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ABSTRACT 
 

In this work, we have led an analysis of the error of different 

global solar radiation prediction models according to the global 

solar radiation variability. 

Different predictions models where performed such as machine 

learning techniques (Neural Networks, Gaussian processes and 

support vector machines) in order to forecast the Global 

Horizontal solar Irradiance (GHI). We also include in this study 

a simple linear autoregressive (AR) model as well as two naive 

models based on persistence of the GHI and persistence of the 

clear sky index (denoted herein scaled persistence model).  

The models are calibrated and tested with data from three 3 

French islands: Corsica (42.15°N ; 9.08°E), Guadeloupe 

(16.25°N ; 61.58°W) and Reunion (21.15°S ; 55.5°E). 

Guadeloupe and Reunion are located in a subtropical climatic 

zone whereas Corsica is in a tempered climatic zone. Hence the 

global solar radiation variation differs significantly. 

The output error of the different models was quantified by the 

nRSME. 

In order to quantify the influence of the global solar radiation 

variability on the forecasting models error we performed a 

classification of typical days according to different typical days. 

Each class of typical day is defined by a variation of global 

solar radiation rate. For each class and for each location, the 

selected forecasting models where performed and the error was 

quantified. 

With this analysis a global solar radiation forecasting models 

can be selected according to the location, the global solar 

radiation fluctuations and hence the meteorological conditions. 

 
  

 

INTRODUCTION 
Large and frequent variations of solar radiation can be observed 

in tropical climates with amplitudes reaching 800 W/m² and 

occurring within a short time interval, from few seconds to few 

minutes, according to the geographical location. Such 

fluctuations can be due for example to the dynamic of clouds 

which can be very complex and depend on cloud type, size, 

speed and spatial distribution and, more generally, due to some 

specific local meteorological conditions. 

Thus, the solar energy forecasting, a process used to predict 

the amount of solar energy available in the current and near 

terms, might be a difficult task. Some of the best predictors 

found in literature are Autoregressive and moving average 

(ARMA) [5,7,8], Bayesian inferences [9,10], Markov chains 

[11], k-Nearest-Neighbors predictors [12] or artificial 

intelligence techniques as the Artificial Neural Network (ANN) 

[9-11]. Although these methodologies are potentially good in 

many areas, we observed in our previous studies on global 

radiation prediction [9,13,14] that the simple model based on 

the persistence of the clear sky index gives often very good 

results with acceptable errors [15] for short term forecasting 

time horizon (<= 1 hour). The goal of this paper is to 

determinate the influence of solar radiation variability 

regarding different classes of days on the expected error 

provided by different forecasting methods that the modeller can 

possibly implement. 

The paper is organized as follow: Section 2 describes the 

data we have used. Section 3 exposes the classification 

methodology and the results obtained for the three studied 

locations. In the two following sections, the forecasting 

methods are exposed and then 3 the errors on the forecasting 

results for each location and for each class are exposed. 
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GLOBAL SOLAR RADIATION DATA 
 

To validate this study, 3 insular sites where chosen (1 in the 

northern hemisphere, 1 in the northern tropical zone and 1 in 

the southern tropical zone). The three Islands are: 

-Reunion Island; it exhibits a particular meteorological context 

dominated by a large diversity of microclimates. Two main 

regimes of cloudiness are superposed: the clouds driven by the 

synoptic conditions over the Indian Ocean and the orographic 

cloud layer generated by the local reliefs. The data used to 

build the models are measured at the meteorological station of 

St Pierre (21°20’S ; 55°29’E, 75m a.s.l) located in the southern 

part of Reunion Island. Measurements are available on an 

hourly basis and two years of data (2011 and 2012). 

-Guadeloupe Island, we have used a two years database of GHI 

measured on an hourly basis at the meteorological station of le 

Raizet (16°26N, 61°24W, alt ?) located in the middle of the 

island.  

-Corsica Island, the data used to build the models, are GHI 

measured at the meteorological station of Ajaccio (41°55’N, 

8°44’E, 4m asl) and Bastia (42°42’N, 9°27’E, 10m asl). They 

are located near the Mediterranean Sea and nearby mountains 

(1000 m altitude at 40km from the sites). This specific 

geographical configuration makes nebulosity difficult to 

forecast. Mediterranean climate is characterized by hot 

summers with abundant sunshine and mild, dry and clear 

winters. The data representing the global horizontal solar 

radiation were measured on an hourly basis from 1998 to 2009 

(elevenyears). As for all experimental acquisitions, missing 

values are observed, here, this represents less than 2% of the 

data. A classical cleaning approach is then operated in order to 

identify and remove this data. 

