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In previous works, we have introduced an alternative perturbation scheme

to find approximate solutions of the spectral problem for the rotation-vibration

molecular Hamiltonian. The convergence of our method for the methane vibra-

tional ground state was very satisfactory and our predictions were quantitative.

In the present article, we provide further details on the implementation of the

method in the degenerate and quasi-degenerate cases. The quasi degenerate ver-

sion of the method is tested on excited polyads of methane, the results are assessed

with respect to a variational treatment. The optimal choice of the size of quasi-

degenerate spaces is determined by a trade-off between speed of convergence of

the perturbation series and the computational effort to obtain the effective super-

Hamiltonian.
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I. INTRODUCTION

Recorded spectra arising from molecular species is a major source of information on

many objects of astrophysical or atmospheric interest. The detections and observations

of a quickly increasing number of such objects with hot atmospheres, (for example Brown

Dwarfs or “Hot Jupiter” type of extrasolar planets), challenge our understanding of the

spectra of many molecules and emphasize the limits of existing spectroscopic databases.

Computational spectroscopy by using ab initio quantum chemical methods or combi-

nations of such methods with empirical datas, has addressed this challenge and made

valuable contributions to the analysis and predictions of molecular rotation-vibration

spectra in recent years1.

Variational ab initio calculations are often considered as the supreme way of achieving

high accuracy and reliability of the predicted spectra. However, when billions of eigen-

values are required to model all populated quantum energy levels at high temperature,

such an approach ceases to be applicable. However, one can switch to pertubational

approaches. It is noteworthy to mention that the Ritz variational approach often used

in the context of rotation-vibration calculation, can be regarded as a particular case of

first order quasi-degenerate perturbation theory2. So the latter encompasses the former.

The purpose of this article is to further develop our generalized Rayleigh-Schrödinger

pertubation method, which has proved very accurate for methane vibrational ground

state, to the case of quasi-degenerate states, in order to tackle the crowded, high energy

regions of molecular rotation-vibration spectra. The extension of the method leads to

effective super-Hamiltonian simultaneously modelling the rotational sublevels of a set of

vibrational levels considered has quasi-degenerate.

Gathering vibrational energy levels into a quasi-degenerate set is somewhat arbitrary.

So, a large part of the article is devoted to the study of the optimal choice of such a set,

in terms of accuracy versus compuational effort, from minimal sets corresponding to sets

of exactly degenerate levels, to the largest possible set that is the set of all calculated

vibrational levels. The latter case corresponds at first order of perturbation as already

mentionned to the Ritz variational method also known as the configuration interaction

method in quantum chemistry.

To perform such study, we have chosen methane, as for our ground state studies2–4.

This molecule is an important greenhouse gaz in the Earth’s atmosphere and it is of

particular interest for the study of solar system giant planets and some of their satellites

such as Titan, some exoplanets and some Brown Dwarfs5–13. The high symmetry of
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methane main isotopologue has for consequences the occurence of exactly degenerate

levels in its spectrum and this can be exploited for debugging purposes. Also, the

“polyad” structure of the spectrum, associated to the approximate quantum number,

P = n2 + n4 + 2n1 + 2n3, (where ni is the number of quanta in vibrational mode i in

conventional spectroscopic ordering) is an interesting feature to test our quasi-degenerate

perturbation method, as we shall see. Over the past 30 years, line-by-line analyses have

been performed using a symmetry-adpated formalism developed and implemented in

Dijon, Tomks and Reims groups14–16. About 21400 line transitions of 12CH4 have been

assigned and 10100 measured line intensities were included in empirical models17. Up to

P = 3, the analysis of room-T spectra is almost complete while for P = 4, only about

25% of vibrational sublevels have been explored18. Recently, a large experimental effort

has been devoted to extend measurements of methane spectra for P = 5 using laser

techniques19.

Various issues concerning theoretical methane spectra predictions from PES and DMS

have already been discussed20–29. We have decided to focus our study on the “tetradecad”

that is the polyad associated to P = 4, since it is the lowest one for which spectroscopic

analysis is still considered as insufficiently accurate. Within the tetradecad, we will use

the intense 2ν3 vibrational band which has been thoroughly studied experimentally and

has been chosen to monitor methane from space by the MERLIN lidar mission30, to

assess convergence.

