Mohammed Said Belaid

Claude Michel
email: claude.michel@i3s.unice.fr

Michel Rueher
email: michel.rueher@gmail.com

Boosting local consistency algorithms over oating-point numbers

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Critical systems are more and more relying on oating-point (FP) computations. For instance, embedded systems are typically controlled by software that store measurements and environment data as oating-point number (F). The initial values and the results of all operations must therefore be rounded to some nearby oat. This rounding process can lead to signicant changes, and, for example, can modify the control ow of the program. Thus, the verication of programs performing FP computations is a key issue in the development of critical systems.

Methods for verifying programs performing FP computations are mainly derived from standard program verication methods. Bounded model checking (BMC) techniques have been widely used for nding bugs in hardware design [START_REF] Biere | Symbolic model checking without bdds[END_REF] and software [START_REF] Malay | Accelerating high-level bounded model checking[END_REF]. SMT solvers are now used in most of the state-of-the-art BMC tools to directly work on high level formula (see [START_REF] Armando | Bounded model checking of software using smt solvers instead of sat solvers[END_REF][START_REF] Cordeiro | Smt-based bounded model checking for embedded ansi-c software[END_REF][START_REF] Malay | Accelerating high-level bounded model checking[END_REF]). The bounded model checker CBMC encodes each FP operation of the program with a set of logic functions on bit-vectors which requires thousands of additional variables and becomes quickly intractable [START_REF] Brillout | Mixed abstractions for oating-point arithmetic[END_REF]. Tools based on abstract interpretation [START_REF] Cousot | Varieties of static analyzers: A comparison with astree[END_REF][START_REF] Miné | Weakly Relational Numerical Abstract Domains[END_REF] can show the absence of run-time errors (e.g., division by zero) on program working with FP numbers. Tools based on abstract interpretation are safe since they over-approximate FP computations. However, over-approximations may be very large and these tools may generate many false alerts, and thus reject many valid programs. For instance, Chen's polyhedral abstract domains [START_REF] Chen | A sound oating-point polyhedra abstract domain[END_REF] rely on coarse approximations of oating-point operations that do not take advantage of the rounding mode. Constraint programming (CP) has also been used for program testing [START_REF] Gotlieb | Automatic test data generation using constraint solving techniques[END_REF][START_REF] Gotlieb | A clp framework for computing structural test data[END_REF] and verication [START_REF] Collavizza | CPBPV: a constraintprogramming framework for bounded program verication[END_REF]. CP oers many benets like the capability to deduce information from partially instantiated problems or to exhibit counterexamples. The CP framework is very exible and simplies the integration of new solvers for handling a specic domain, for instance FP solvers. However, it is important to understand that solvers over real numbers (R) cannot correctly handle FP arithmetic. Dedicated constraint solvers are required in safe CP-based framework and BMC-SMT tools for testing or verifying numerical software 1 .

Techniques to solve FP constraints are based on adaptations of classical consistencies (e.g. box-consistency and 2B-consistency) over R [START_REF] Michel | Solving constraints over oating-point numbers[END_REF], [START_REF] Michel | Exact projection functions for oating point number constraints[END_REF][START_REF] Botella | Symbolic execution of oating-point computations[END_REF]. However FP solvers based on these techniques do not really scale up to large constraint systems. That is why we introduce here a new method to handle constraints over the FP numbers by taking advantage of solvers over R. The basic tenet is to build correct but tight relaxations over R of the FP operations. To ensure the tightness of the result, each FP operation is approximated according to its rounding mode. For example, assume that x and y are positive normalized FP numbers2 , then the FP product x ⊗ y with a rounding mode set to -∞, is bounded by α × (x × y) < x ⊗ y ≤ x × y where α = 1/(1 + 2 -p+1) and p is the size of the signicand. Approximations for special cases have also been rened, e.g., for the addition with a rounding mode set to zero, or for the multiplication by a constant.

