., for the addition with a rounding mode set to zero, or for the multiplication
by a constant.

Using these relaxations, a problem over the FP numbers is �rst translated
into a set of nonlinear constraints over R. A linearization of the nonlinear con-
straints is then applied to obtain a mixed integer linear problem (MILP) over
R. In this process, binary variables are used to handle concave domains to pre-
vent too loose over-approximations. This last set of constraints can directly be
solved by available MILP solvers over R which are relieved from the drawbacks
of FP arithmetic. E�cient MILP solvers rely on FP computations and thus,
might miss some solutions. In order to ensure a safe behavior of our algorithm,
correct rounding directions are applied to the relaxation coe�cients [19, 4] and a

1 See FPSE (http://www.irisa.fr/celtique/carlier/fpse.html), a solver for FP con-
straints coming from C programs.

2 A FP number is a triple (s, e,m) where s is the sign, e the exponent and m the
signi�cand. Its value is given by (−1)s × 1.m × 2e. r and p are the size of the
exponent and the signi�cand. The IEEE standard 754 de�nes the single format
with (r, p) = (8, 23) and the double format with (r, p) = (11, 52). A normalized FP
number's signi�cand has no non-zero digits to the left of the decimal point and a
non-zero digit just to the right of the decimal point.



procedure [23] to compute a safe minimizer from the unsafe result of the MILP
solver is also applied. Preliminary experiments are promising and this new �l-
tering technique should really help to scale up all veri�cations tools that uses a
FP solver.

Our method relies on a high level representation of the FP operations and,
thus, does not su�er from the same drawbacks than bit vector encoding. The bit
vector encoding used in CBMC generates thousands of additional binary vari-
ables for each FP operation of the program. For example, an addition of two
32 bits �oats requires 2554 binary variables [6]. The mixed approximations pro-
posed in [6] reduce the number of additional binary variables signi�cantly but
the resulting system remains expensive in memory consumption. For instance,
a single addition with only 5 bits of precision still requires 1035 additional vari-
ables. Our method does also generate additional variables: temporary variables
are used to decompose complex expressions into elementary operations over the
FP numbers and some binary variables are used to handle the di�erent cases of
our relaxations. However, the number of generated variables is negligible com-
pared to the ones required by a bit vector encoding.

1.1 An illustrative example

Before going into the details, let us illustrate our approach on a very simple
example. Consider the simple constraint

z = x⊕ y 	 x (1)

where x, y and z are 32 bits FP variables, and ⊕ and 	 are the addition and the
subtraction over F , respectively. Over the real numbers, such an expression can
be simpli�ed to z = y. However, this is not true with FP numbers. For example,
over F and with a rounding mode set to the nearest, 10.0⊕ 10.0−8	 10.0 is not
equal to 10.0−8 but to 0. This absorption phenomenon illustrates why expressions
over the FP numbers cannot be simpli�ed in the same way than expressions over
the real numbers.

Now, let us assume that x ∈ [0.0, 10.0], y ∈ [0.0, 10.0] and z ∈ [0.0, 10.08].
FP2B, a 2B-consistency [16] algorithm adapted to FP constraints [20], �rst per-
forms forward propagation of the domains of x and y on the domain of z using an
interval arithmetic where interval bounds are computed with a rounding mode
set to the nearest. Backward propagation being of no help here, the �ltering
process yields:

x ∈ [0.0, 10.0], y ∈ [0.0, 10.0], z ∈ [0.0, 20.0]

This poor �ltering is due to the fact that 2B-consistency algorithms cannot han-
dle e�ciently constraints with multiple occurrences of the variables. A stronger
consistency like 3B-consistency [16] will reduce the domain of z to the interval
[0.0, 10.01835250854492188]. However, 3B-consistency will fail to reduce the do-
main of z when x and y occur more than two times, like in z = x⊕ y 	 x	 y ⊕
x⊕ y 	 x.