The article is organized as follows: In the next section, the theory is exposed and the

formulas implemented in our computer code are derived. Then, the theory is applied

to the 2ν3 band of methane main isotopologue, for quasi-degenerate vibrational spaces

of increasing sizes and perturbation orders up to 4 in the case of the smallest quasi-

degenerate spaces. Results are compared to configuration interaction reference values.

We conclude that variational accuracy can be achieved at reduced computational cost

by adjusting pertubation order and the size of the quasi-degenerate space.

I. AB INITIO EFFECTIVE ROTATIONAL SUPER HAMILTONIAN

AND DIPOLE MOMENT SUPER OPERATOR

In this section, the theory of effective operators implemented in this work is briefly

introduced, in order to make the article self-contained. Effective Hamiltonian theory has

a long history, and many reviews of this topics are available, see31–33 to quote a few. Our

generalized Schrödinger equation need not be solved pertubationally, however the pertu-
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bative solutions of the present section can be seen as a particular case of Ref.33 section 8.

The specific properties of this particular perturbation theory are detailed in31, where its

origin is traced back to Des Cloizeaux in 196034. An independent formulation using the

wave operator idea can be found in35. This theory has also been shown equivalent31 to

the contact transformation approach of Van Vleck36, Kemble37 and Primas38, provided

a minimum distance criterium between the eigenkets of the original and tranformed rep-

resentations is enforced, and to the approach of Buleavski39. However, there is one more

ingredient in our approach: the fact that the tensorial structure of the Hilbert space of

quantum states is compatible with the decomposition of the Hamiltonian into a “main”

and a “perturbative” contribution. Note that this ingredient has also been exploited in32

in the framework of the contact transformation formalism.

A. Definition of effective operators

Let us consider a Hamiltonian, H(X, Y ), acting on a Hilbert space having a tensorial

structure, V = Vx⊗Vy, and built with two sets of operators: set X containing operators

acting on Vx and set Y containing operators acting on Vy. In Dirac notation, kets on V

(resp. on Vx, Vy) will be denoted by | · · · 〉, (resp. | · · · 〉x, | · · · 〉y). No index will be used

for the corresponding bra’s. The identity on Vx (respectively Vy) will be written Idx

(respectively Idy). The action of an operator Ox ∈ X (respectively Oy ∈ Y ) is extended

to V by tensorial multiplication with the identity Idy (respectively Idx): Ox → Ox⊗Idy
(respectively Oy → Idx ⊗Oy).

Our motivation for developing this theory stems from the molecular rotation-vibration

Hamiltonian in the Eckart frame. Let denote by X the set of vibrational coordinates and

their conjugate momenta, X = {(Qi)i, (Pk)k}, and by Y , the set of Euler angles and their

conjugate momenta, Y = {θ, χ, φ, Pθ, Pχ, Pφ)}. The operators in X act on the Hilbert

space, Vx, of square integrable functions (over the appropriate integration domains) of

the vibrational degrees of freedoms (DOF), collectively denoted by x. Similarly, those

in Y act on the Hilbert space, Vy, of square integrable functions of the rotational DOF,

y. The Hilbert space of the whole system is the tensor product, V = Vx ⊗ Vy.

The Hamiltonian of the system, H(X, Y ), considered in this work will be the Eckart-

Watson Hamiltonian for non linear molecules40. It can be decomposed as,

H(X, Y ) = H0(X)⊗ Idy +H1(X, Y ), (1)
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where, in atomic units, H0(X) is the (J = 0)-Hamiltonian,

H0(X) =
1

2

∑
k

P 2
k + U +

1

2

∑
αβ

µαβπαπβ −
1

8

∑
α

µαα, (2)

and,

H1(X, Y ) =
∑
αβ

1

2
µαβ ⊗ ΠαΠβ − µαβπα ⊗ Πβ. (3)

In the equations above, U is the potential of electronic origin in the Born-Oppenheimer

approximation, expressed as a function of the normal coordinates Qi, µ is the 3 by 3 effec-

tive reciprocal inertia matrix whose series expansion in terms of the normal coordinates

is

µ =
+∞∑
r=0

(
1

2

)r
(r + 1)

∑
k1,...,kr

I−1e ak1I
−1
e . . . akrI

−1
e Qk1 . . . Qkr , (4)

where, I−1e is the inverse of the inertia tensor I(Q1, ..., Qn) at equilibrium and (ak)k the

derivatives of the latter with respect to the normal coordinates,

ak =

(
∂I

∂Qk

)
0

. (5)

π is the so-called ”Coriolis coupling operator“, it only depends upon the operators in

set X. Π is the total angular momentum, and is the sole quantity depending upon the

operators in set Y .