Using these relaxations, a problem over the FP numbers is rst translated into a set of nonlinear constraints over R. A linearization of the nonlinear constraints is then applied to obtain a mixed integer linear problem (MILP) over R. In this process, binary variables are used to handle concave domains to prevent too loose over-approximations. This last set of constraints can directly be solved by available MILP solvers over R which are relieved from the drawbacks of FP arithmetic. Ecient MILP solvers rely on FP computations and thus, might miss some solutions. In order to ensure a safe behavior of our algorithm, correct rounding directions are applied to the relaxation coecients [START_REF] Michel | Safe embedding of the simplex algorithm in a CSP framework[END_REF][START_REF] Borradaile | Safe and tight linear estimators for global optimization[END_REF] and a procedure [START_REF] Neumaier | Safe bounds in linear and mixed-integer programming[END_REF] to compute a safe minimizer from the unsafe result of the MILP solver is also applied. Preliminary experiments are promising and this new ltering technique should really help to scale up all verications tools that uses a FP solver.

Our method relies on a high level representation of the FP operations and, thus, does not suer from the same drawbacks than bit vector encoding. The bit vector encoding used in CBMC generates thousands of additional binary variables for each FP operation of the program. For example, an addition of two 32 bits oats requires 2554 binary variables [START_REF] Brillout | Mixed abstractions for oating-point arithmetic[END_REF]. The mixed approximations proposed in [START_REF] Brillout | Mixed abstractions for oating-point arithmetic[END_REF] reduce the number of additional binary variables signicantly but the resulting system remains expensive in memory consumption. For instance, a single addition with only 5 bits of precision still requires 1035 additional variables. Our method does also generate additional variables: temporary variables are used to decompose complex expressions into elementary operations over the FP numbers and some binary variables are used to handle the dierent cases of our relaxations. However, the number of generated variables is negligible compared to the ones required by a bit vector encoding.

An illustrative example

Before going into the details, let us illustrate our approach on a very simple example. Consider the simple constraint

z = x ⊕ y x (1)
where x, y and z are 32 bits FP variables, and ⊕ and are the addition and the subtraction over F, respectively. Over the real numbers, such an expression can be simplied to z = y. However, this is not true with FP numbers. For example, over F and with a rounding mode set to the nearest, 10.0 ⊕ 10.0 -8 10.0 is not equal to 10.0 -8 but to 0. This absorption phenomenon illustrates why expressions over the FP numbers cannot be simplied in the same way than expressions over the real numbers. Now, let us assume that x ∈ [0.0, 10.0], y ∈ [0.0, 10.0] and z ∈ [0.0, 10.0 8]. FP2B, a 2B-consistency [START_REF] Lhomme | Consistency techniques for numeric csps[END_REF] algorithm adapted to FP constraints [START_REF] Michel | Exact projection functions for oating point number constraints[END_REF], rst performs forward propagation of the domains of x and y on the domain of z using an interval arithmetic where interval bounds are computed with a rounding mode set to the nearest. Backward propagation being of no help here, the ltering process yields:

x ∈ [0.0, 10.0], y ∈ [0.0, 10.0], z ∈ [0.0, 20.0] This poor ltering is due to the fact that 2B-consistency algorithms cannot handle eciently constraints with multiple occurrences of the variables. A stronger consistency like 3B-consistency [START_REF] Lhomme | Consistency techniques for numeric csps[END_REF] will reduce the domain of z to the interval [0.0, 10.01835250854492188]. However, 3B-consistency will fail to reduce the domain of z when x and y occur more than two times, like in z = x ⊕ y x y ⊕ x ⊕ y x.