 

CLASSIFICATION OF TYPICAL DAYS 
 

A k-means clustering, or Lloyd's algorithm [2] was applied 

to the dataset of each location. This method will partition each 

daily signal of global solar radiation into k mutually exclusive 

clusters, and returns the index of the cluster to which it has 

assigned each observation n (in our case a daily global solar 

radiation signa). Unlike hierarchical clustering, k-means 

clustering operates on actual observations (rather than the 

larger set of dissimilarity measures), and creates a single level 

of clusters. The distinctions mean that k-means clustering is 

often more suitable than hierarchical clustering for large 

amounts of data. Each cluster in the partition is defined by its 

member objects and by its centroid, or center. The centroid for 

each cluster is the point to which the sum of distances from all 

objects in that cluster is minimized.  

k-means uses an iterative algorithm that minimizes the sum 

of distances from each object to its cluster centroid, over all 

clusters.  

Previous studies [] for these locations have shown that 4 classes 

of typical days were generally found: 

 Clear sky days 

 Mid clear sky days 

 corMid cloudy sky days 

 Cloudy sky days 

We have initialised the k-means algorithm with the assumption 

of the typical classes mentioned above. 

 

The results for the different locations are the following. Table 1 

summarize the number of days in each class for the different 

locations. 

 

Case of Corsica : 

 

 
Figure 1 : the four classes of typical days for Corsica Island 

 

 

Case of Reunion : 

 

 

 

 

Figure 2 : the four classes of typical days for Réunion Island 
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Case of Guadeloupe : 

 

 

Figure 3 : the four classes of typical days for Guadeloupe Island 

 

 
  Class 1 Class 2 Class 3 Class 4 

Corsica Number 

of days 
1210 930 1115 760 

percentage 30,14% 23,16% 27,77% 18,93% 

Réunion Number 

of days 
232 262 104 132 

percentage 31,78% 35,89% 14,25% 18,08% 

Guadeloupe Number 

of days 
253 218 138 121 

percentage 34,66% 29,86% 18,90% 16,58% 

      

Table 1: ponderation of each class for the different locations 

 

DESCRIPTION OF THE PREDICTION TECHNIQUES 
 

In this section, we present the three different prediction 

methodologies evaluated in this study: naïve models, linear 

model and non-linear models. 

 

naïve methods 

 

Two naïve predictors are studied in this work. The first is the 

simple persistence model defined by the following equation : 

𝐼�̂�(𝑡 + ℎ) = 𝐼𝑔(𝑡)    Equation 4 

It simply states that future values of GHI are equal to GHI 

observed at time t (i.e. the atmospheric conditions remain 

unchanged between current time t and future time t+h. One 

way to improve this simple model is to take into account the 

sun path by using a clear sky model and define persistence on 

the clear sky index i.e  

 𝑘𝑡
∗̂(𝑡 + ℎ) = 𝑘𝑡

∗(𝑡). The corresponding GHI forecast can be 

obtained through equation 5. 

𝐼�̂�(𝑡 + ℎ) = 𝐼𝑔(𝑡).
𝐼𝑔,𝑐𝑙𝑠𝑘(𝑡+ℎ)

𝐼𝑔,𝑐𝑙𝑠𝑘(𝑡)
    Equation 5 

In the rest of the paper, this persistence on the clear sky index 

model will be called scaled persistence. 

 

Linear model: autoregressive process (AR) 

 

In an AR model (Chatfield, 2004), the future value of a variable 

namely 𝑘∗̂(𝑡 + ℎ)is assumed to be a linear combination of 

several past observations as shown in the equation 6. 

𝑘∗̂(𝑡 + ℎ)=𝜙0 + ∑ 𝜙𝑖+1𝑘∗(𝑡 − 𝑖)𝑝
𝑖=0 + 𝜖𝑡  Equation 6 

 

where 𝜖𝑡  is a white noise with variance 𝜎2. The model’s 

parameters are the{Φ𝑖}𝑖=0,1,⋯𝑝+1and p is called order (or 

autoregressive order) of the model. One key challenge in the 

building of an AR model is to determine the appropriate model 

order. Methods based on the autocorrelation coefficients (ACF) 

and partial autocorrelation coefficients (PACF) analysis are 

proposed to select the best orders (Chatfield, 2004). In this 

study, the complexity of the model governed by the 

autoregressive order p is determined with the auto mutual 

information factor. 