Let (ψn)n, be a normalized Hilbertian basis set of Vx, we have: Idx =
∑
n

|ψn〉x · 〈ψn|.

In view of the applications, we use for each basis function ψn, a possibly different y-basis

set, (Ψn
K)n,K to construct a tensor basis set for V , (ψn⊗Ψn

K)n,K . For all n, we will have,

Idy =
∑
K

|Ψn
K〉y · 〈Ψn

K |.

Since we are free to choose the basis set of Vx, we can take for (ψn)n a set of or-

thonormal eigenvectors of H0(X). We label this set with positive integers such that the

associated eigenvalues (νn)n be in increasing order.

The novelty in the present article with respect to previous publications, is that we

consider the case where one has to treat several vibrational bands, usually degenerate

or quasi-degenerate, together to obtain physically meaningful results. For example, in

methane, it is well known that the vibrational bands form so-called ”polyads“41. In

each polyad, the ro-vibrational states are strongly coupled and cannot be dealt with

independently by effective rotational Hamiltonians related to the different vibrational

states of the polyad.

Let P νmax
n1

be the set of indices n such that 0 ≤ νn − νn1 ≤ νmax, Nx the cardinal of

this set, and nmax = nNx be the largest element of this set,

P νmax
n1

= {n1, n1 + 1, . . . , nmax − 1, nmax} (6)
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(the letter P is meant to evoque a ”Polyad“ of molecular spectroscopy which would

contain the vibrational levels n1, . . . , nmax ).

To solve perturbationally the eigenvalue equation,

H(X, Y )φ = Eφ, (7)

we introduce a real parameter, ε ∈ [0, 1], and the Hamiltonian,

H(X, Y, ε) = H0(X)⊗ Idy + εH1(X, Y ), (8)

such that, H(X, Y, 0) = H0(X)⊗ Idy and H(X, Y, 1) = H(X, Y ).

So, for ε = 0,

H(X, Y, 0)|ψi ⊗Ψi
K〉 = νi|ψi ⊗Ψi

K〉 ∀K, (9)

showing that each eigenvalue νi is (dimVy)-times degenerate (at least). Substituting

|Ψi
K〉y by |Ψi

K〉y · 〈Ψi
K | in |ψi ⊗ Ψi

K〉 = |ψi〉x ⊗ |Ψi
K〉y of Eq.(9), and summing over K,

one obtains,

(H0(X)⊗ Idy)|ψi〉x ⊗ Idy = νi|ψi〉x ⊗ Idy. (10)

Assume that for a properly chosen set P νmax
n1

, for all ε ∈ [0, 1], the Nx × dimVy

eigenstates (ψn1 ⊗Ψn1
K )K , . . . , (ψnmax ⊗Ψnmax

K )K of H(X, Y, 0) can be related in a one-to-

one correspondance to a set of Nx×dimVy normalized eigenstates of H(X, Y, ε), denoted

by (φj,K(ε))j≤Nx,K≤dimVy . The φj,K(ε)’s can be expanded on the tensorial product basis

set as,

φj,K(ε) =
∑
j′,K′

cj,Kj′,K′(ε) ψj′ ⊗Ψj′

K′ , (11)

(with no restriction on the summation on j′ nor K ′).

Introducing the linear unitary operator, Ψ̃(Y, ε), called the ”effective wave superop-

erator“, acting from the tensor space

Ṽy :=
Nx⊕
i=1

ψni ⊗ V ni
y (12)

(isomorphous to the Cartesian product vector space,V n1
y × · · · × V nmax

y ), onto the linear

span of the set (φj,K(ε))1≤j≤Nx,1≤K≤dimV ny
and defined by

∀i ≤ Nx, Ki ≤ dimV ni
y , Ψ̃(Y, ε) · ψni ⊗Ψni

Ki
:=
∑
K′,n′

cni,Kin′,K′ (ε) ψn′ ⊗Ψn′

K′ , (13)

The effective wave superoperator is the operator that sends the selected eigenfunctions

of H(X, Y, 0) onto those of H(X, Y, ε). We define another linear operator, Ẽ(Y, ε), from
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Ṽy onto Ṽy, called the ”effective superHamiltonian for P νmax
n1