Algorithm FPLP, introduced in this paper, rst builds safe nonlinear relaxations over R of the constraints over F derived from the program. Of course, these relaxations are computed according to the rounding mode. Applied to constraint (1), it yields the following relaxations over R:

               (1 -2 -p (1-2 -p))(x + y) ≤ tmp1 tmp1 ≤ (1 + 2 -p (1+2 -p))(x + y) (1 -2 -p (1-2 -p))(tmp1 -x) ≤ tmp2 tmp2 ≤ (1 + 2 -p (1+2 -p))(tmp1 -x) z = tmp2
where p is the size of the signicand of the FP variables. tmp1 approximates the result of the operation x ⊕ y by means of two planes over R which encompass all the results of this addition over F. tmp2 does the same for the subtraction. Some relaxations, like the one of the product, include nonlinear terms. In such a case, a linearization process is applied to get a MILP. Once the problem is fully linear, a MILP solver is used to shrink the domain of each variable, respectively, minimizing and maximizing it.

FPLP, which stands for Floating-Point Linear Program, implements the algorithm previously sketched. A call to FPLP on constraint (1) immediately yields:

x ∈ [0, 10], y ∈ [0, 10], z ∈ [0, 10.0000023841859]
which is a much tighter result than the one computed by FP2B. Contrary to 3B-consistency, FPLP still gives the same result with FPLP provides the same result for constraint z = x ⊕ y x y ⊕ x ⊕ y x whereas 3B-consistency cannot reduce the upper bound of z on the latter constraint.

Outline of the paper

The rest of this paper is organized as follows: the next section introduces the nonlinear relaxations over R of the constraints over F. The following section shows how the nonlinear terms of the relaxations are linearized. Then, the ltering algorithm is detailed and the results of our experiments are given before concluding the paper.

Relaxations of FP constraints

This section introduces nonlinear relaxations over R of the FP constraints from the initial problem. These relaxations are the cornerstone of the ltering process described in this paper. They must be correct, i.e., they must preserve the whole set of solutions of the initial problem, and tight, i.e., they should enclose the smallest amount of non FP solutions. These relaxations are built using two techniques: the relative error and the correctly rounded operations. The former is a technique frequently used to analyze the precision of the computation. The latter property is ensured by any IEEE 754 compliant implementation of the FP arithmetic: a correctly rounded operation is an operation whose result over F is equal to the rounding of the result of the equivalent operation over R. In other word, let x and y be two FP numbers, and •, respectively, an operation over F and its equivalent over R, if is correctly rounded then, x y = round(x • y).

In the rest of this section, we rst detail how to build these relaxations for a specic case before dening the relaxations in the general cases. Then, we will show how the dierent cases can be simplied.

A specic case

In order to explain how these relaxations are built, let us consider the case where an operation is computed with a rounding mode set to -∞ and the result of this operation is a positive and normalized FP number. Such an operation, denoted , could be any of the four basic binary operations from the FP arithmetic. The operands are all supposed to have the same FP type, i.e., either oat, double or long double. Then, the following property holds: Proposition 1. Let x and y be two FP numbers whose signicand is represented by p bits. Assume that the rounding mode is set to -∞ and that the result of x y is a normalized positive FP numbers smaller than max f , the biggest FP number, then the following property holds:

1 1 + 2 -p+1 (x • y) < x y ≤ (x • y)
where is a basic operation over the FP numbers and, • is the equivalent operation over the real numbers.

Proof. Since IEEE 754 basic operations are correctly rounded and the rounding mode is set to -∞, we have:

x y ≤ x • y < (x y) + (2)
(x y) + , the successor of (x y) within the set of FP numbers, can be computed by (x y) + = (x y) + ulp(x y)

as, ulp, which stands for unit in the last place, is dened by ulp(x) = x + -x. Thus, it results from (2) that

x y ≤ x • y < (x y) + ulp(x y)
From the second inequality, we have

1 x y + ulp(x y) < 1 x • y
By multiplying each side of the inequality by x y which is a positive number we get x y x y + ulp(x y) < x y x • y

By multiplying each side of the above inequality by -1 and by adding one to each side, we obtain