Algorithm FPLP, introduced in this paper, �rst builds safe nonlinear relax-
ations over R of the constraints over F derived from the program. Of course,
these relaxations are computed according to the rounding mode. Applied to
constraint (1), it yields the following relaxations over R:

(1− 2−p

(1−2−p) )(x+ y) ≤ tmp1
tmp1 ≤ (1 + 2−p

(1+2−p) )(x+ y)

(1− 2−p

(1−2−p) )(tmp1− x) ≤ tmp2
tmp2 ≤ (1 + 2−p

(1+2−p) )(tmp1− x)
z = tmp2

where p is the size of the signi�cand of the FP variables. tmp1 approximates the
result of the operation x ⊕ y by means of two planes over R which encompass
all the results of this addition over F . tmp2 does the same for the subtraction.
Some relaxations, like the one of the product, include nonlinear terms. In such a
case, a linearization process is applied to get a MILP. Once the problem is fully
linear, a MILP solver is used to shrink the domain of each variable, respectively,
minimizing and maximizing it.

FPLP, which stands for Floating-Point Linear Program, implements the algo-
rithm previously sketched. A call to FPLP on constraint (1) immediately yields:

x ∈ [0, 10], y ∈ [0, 10], z ∈ [0, 10.0000023841859]

which is a much tighter result than the one computed by FP2B. Contrary to
3B-consistency, FPLP still gives the same result with FPLP provides the same
result for constraint z = x⊕y	x	y⊕x⊕y	x whereas 3B-consistency cannot
reduce the upper bound of z on the latter constraint.

1.2 Outline of the paper

The rest of this paper is organized as follows: the next section introduces the
nonlinear relaxations over R of the constraints over F . The following section
shows how the nonlinear terms of the relaxations are linearized. Then, the �l-
tering algorithm is detailed and the results of our experiments are given before
concluding the paper.

2 Relaxations of FP constraints

This section introduces nonlinear relaxations over R of the FP constraints from
the initial problem. These relaxations are the cornerstone of the �ltering process
described in this paper. They must be correct, i.e., they must preserve the whole
set of solutions of the initial problem, and tight, i.e., they should enclose the
smallest amount of non FP solutions.

These relaxations are built using two techniques: the relative error and the
correctly rounded operations. The former is a technique frequently used to an-
alyze the precision of the computation. The latter property is ensured by any



IEEE 754 compliant implementation of the FP arithmetic: a correctly rounded
operation is an operation whose result over F is equal to the rounding of the
result of the equivalent operation over R. In other word, let x and y be two FP
numbers, � and ·, respectively, an operation over F and its equivalent over R,
if � is correctly rounded then, x� y = round(x · y).

In the rest of this section, we �rst detail how to build these relaxations for a
speci�c case before de�ning the relaxations in the general cases. Then, we will
show how the di�erent cases can be simpli�ed.

2.1 A speci�c case

In order to explain how these relaxations are built, let us consider the case where
an operation is computed with a rounding mode set to −∞ and the result of this
operation is a positive and normalized FP number. Such an operation, denoted
�, could be any of the four basic binary operations from the FP arithmetic. The
operands are all supposed to have the same FP type, i.e., either �oat, double or
long double. Then, the following property holds:

Proposition 1. Let x and y be two FP numbers whose signi�cand is represented

by p bits. Assume that the rounding mode is set to −∞ and that the result of

x � y is a normalized positive FP numbers smaller than maxf , the biggest FP

number, then the following property holds:

1

1 + 2−p+1
(x · y) < x� y ≤ (x · y)

where � is a basic operation over the FP numbers and, · is the equivalent oper-

ation over the real numbers.

Proof. Since IEEE 754 basic operations are correctly rounded and the rounding
mode is set to −∞, we have:

x� y ≤ x · y < (x� y)+ (2)

(x�y)+, the successor of (x�y) within the set of FP numbers, can be computed
by

(x� y)+ = (x� y) + ulp(x� y)

as, ulp, which stands for unit in the last place, is de�ned by ulp(x) = x+ − x.
Thus, it results from (2) that

x� y ≤ x · y < (x� y) + ulp(x� y)

From the second inequality, we have

1

x� y + ulp(x� y)
<

1

x · y



By multiplying each side of the inequality by x� y � which is a positive number
� we get

x� y
x� y + ulp(x� y)

<
x� y
x · y

By multiplying each side of the above inequality by −1 and by adding one to
each side, we obtain

1− x� y
x · y

< 1− x� y
x� y + ulp(x� y)