“. It can be given explicitly

by its action on the basis functions,

Ẽ(Y, ε) ·Ψni
Ki

:= Eni,Ki(ε)Ψ
ni
Ki
, (14)

where Ei,K(ε) denotes the eigenvalue associated to φi,K(ε), or equivalently by the equa-

tion

Ẽ(Y, ε) = Ψ̃(Y, ε)† ·H(X, Y, ε) · Ψ̃(Y, ε), (15)

which shows its Hermiticity. The latter equation can be rewritten formally as a general-

ized eigenproblem equation for an eigenpair of operators
(
Ẽ(Y, ε), Ψ̃(Y, ε)

)
,

H(X, Y, ε) · Ψ̃(Y, ε) = Ψ̃(Y, ε) · Ẽ(Y, ε). (16)

For the case of interest, ε = 1, we alleviate the notation by ignoring the dependence

upon ε,

H(X, Y ) · Ψ̃(Y ) = Ψ̃(Y ) · Ẽ(Y ). (17)

Applying the operators of both members of Eq.(17) to any basis function,ψni ⊗ Ψni
K ,

Eq.(7) is recovered for the eigenpair (Eni,K , φni,K) of H(X, Y ). The unitarity of the

effective wave superoperator implies the normalization condition,

Ψ̃†(Y ) · Ψ̃(Y ) = IdṼy , (18)

where IdṼy the identity on Ṽy, can also be regarded as an effective operator associated

to the identity operator on the total Hilbert space. More generally, effective operator for

any observable can be obtained by using Ψ̃(Y ) to change the representation. Of prime

importance for spectroscopy is the laboratory-fixed, dipole moment, D(X, Y ), acting on

Vx ⊗ Vy. Its effective counterpart, D̃(Y ), acting solely on Ṽy, will be,

D̃(Y ) = Ψ̃†(Y ) ·D(X, Y ) · Ψ̃(Y ). (19)

B. Case of a symmetry operator G(Y ) commuting with H(X, Y )

Let us assume that a set of all commuting symmetry operators (Gi(Y ))i∈{1,··· ,p} com-

mutes with H(X, Y ). Let us call Ji the eigenvalues of Gi(Y ), and decompose the Hilbert

space Vy into the common eigenspaces of the Gi(Y )’s:

Vy =
⊕

J1,...,Jp

V (J1,...,Jp)
y . (20)

In the case of the ro-vibrational problem, such symmetry operators will be the module of

the total angular momentum and the z-component of the latter in the laboratory-fixed

frame.
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C. Generalized perturbation theory for the effective wave operator

equation

In the previous section, we have shown that the ”exact“ effective wave superopera-

tor and effective superHamiltonian were solutions of an ”eigen equation“ for operators,

Eq. (16). (The prefix ”super“ is added because these operators act on nmax copies of

subspaces of Vy and not just one, as in the non degenerate theory). However, at this

stage, the unicity of the solution has not been established. In this section, we show how

a Rayleigh-Schrödinger type of perturbational strategy permits to solve formally Eq.

(16), and as a by-product, we obtain that this formal series is uniquely determined by a

normalization and a phase condition.

We will look for the effective superoperators, Ψ̃(Y, ε) and Ẽ(Y, ε) that are analytical

functions of ε:

Ψ̃(Y, ε) = Ψ̃(0)(Y ) + εΨ̃(1)(Y ) + ε2Ψ̃(2)(Y ) + ε3Ψ̃(3)(Y ) + ε4Ψ̃(4)(Y ) + ..., (21)

Ẽ(Y, ε) = Ẽ(0)(Y ) + εẼ(1)(Y ) + ε2Ẽ(2)(Y ) + ε3Ẽ(3)(Y ) + ε4Ẽ(4)(Y ) + ..., (22)

with,

Ψ̃(0)(Y ) =
∑

i∈P νmaxn1

|ψi〉x〈ψi| ⊗ IdV iy (23)

Ẽ(0)(Y ) =
∑

i∈P νmaxn1

νi|ψi〉x〈ψi| ⊗ IdV iy . (24)

Inserting these expressions in Eq. (16) and identifying the terms with the same power

of ε, we obtain Eq.(10) for k = 0, and for all k > 0:

H0(X)⊗ Idy · Ψ̃(k)(Y ) +H1(X, Y ) · Ψ̃(k−1)(Y ) =
k∑
i=0

Ψ̃(i)(Y ) · Ẽ(k−i)(Y ). (25)