1 - x y x • y < 1 - x y x y + ulp(x y) = ulp(x y) x y + ulp(x y) (3)
Now, consider , the relative error dened by

= real_value -f loat_value real_value
is the absolute value of the dierence between the result over R and the result over F divided by the result over R. In the considered case, the result of x y being a positive normalized oating-point number and x • y ≥ x y, the relative error is given by

0 ≤ = x • y -x y x • y = 1 - x y x • y
Thus, thanks to (3), we have

0 ≤ < ulp(x y) x y + ulp(x y)
z, the result of the operation x y, is a binary positive and normalized FP number that can be written z = 1.m z 2 ez , where m z has p bits. Moreover, ulp(z) = 2 -p+1 2 ez . Therefore,

0 ≤ < 2 -p+1 2 ez m z 2 ez + 2 -p+1 2 ez = 2 -p+1 m z + 2 -p+1
The value of the signicand of a normalized FP number belongs to the interval [1.0, 2.0[. An upper bound of the relative error is given by the minimum of m z + 2 -p which is reached when m z = 1. Thus By multiplying each side of the inequality by -1 and adding x • y to each side, we nally obtain

0 ≤ < 2 -p+1 1 + 2 -p+1 Since we have = x • y -x y x • y we have 0 ≤ x • y -x y x • y < 2 -p+1 1 + 2 -p+1 and 0 ≤ x • y -x y < (x • y) 2 -p+1 1 + 2 -p+1
min f 2 [(1 -2 -p (1-2 -p))zr, (1 -2 -p (1-2 -p))zr] zr + min f 2] zr + min f 2] (1 + 2 -p (1+2 -p))zr]
1 1 + 2 -p+1 (x • y) < x y ≤ x • y

Generalization

Table 1 summarizes the relaxations for each rounding mode in the dierent cases, i.e., positive or negative FP numbers, as well as, normalized and denormalized FP numbers. Each case has a dedicated correct and tight approximation built in a way similar to the one of the case detailed in the previous subsection.

Note that tighter approximations for specic cases could also be computed. For example, the approximation of an addition with a rounding mode sets to ±∞ could be slightly improved. In a similar way, the structure of the problem is another source of improvements of the approximations. For example, 2 ⊗ x being exactly computed 3 , it can directly be evaluated over R.

Simplied relaxations

The main issue with the previous relaxations is that the solving process will have to handle the dierent cases. As a result, for n basic operations, the solver has to deal with 4 n potential combinations of the relaxations. To decrease substantially this complexity, we provide here a combination of the four cases of each rounding mode into a single case.

Let us rst consider the case where the rounding mode is set to -∞: Proposition 2. Let x and y be two FP numbers whose signicand size is p and, assume that the rounding mode is set to -∞ and, that -max f < x y < max f , then,

z r -2 -p+1 |z r | -min f ≤ x y ≤ z r
where min f is the smallest positive FP number, and • are respectively a basic binary operation over F and its equivalent over R, and z r = x • y.

Proof. In a rst step, the normalized and denormalized approximations are combined. If z r > 0 then 1 1+2 -p+1 z r < z r . Thus,

1 1 + 2 -p+1 z r -min f < z r -min f and 1 1 + 2 -p+1 z r -min f < 1 1 + 2 -p+1 z r Therefore, 1 1 + 2 -p+1 z r -min f < x y ≤ z r , z r ≥ 0 When z r ≤ 0, we get (1 + 2 -p+1)z r -min f < x y ≤ z r , z r ≤ 0
These two approximations can be rewritten as follows,

z r -2 -p+1 1+2 -p+1 z r -min f < x y ≤ z r , z r ≥ 0 z r + 2 -p+1 z r -min f < x y ≤ z r , z r ≤ 0
To combine the negative and positive approximations together we can use the absolute value:

z r -2 -p+1 1+2 -p+1 |z r | -min f < x y ≤ z r , z r ≥ 0 z r -2 -p+1 |z r | -min f < x y ≤ z r , z r ≤ 0 As max{ 2 -p+1 1+2 -p+1 , 2 -p+1 } = 2 -p+1 , we get z r -2 -p+1 |z r | -min f ≤ x y ≤ z r
The same reasoning holds for other rounding modes. Table 2 summarizes the simplied relaxations for each rounding mode. Note that these approximations dene concave sets.