=
ulp(x� y)

x� y + ulp(x� y)
(3)

Now, consider ε, the relative error de�ned by

ε =

∣∣∣∣real_value− float_valuereal_value

∣∣∣∣
ε is the absolute value of the di�erence between the result over R and the result
over F divided by the result over R. In the considered case, the result of x� y
being a positive normalized �oating-point number and x · y ≥ x� y, the relative
error is given by

0 ≤ ε = x · y − x� y
x · y

= 1− x� y
x · y

Thus, thanks to (3), we have

0 ≤ ε < ulp(x� y)
x� y + ulp(x� y)

z, the result of the operation x�y, is a binary positive and normalized FP number
that can be written z = 1.mz2

ez , where mz has p bits. Moreover, ulp(z) =
2−p+12ez . Therefore,

0 ≤ ε < 2−p+12ez

mz2ez + 2−p+12ez
=

2−p+1

mz + 2−p+1

The value of the signi�cand of a normalized FP number belongs to the interval
[1.0, 2.0[. An upper bound of the relative error ε is given by the minimum of
mz + 2−p which is reached when mz = 1. Thus

0 ≤ ε < 2−p+1

1 + 2−p+1

Since we have

ε =
x · y − x� y

x · y
we have

0 ≤ x · y − x� y
x · y

<
2−p+1

1 + 2−p+1

and

0 ≤ x · y − x� y < (x · y) 2−p+1

1 + 2−p+1



Rounding Negative Negative Positive Positive

mode normalized denormalized denormalized normalized

to −∞ [(1 + 2−p+1)zr, zr] [zr −minf , zr] [zr −minf , zr] [ 1
(1+2−p+1)

zr, zr]

to +∞ [zr,
1

(1+2−p+1)
zr] [zr, zr +minf ] [zr, zr +minf ] [zr, (1 + 2−p+1)zr]

to 0
[
zr,

1
(1+2−p+1)

zr
]

[zr −minf , zr] [zr, zr +minf ] [ 1
(1+2−p+1)

zr, zr]

to nearest [(1 + 2−p

(1+2−p)
)zr, [zr −

minf

2
, [zr −

minf

2
[(1− 2−p

(1−2−p)
)zr,

(1− 2−p

(1−2−p)
)zr] zr +

minf

2
] zr +

minf

2
] (1 + 2−p

(1+2−p)
)zr]

Table 1. Relaxations of x� y for each rounding mode where zr = x · y.

By multiplying each side of the inequality by −1 and adding x · y to each side,
we �nally obtain

1

1 + 2−p+1
(x · y) < x� y ≤ x · y

�

2.2 Generalization

Table 1 summarizes the relaxations for each rounding mode in the di�erent cases,
i.e., positive or negative FP numbers, as well as, normalized and denormalized
FP numbers. Each case has a dedicated correct and tight approximation built
in a way similar to the one of the case detailed in the previous subsection.

Note that tighter approximations for speci�c cases could also be computed.
For example, the approximation of an addition with a rounding mode sets to
±∞ could be slightly improved. In a similar way, the structure of the problem
is another source of improvements of the approximations. For example, 2 ⊗ x
being exactly computed3, it can directly be evaluated over R.

2.3 Simpli�ed relaxations

The main issue with the previous relaxations is that the solving process will have
to handle the di�erent cases. As a result, for n basic operations, the solver has to
deal with 4n potential combinations of the relaxations. To decrease substantially
this complexity, we provide here a combination of the four cases of each rounding
mode into a single case.

Let us �rst consider the case where the rounding mode is set to −∞:

Proposition 2. Let x and y be two FP numbers whose signi�cand size is p and,

assume that the rounding mode is set to −∞ and, that −maxf < x�y < maxf ,
then,

zr − 2−p+1|zr| −minf ≤ x� y ≤ zr
3 Provided that no over�ow occurs.



where minf is the smallest positive FP number, � and · are respectively a basic

binary operation over F and its equivalent over R, and zr = x · y.