 

Neural network models (NN) 

 

A NN with d inputs, m hidden neurons and a single linear 

output unit defines a non-linear parameterized mapping from an 

input vector x to an output y given by the relationship: 

𝑦 = 𝑦(𝐱; 𝐰) = ∑ 𝑤𝑗
𝑚
𝑗=1 𝑓(∑ 𝑤𝑗𝑖

𝑑
𝑖=1 𝑥𝑖)  Equation 7 

 

Each of the m hidden units are related to the tangent hyperbolic 

function 𝑓(𝑥) = (𝑒𝑥 − 𝑒−𝑥) (𝑒𝑥 + 𝑒−𝑥)⁄ .  The parameter 

vector 𝐰 = ({𝑤𝑗}, {𝑤𝑗𝑖}) wich governs the non-linear mapping, 

is estimated during the training or learning phase. During this 

phase, the NN is setup using the dataset 𝒟. The second phase, 

called the generalization phase, consists of evaluating on the 

another dataset 𝒟∗, the ability of the NN to give correct outputs 

when it is confronted with examples that were not seen during 

the training phase. 

For our application, the relationship between the output 

𝑘∗̂(𝑡 + ℎ)and the inputs {𝑘∗(𝑡), 𝑘∗(𝑡 − 1), ⋯ , 𝑘∗(𝑡 − 𝑝)} has 

the form given by equation 8. 

𝑘∗̂(𝑡 + ℎ) = ∑ 𝑤𝑗
𝑚
𝑗=1 𝑓 (∑ 𝑤𝑗𝑖

𝑝
𝑖=0 𝑘∗(𝑡 − 𝑖)) Equation 8 

As shown by equations 7 and 8, the NN model is equivalent to 

a nonlinear autoregressive (AR) model for time series 

forecasting problems. As for the AR model, the number of past 

input values p is calculated with the auto mutual information 

factor (see section 5.6 for details). Careful attention must be put 

on the model structure assumptions. A too complex NN will 

easily overfit the training data. The NN complexity is in 

relation with the number of hidden units or conversely the 

dimension of the vector w. Several techniques like pruning 

(Lauret et al., 2006) or Bayesian regularization (MacKay, 1992) 

can be employed to control the NN complexity. In the present 

study, the NN model has been computed with the Matlab© 

software and its Neural Network toolbox. The Levenberg-



    

Marquardt (approximation to the Newton’s method) learning 

algorithm with a max fail parameter before stopping training 

equal to 3 was used to estimate the NN model’s parameters. 

The max fail parameter corresponds to a regularization tool 

limiting the learning steps after a characteristic number of 

predictions failures and consequently allow to control the 

model complexity. 

Note that a particular NN based on Bayesian inference (Lauret 

et al., 2008) was tested during the simulations. However, as no 

added value was brought out, this sophisticated methodology 

and associated results are not presented in this paper. 

 

Gaussian Process model 

 

Gaussian Processes (GPs) are a relatively recent development 

in non-linear modelling (Rasmussen,2006). GPs are generally 

stated as kernel-based method. Indeed, it can be shown 

(Rasmussen, 2006) that, given n training samples, the 

prediction (for an input test vector x∗) can be seen in terms of a 

linear combination of n kernel functions; each one centered on 

a training point. Therefore, the forecasted clear sky index is 

given by the equation 9. 

𝑘∗̂(t + h) = ∑ αi
n
i=1 𝑘𝑠𝑒(xi, x∗)   Equation 9 

Where 𝑘𝑠𝑒denotes the squared exponential covariance function 

𝑘se(xp, xq) = σf
2exp [

−(xp−xq)
2

2l2 ] and 𝐱𝐢 is the ith input training 

vector. 𝜎𝑓
2 and l are called hyperparameters of the covariance 

function. They control the model complexity and can be 

learned (or optimized) from the training data at hand 

(Rasmussen, 2006). The coefficients αi are obtained by a 

matrix multiplication between a covariance matrix (resulting 

from the application of the covariance function on all the 

training data points) and the vector of the n training output 

samples y. 