Linearization of the relaxations

The relaxations introduced in the previous section contain nonlinear terms that cannot be directly handled by a MILP solver. In this section, we describe how these terms are approximated by sets of linear constraints.

Rounding mode The approximation of

x y to -∞ [zr -2 -p+1 |zr| -min f , zr] to +∞ [zr, zr + 2 -p+1 |zr| + min f] to 0 [zr -2 -p+1 |zr| -min f , zr + 2 -p+1 |zr| + min f] to the nearest [zr -2 -p (1-2 -p) |zr| - min f 2 , zr + 2 -p (1-2 -p) |zr| + min f 2]
Table 2. Simplied relaxations of x y for each rounding mode (with zr = x • y).

Absolute value linearization

Simplied relaxations that allow to handle all numerical FP values with a single set of two inequalities require absolute values. Absolute values can either be loosely approximated by three linear inequalities or by a tighter decomposition based on big M rewriting method:

         z = z p -z n |z| = z p + z n 0 ≤ z p ≤ M × b 0 ≤ z n ≤ M × (1 -b)
where b is a boolean variable, z

= 0 → z p = 0 b = 1 → z n = 0

Linearization of nonlinear operations

Bilinear terms, square terms, and quotient linearizations are based on standard techniques used by Sahinidis et al [START_REF] Ryoo | A branch-and-reduce approach to global optimization[END_REF]. They have been also used in the Quad system [START_REF] Lebbah | Ecient and safe global constraints for handling numerical constraint systems[END_REF] designed to solve constraints over the real numbers. x×y is linearized according to Mc Cormick [START_REF] Mccormick | Computability of global solutions to factorable nonconvex programs part i convex underestimating problems[END_REF]:

Let x ∈ [x, x] and y ∈ [y, y], then          z -xy -yx + xy ≥ 0 -z + xy + yx -xy ≥ 0 -z + xy + yx -xy ≥ 0 z -xy -yx + xy ≥ 0
These linearizations have been proved to be optimal by Al-Khayyal and Falk [START_REF] Al-Khayyal | Jointly constrained biconvex programming[END_REF].

Each time x = y, i.e., in case of z = x ⊗ x, the linearization can be improved. x 2 convex hull is underestimated by all the tangents at x 2 curve between x and x and overestimated by the line that join (x, x 2) to (x, x 2). A good balance is obtained with the two tangents at the bounds of x. Thus, x 2 linearization yields:

         z + x 2 -2xx ≥ 0 z + x 2 -2xx ≥ 0 (x + x)x -z -xx ≥ 0 z ≥ 0
The division takes advantage of the properties of real arithmetic: the essential observation is that z = x/y is equivalent to x = z × y. Therefore, Mc Cormick [START_REF] Mccormick | Computability of global solutions to factorable nonconvex programs part i convex underestimating problems[END_REF] linearizations can be used here. These linearizations need the bounds of z which can directly be computed by interval arithmetic:

[z, z] = [∇(min(x/y, x/y, x/y, x/y)), ∆(max(x/y, x/y, x/y, x/y))]
where ∇ and ∆ are respectively the rounding modes towards -∞ and +∞.

Filtering algorithm

The proposed ltering algorithm relies on the linearizations of the relaxations over R of the initial problem to attempt to shrink the domain of the variables by means of a MILP solver. Algorithm 1 details the steps of this ltering process.

First, function Approximate relaxes initial FP constraints to nonlinear constraints over R. Then, function Linearize linearizes the nonlinear terms of these relaxations to get a MILP.