Proof. In a �rst step, the normalized and denormalized approximations are com-
bined. If zr > 0 then 1

1+2−p+1 zr < zr. Thus,

1

1 + 2−p+1
zr −minf < zr −minf

and
1

1 + 2−p+1
zr −minf <

1

1 + 2−p+1
zr

Therefore,
1

1 + 2−p+1
zr −minf < x� y ≤ zr, zr ≥ 0

When zr ≤ 0, we get

(1 + 2−p+1)zr −minf < x� y ≤ zr, zr ≤ 0

These two approximations can be rewritten as follows,{
zr − 2−p+1

1+2−p+1 zr −minf < x� y ≤ zr, zr ≥ 0

zr + 2−p+1zr −minf < x� y ≤ zr, zr ≤ 0

To combine the negative and positive approximations together we can use the
absolute value: {

zr − 2−p+1

1+2−p+1 |zr| −minf < x� y ≤ zr, zr ≥ 0

zr − 2−p+1|zr| −minf < x� y ≤ zr, zr ≤ 0

As max{ 2−p+1

1+2−p+1 , 2
−p+1} = 2−p+1, we get

zr − 2−p+1|zr| −minf ≤ x� y ≤ zr

�

The same reasoning holds for other rounding modes. Table 2 summarizes the
simpli�ed relaxations for each rounding mode. Note that these approximations
de�ne concave sets.

3 Linearization of the relaxations

The relaxations introduced in the previous section contain nonlinear terms that
cannot be directly handled by a MILP solver. In this section, we describe how
these terms are approximated by sets of linear constraints.



Rounding mode The approximation of x� y
to −∞ [zr − 2−p+1|zr| −minf , zr]

to +∞ [zr, zr + 2−p+1|zr|+minf ]

to 0
[zr − 2−p+1|zr| −minf ,

zr + 2−p+1|zr|+minf ]

to the nearest
[zr − 2−p

(1−2−p)
|zr| −

minf

2
,

zr +
2−p

(1−2−p)
|zr|+

minf

2
]

Table 2. Simpli�ed relaxations of x� y for each rounding mode (with zr = x · y).

3.1 Absolute value linearization

Simpli�ed relaxations that allow to handle all numerical FP values with a single
set of two inequalities require absolute values. Absolute values can either be
loosely approximated by three linear inequalities or by a tighter decomposition
based on big M rewriting method:

z = zp − zn
|z| = zp + zn

0 ≤ zp ≤M × b
0 ≤ zn ≤M × (1− b)

where b is a boolean variable, zp and zn are real positive variables and, M is a
FP number such that M ≥ max{|z|, |z|}. The method separates zp, the positive
values of z, from zn, its negative values. When b = 1, z gets its positive values
and we have z = zp = |z|. If b = 0, z gets its negative values and we have
z = −zn and |z| = zn.

If the underlying MILP solver allows indicator constraints, the two last set
of inequalities can be replaced by:{

b = 0→ zp = 0

b = 1→ zn = 0

3.2 Linearization of nonlinear operations

Bilinear terms, square terms, and quotient linearizations are based on standard
techniques used by Sahinidis et al [24]. They have been also used in the Quad
system [15] designed to solve constraints over the real numbers. x×y is linearized
according to Mc Cormick [18]:

Let x ∈ [x, x] and y ∈ [y, y], then
z − xy − yx+ xy ≥ 0

−z + xy + yx− xy ≥ 0

−z + xy + yx− xy ≥ 0

z − xy − yx+ xy ≥ 0



These linearizations have been proved to be optimal by Al-Khayyal and Falk
[1].

Each time x = y, i.e., in case of z = x⊗x, the linearization can be improved.
x2 convex hull is underestimated by all the tangents at x2 curve between x and
x and overestimated by the line that join (x, x2) to (x, x2). A good balance is
obtained with the two tangents at the bounds of x. Thus, x2 linearization yields:

z + x2 − 2xx ≥ 0

z + x2 − 2xx ≥ 0

(x+ x)x− z − xx ≥ 0

z ≥ 0

The division takes advantage of the properties of real arithmetic: the essential
observation is that z = x/y is equivalent to x = z × y. Therefore, Mc Cormick
[18] linearizations can be used here. These linearizations need the bounds of z
which can directly be computed by interval arithmetic:

[z, z] = [∇(min(x/y, x/y, x/y, x/y)),
∆(max(x/y, x/y, x/y, x/y))]

where ∇ and ∆ are respectively the rounding modes towards −∞ and +∞.