 

Support vector machine 

 

Support vector machine is another kernel based machine 

learning technique used in classification tasks and regression 

problems (Vapnik, 1995). Support vector regression (SVR) is 

based on the application of support vector machines to 

regression problem (Smola and Schölkopf, 2004). This method 

has been successfully applied to time series forecasting tasks 

(Muller et al., 1997). As for the GPs, the prediction calculated 

by a SVR machine for an input test case 𝑥∗ is given by equation 

10. 

�̂� = ∑ 𝛼𝑖
𝑛
𝑖=1 𝑘𝑟𝑏𝑓(𝑥𝑖 , 𝑥∗) + 𝑏   Equation 10 

with the commonly used RBF kernel (Smola and Schölkopf, 

2004) defined by equation 11. 

𝑘𝑟𝑏𝑓(𝑥𝑝 , 𝑥𝑞) = 𝑒𝑥𝑝 [
−(𝑥𝑝−𝑥𝑞)

2

2𝜎2 ]   Equation 11 

The parameter b (or bias parameter) is derived from the 

preceding equation and some specific conditions (see Smola 

and Schölkopf, 2004 for details) . 

In the case of SVR, the coefficients 𝛼𝑖 are related to the 

difference of two Lagrange multipliers, which are the solutions 

of a quadratic programming (QP) problem (Smola and 

Schölkopf, 2004). Unlike NNs, which are confronted with the 

problem of local minimum, here the problem is strictly convex 

and the QP problem has a unique solution. In addition, it must 

be stressed that, not all the training patterns participate to the 

preceding relationship. Indeed, a convenient choice of a cost 

function i.e. Vapnik’s  𝜀 −insentive function (Smola and 

Schölkopf, 2004) in the QP problem allows obtaining a sparse 

solution. The latter means that only some of the coefficients 𝛼𝑖 

will be nonzero. The examples that come with non-vanishing 

coefficients are called Support Vectors. In our work, given the 

training dataset 𝒟 = {𝐱i, 𝑦𝑖}i=1
n and a test input vector 𝐱∗, we 

can compute the forecasted clear sky index for a specific 

horizon h: 

𝑘∗̂(𝑡 + ℎ) = ∑ 𝛼𝑖
𝑛
𝑖=1 𝑘𝑟𝑏𝑓(𝐱𝑖, 𝐱∗) + 𝑏  Equation 12 

In the present study, regarding the implementation of the 

support vector regression, we used the LibSVM library (Chang 

et al., 2011). Like in the NN case, other kinds of support 

vectors methodologies were tested e.g.  the multi-class SVMs 

(Zeng et al.,2012; Yang et al., 2013; Czibula et al., 2012). The 

corresponding results were systematically worse than those 

from SVR, thereby, we prefer to not develop it in order to make 

the paper more readable. 

 

RESULTS 
 

We have performed the different forecasting methods and 

algorithm exposed before to the different data set composed of 

a given typical class of days for each location. 

For each location we have ploted the nRMSE obtained for each 

typical class from the different forecasting models. 

 

- The Normalized root -mean-square error is computed 
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Where:  - G(h) is global solar radiation measured  

  - )(
~

hG is the predicted solar radiation predicted 

  - M is the number of hours considered 

 

 
Figure 2: nRMSE obatained for the different class in Corsica 
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Figure 3: nRMSE obtained for the different class of Reunion 

 

 

 

Figure 4 : nRMSE obtained for the typical class of Guadeloupe 

 

The analysis of the figure 2 to 4 shows clearly that the 

forecasting errors increase with the variability of the considered 

class of days. This results is verified regardless the forecasting 

models used and regardless the considered location; 

 

When comparing the results between locations we can 

observe some differences in the forecasting errors. Indeed in 

Corsica and Reunion the lowest nRMSE is obtained for the 

clear sky conditions (class 1 ) and for the Bayesian NN model. 

In Guadeloupe we observe the same tendency but the nRMSE 

is 0,2.  

CONCLUSION  
 

In this study we have analysed the influence of the global 

solar variability upon the forecasting error of different models: 

persistence, scaled persistence, Support vector machine, 

Gaussian Process, Bayesian neural network and ARMA model. 

We have used a global solar radiation data set from three 

different locations: Reunion Island, Corsica Island and 

Guadeloupe Island. For each of these location we have 

performed a classification of typical days using a k-means 

algorithm. We have then established a data set of 4 classes of 

typical days for each location. 

One of the main result of the study is that the forecasting 

error, whatever the model used, is much higher (quite 3 to 4 

time) when considering cloudy days than considering clear sky 

days.  

.  
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