The ltering loop starts with a call to FP2B, a ltering process relying on an adaptation of 2B-consistency to FP constraints that attempts to reduce the bounds of the variables. FP2B propagates bound values to intermediate variables. The cost of this ltering process is quite light: it stops as soon as domain size reduction between two iterations is less than 10%. Thanks to function UpdateLinearizations, newly computed bounds are used to tighten the MILP.

Note that this function updates variable domains as well as linearization coecients.

After that, MILP is used to compute a lower bound and an upper bound of the domain of each variable by means of function safeMin. This function computes a safe global minimizer of the MILP. This process is repeated until the percentage of reduction of the domains of the variables is lower than a given . Algorithm

Getting a safe minimizer

Using an ecient MILP solver like CPLEX to lter the domains of the variables raises two important issues related to FP computations.

First, linearization coecients are computed with FP arithmetic and are subject to rounding errors. Therefore, to avoid the loss of solutions, special attention must be paid to the rounding directions. Correct linearizations rely on FP computations done using the right rounding directions. For instance, consider the linearization of x 2 where x ≥ 0 and x ≥ 0:

         y + ∆(x 2) -∆(2x)x ≥ 0 y + ∆(x 2) -∆(2x)x ≥ 0 ∆(x + x)x -y -∇(xx) ≥ 0 y ≥ 0
This process that ensures that all the linearizations are safe is called within the Linearize and UpdateLinearizations functions. For more details on how to compute safe coecients see [START_REF] Michel | Safe embedding of the simplex algorithm in a CSP framework[END_REF][START_REF] Borradaile | Safe and tight linear estimators for global optimization[END_REF]

Experiments

This section compares the results of dierent ltering techniques for FP constraints with the method introduced in this paper. Experiments have been done on a laptop with an Intel Duo Core at 2.8Ghz and 4Gb of memory running under Linux.

Our experiments are based on the following set of benchmarks:

Absorb 1 detects if, in a simple addition, x absorbs y while Absorb 2 checks if y absorbs x.

Fluctuat1 and Fluctuat2 are program pathes that come from a presentation of the Fluctuat tool in [START_REF] Ghorbal | A logical product approach to zonotope intersection[END_REF].

MeanValue returns true if an interval contains a mean value and false otherwise.

Cosine is a program that computes the function cos() with a Taylor formula. SqrtV1 computes sqrt in [0.5, 2.5] using a two variable iterative method. SqrtV2 computes sqrt with a Taylor formula.

SqrtV3 computes the square root of (x + 1) using a Taylor formula. This program comes from CDFPL benchmarks 4 .

Sine taylor computes the function sine using a Taylor formula. Sine iter computes the function sine with an iterative method and comes from the SNU real time library 5 .

Qurt computes the real and imaginary roots of a quadratic equation and also comes from the SNU library.

Poly tries to compare two dierent writings of a polynomial. This program is available on Eric Goubault web page 6 Newton computes one or two iterations of a Newton on the polynomial x -

x 3 /6 + x 5 /120x 7 /5040 and comes from CDFPL benchmarks.

Table 3 summarizes experiment results for the following ltering methods: FP2B, an adaptation of 2B-consistency to FP constraints that takes advantage of the property described in [START_REF] Marre | Improving the oating point addition and subtraction constraints[END_REF] to avoid some slow convergences, FP3B, an adaptation of 3B-consistency to FP constraints, FPLP(without FP2B), an implementation of algorithm 1 without the call to FP2B and, FPLP, an implementation of algorithm 1. First column of table 3 gives program's names, column 2 gives the number of variables of the initial problem and column 3 gives the amount of temporary variables used to decompose complex expressions in elementary operations. Column 4 gives the number of binary variables used by FPLP. For each ltering algorithm, table 3 gives the amount of milliseconds required to lter the constraints (columns t(ms)). For all ltering algorithm but FP2B, table 3 gives also the percentage of reduction compared to the reduction obtained by FP2B (columns %(FP2B)). The time out (TO) was set to 2 minutes.