4 Filtering algorithm

The proposed �ltering algorithm relies on the linearizations of the relaxations
over R of the initial problem to attempt to shrink the domain of the variables by
means of a MILP solver. Algorithm 1 details the steps of this �ltering process.

First, functionApproximate relaxes initial FP constraints to nonlinear con-
straints over R. Then, function Linearize linearizes the nonlinear terms of these
relaxations to get a MILP.

The �ltering loop starts with a call to FP2B, a �ltering process relying on
an adaptation of 2B-consistency to FP constraints that attempts to reduce the
bounds of the variables. FP2B propagates bound values to intermediate vari-
ables. The cost of this �ltering process is quite light: it stops as soon as do-
main size reduction between two iterations is less than 10%. Thanks to function
UpdateLinearizations, newly computed bounds are used to tighten the MILP.
Note that this function updates variable domains as well as linearization coe�-
cients.

After that, MILP is used to compute a lower bound and an upper bound
of the domain of each variable by means of function safeMin. This function
computes a safe global minimizer of the MILP.

This process is repeated until the percentage of reduction of the domains of
the variables is lower than a given ε.



Algorithm 1 FPLP

1: Function FPLP (V,D, C, ε)
2: % V: FP variables
3: % D: Domains of the variables
4: % C: Constraints over FP numbers
5: % ε: Minimal reduction between two iterations
6: C′ ← Approximate (C);
7: C′′ ← Linearize (C′,D);
8: boxSize←

∑
x∈V

(xD − xD);

9: repeat
10: D′ ← FP2B(V,D, C, ε);
11: if ∅ ∈ D′ then
12: return ∅;
13: end if

14: C′′ ← UpdateLinearizations(C′′,D′);
15: for all x ∈ V do

16: [xD′ , xD′ ]← [safeMin(x, C′′), −safeMin(−x, C′′)];
17: if [xD′ , xD′ ] = ∅ then
18: return ∅;
19: end if

20: end for

21: oldBoxSize← boxSize;
22: boxSize←

∑
x∈V

(xD′ − xD′);

23: D ← D′
24: until boxSize ≥ oldBoxSize ∗ (1− ε);
25: return D;

4.1 Getting a safe minimizer

Using an e�cient MILP solver like CPLEX to �lter the domains of the variables
raises two important issues related to FP computations.

First, linearization coe�cients are computed with FP arithmetic and are sub-
ject to rounding errors. Therefore, to avoid the loss of solutions, special attention
must be paid to the rounding directions. Correct linearizations rely on FP com-
putations done using the right rounding directions. For instance, consider the
linearization of x2 where x ≥ 0 and x ≥ 0:

y +∆(x2)−∆(2x)x ≥ 0

y +∆(x2)−∆(2x)x ≥ 0

∆(x+ x)x− y −∇(xx) ≥ 0

y ≥ 0

This process that ensures that all the linearizations are safe is called within the
Linearize and UpdateLinearizations functions. For more details on how to
compute safe coe�cients see [19, 4].



2B 3B FPLP (without 2B) FPLP

Program n nT nB t(ms) t(ms) %(2B) t(ms) %(2B) t(ms) %(2B)

Absorb1 2 1 1 TO TO - 3 98.91 5 98.91

Absorb2 2 1 1 1 24 0.00 3 100.00 4 100.00

Fluctuat1 3 12 2 4 156 99.00 264 99.00 172 99.00

Fluctuat2 3 10 2 1 4 0.00 29 0.00 21 0.00

MeanValue 4 28 6 3 82 97.45 530 97.46 78 97.46

Cosine 5 33 7 5 153 33.60 104 33.61 43 33.61

SqrtV1 11 140 29 9 27198 99.63 1924 100.00 1187 100.00

SqrtV2 21 80 17 7 TO - 2337 100.00 1321 100.00

SqrtV3 5 46 8 5 573 53.80 185 54.83 82 54.83

Sine taylor 6 44 9 5 452 63.29 313 63.29 227 63.29

Sine iter 16 109 21 8 4503 39.20 5885 39.31 165 39.31

Qurt 6 21 3 4 26 43.56 163 43.56 38 43.56

Poly 6 51 9 5 1569 49.17 765 76.66 309 76.66

Newton 7 69 14 5 1542 45.16 479 45.16 195 45.16
Table 3. Experiments

Second, e�cient MILP solvers use FP arithmetic. Thus, the computed min-
imizer might be wrong. The unsafe MILP solver is made safe thanks to the
correction procedure introduced in [23]. It consists in computing a safe lower
bound of the global minimizer. The safeMin function implements these correc-
tions and return a safe minimizer of the MILP.