The results from table 3 show that FPLP achieves much better domain reductions than 2B-consistency and 3B-consistency ltering algorithms. FPLP requires more times than FP2B but the latter achieves a very weaker pruning on theses benchmarks. This is exemplied by the two Absorb1 and SqrtV1 benches. Here, FP2B suers from the multiple occurrences of the variables. FPLP also consistently outperforms FP3B : it almost always provides much smaller domains and it requires much less time.

A comparison of FPLP with and without a call to FP2B shows that a cooperation between these two ltering methods can signicantly decrease the computation time but does not change the ltering capabilities.

Conclusion

In this paper, we have introduced a new ltering algorithm for handling constraints over FP numbers. This algorithm benets from the linearizations of the relaxations over R of the initial constraints over F to reduce the domains of the variables with a MILP solver. Experiments show that FPLP drastically improves

 p and z n are real positive variables and, M is a FP number such that M ≥ max{|z|, |z|}. The method separates z p , the positive values of z, from z n , its negative values. When b = 1, z gets its positive values and we have z = z p = |z|. If b = 0, z gets its negative values and we have z = -z n and |z| = z n .If the underlying MILP solver allows indicator constraints, the two last set of inequalities can be replaced by: b

24 :

 24 until boxSize ≥ oldBoxSize * (1 -); 25: return D;

 -p+1)zr, zr] [zr -min f , zr] [zr -min f , zr] [zr [zr -min f , zr] [zr, zr + min f] [

	Rounding		Negative	Negative	Positive	Positive
	mode	normalized	denormalized denormalized	normalized
	to -∞	[(1 + 2 1 (1+2 -p+1) zr, zr]
	to +∞	[zr,	1 (1+2 -p+1) zr] [zr, zr + min f] [zr, zr + min f] [zr, (1 + 2 -p+1)zr]
	to 0	zr,	1 (1+2 -p+1) 1 (1+2 -p+1) zr, zr]
	to nearest [(1 + 2 -p (1+2 -p))zr, [zr -	min f 2 ,	[zr -

Table 1 .

 1 Relaxations of x y for each rounding mode where zr = x • y.

Table 3 .

 3 ExperimentsSecond, ecient MILP solvers use FP arithmetic. Thus, the computed minimizer might be wrong. The unsafe MILP solver is made safe thanks to the correction procedure introduced in[START_REF] Neumaier | Safe bounds in linear and mixed-integer programming[END_REF]. It consists in computing a safe lower bound of the global minimizer. The safeMin function implements these corrections and return a safe minimizer of the MILP.

See FPSE (http://www.irisa.fr/celtique/carlier/fpse.html), a solver for FP constraints coming from C programs.

[START_REF] Armando | Bounded model checking of software using smt solvers instead of sat solvers[END_REF] A FP number is a triple (s, e, m) where s is the sign, e the exponent and m the signicand. Its value is given by (-1) s × 1.m × 2 e . r and p are the size of the exponent and the signicand. The IEEE standard 754 denes the single format with (r, p) =[START_REF] Collavizza | CPBPV: a constraintprogramming framework for bounded program verication[END_REF][START_REF] Neumaier | Safe bounds in linear and mixed-integer programming[END_REF] and the double format with (r, p) =[START_REF] Malay | Accelerating high-level bounded model checking[END_REF] 52). A normalized FP number's signicand has no non-zero digits to the left of the decimal point and a non-zero digit just to the right of the decimal point.

Provided that no overow occurs.

See http://www.cprover.org/cdfpl/.

See http://archi.snu.ac.kr/realtime/

This work was partially supported by ANR VACSIM (ANR-11-INSE-0004), ANR AEOLUS (ANR-10-SEGI-0013) and OSEO ISI PAJERO projects. Practice of Constraint Programming)