5 Experiments

This section compares the results of di�erent �ltering techniques for FP con-
straints with the method introduced in this paper. Experiments have been done
on a laptop with an Intel Duo Core at 2.8Ghz and 4Gb of memory running under
Linux.

Our experiments are based on the following set of benchmarks:

� Absorb 1 detects if, in a simple addition, x absorbs y while Absorb 2 checks
if y absorbs x.

� Fluctuat1 and Fluctuat2 are program pathes that come from a presenta-
tion of the Fluctuat tool in [12].

� MeanValue returns true if an interval contains a mean value and false oth-
erwise.

� Cosine is a program that computes the function cos() with a Taylor formula.
� SqrtV1 computes sqrt in [0.5, 2.5] using a two variable iterative method.
� SqrtV2 computes sqrt with a Taylor formula.



� SqrtV3 computes the square root of (x + 1) using a Taylor formula. This
program comes from CDFPL benchmarks4.

� Sine taylor computes the function sine using a Taylor formula.
� Sine iter computes the function sine with an iterative method and comes
from the SNU real time library5.

� Qurt computes the real and imaginary roots of a quadratic equation and
also comes from the SNU library.

� Poly tries to compare two di�erent writings of a polynomial. This program
is available on Eric Goubault web page6

� Newton computes one or two iterations of a Newton on the polynomial x−
x3/6 + x5/120x7/5040 and comes from CDFPL benchmarks.

Table 3 summarizes experiment results for the following �ltering methods:
FP2B, an adaptation of 2B-consistency to FP constraints that takes advan-
tage of the property described in [17] to avoid some slow convergences, FP3B,
an adaptation of 3B-consistency to FP constraints, FPLP(without FP2B), an
implementation of algorithm 1 without the call to FP2B and, FPLP, an im-
plementation of algorithm 1. First column of table 3 gives program's names,
column 2 gives the number of variables of the initial problem and column 3 gives
the amount of temporary variables used to decompose complex expressions in
elementary operations. Column 4 gives the number of binary variables used by
FPLP. For each �ltering algorithm, table 3 gives the amount of milliseconds re-
quired to �lter the constraints (columns t(ms)). For all �ltering algorithm but
FP2B, table 3 gives also the percentage of reduction compared to the reduction
obtained by FP2B (columns %(FP2B)). The time out (TO) was set to 2 minutes.

The results from table 3 show that FPLP achieves much better domain re-
ductions than 2B-consistency and 3B-consistency �ltering algorithms. FPLP re-
quires more times than FP2B but the latter achieves a very weaker pruning on
theses benchmarks. This is exempli�ed by the two Absorb1 and SqrtV1 benches.
Here, FP2B su�ers from the multiple occurrences of the variables. FPLP also
consistently outperforms FP3B : it almost always provides much smaller domains
and it requires much less time.

A comparison of FPLP with and without a call to FP2B shows that a co-
operation between these two �ltering methods can signi�cantly decrease the
computation time but does not change the �ltering capabilities.

6 Conclusion

In this paper, we have introduced a new �ltering algorithm for handling con-
straints over FP numbers. This algorithm bene�ts from the linearizations of the
relaxations over R of the initial constraints over F to reduce the domains of the
variables with a MILP solver. Experiments show that FPLP drastically improves

4 See http://www.cprover.org/cdfpl/.
5 See http://archi.snu.ac.kr/realtime/
6 See http://www.lix.polytechnique.fr/∼goubault/.



the �ltering process, especially when combined with a FP2B �ltering process.
MILP bene�ts from a more global view of the constraint system than local con-
sistencies, and thus provides an e�ective way to handle multiple occurrences of
variables.

Additional experiments are required to better understand the interactions
between the two algorithms and to improve their performances.
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