Expressions of Ẽ(k)(Y ) and Ψ̃(k)(Y ) for k > 0 are derived below by enforcing the set of

normalization conditions, ∀k > 0,(
k∑
i=0

εiΨ̃(i)†(Y )

)
·

(
k∑
i=0

εiΨ̃(i)(Y )

)
= IdṼy + o(εk, Y ), (26)

where the notation o(εk, Y ) means that lim
ε→0 ε

−ko(εk, Y ) = 0Ṽy , the null operator on Ṽy,

and the set of ”Hermiticity“ conditions (as operators restricted to Ṽy):

∀i, j ∈ P νmax
n1

, k > 0,

〈ψi ⊗ IdV iy |Ψ̃
(k)(Y )|ψj ⊗ IdV jy 〉x = 〈ψi ⊗ IdV iy |Ψ̃

(k)†(Y )|ψj ⊗ IdV jy 〉x. (27)
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Here the notation 〈· · · 〉x generalizes that of kets of Vx and means that integration is

carried over the x-variables only, for example,

〈ψ1 ⊗Ψ1(Y )|ψ2 ⊗Ψ2(Y )〉x = 〈ψ1|ψ2〉xΨ1(Y )Ψ2(Y ). (28)

These conditions are to some extend arbitrary, however they are the natural ones to

impose in view of computing effective observables that are properly normalized and to

have effective superoperator first order corrections that cancel out on the effective Hilbert

space Ṽy.

1. First order:

For k = 1, Eq. (25) becomes

H0(X)⊗ Idy · Ψ̃(1)(Y ) +H1(X, Y ) ·
∑

i∈P νmaxn1

|ψi〉x〈ψi| ⊗ IdV iy

= Ψ̃(1)(Y ) ·
∑

i∈P νmaxn1

νi |ψi〉x〈ψi| ⊗ IdV iy +
∑

i∈P νmaxn1

|ψi〉x〈ψi| ⊗ IdV iy · Ẽ
(1)(Y ). (29)

Multiplying by 〈ψi ⊗ IdV iy | on the left and by |ψj ⊗ IdV jy 〉 on the right, i, j ∈ P νmax
n1

, we

obtain

〈ψi ⊗ IdV iy |Ẽ
(1)(Y )|ψj ⊗ IdV jy 〉x = 〈ψi ⊗ IdV iy |H1(X, Y )|ψj ⊗ IdV jy 〉x. (30)

This equation determines the action of Ẽ(1)(Y ) as an operator from Ṽy onto Ṽy.

Making use of Eqs (26) and (27) for k = 1, we get,

〈ψi ⊗ IdV iy |Ψ̃
(1)(Y )|ψj ⊗ IdV jy 〉x = 0V jy , (31)

the null operator on V j
y .

Projecting Eq.(29) onto 〈ψk1⊗IdV k1 |, for k1 /∈ P νmax
n1

, on the left and onto |ψj⊗IdV j〉,

for j ∈ P νmax
n1

, on the right, we obtain

〈ψk1 ⊗ IdV k1
y
|Ψ̃(1)(Y )|ψj ⊗ IdV jy 〉x =

〈ψk1 ⊗ IdV k1
y
|H1(X, Y )|ψj ⊗ IdV jy 〉x
νj − νk1

. (32)

Equations (31) and (32) completely determine the action of Ψ̃(1)(Y ) on Ṽy.

In the following, we will use the compact notation,

H1(Y )i,j := 〈ψi ⊗ IdV iy |H1(X, Y )|ψj ⊗ IdV jy 〉x, (33)

so that,

Ẽ(1)(Y ) =
∑

i,j∈P νmaxn1

H1(Y )i,j · |ψi ⊗ IdV iy〉〈ψj ⊗ IdV jy |, (34)

and

Ψ̃(1)(Y ) =
∑

k1 /∈P νmaxn1
,j∈P νmaxn1

H1(Y )k1,j

νj − νk1

· |ψk1 ⊗ IdV k1
y
〉〈ψj ⊗ IdV jy |, (35)
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2. Second order

Using the normalization and Hermiticity conditions (Eqs (26) and (27) for k = 2),

and the Hermiticity of H1(X, Y ) (as an operator acting on V ), we obtain

〈ψi ⊗ IdV iy |Ψ̃
(2)(Y )|ψj ⊗ IdV jy 〉x = −1

2

∑
k1 /∈P νmaxn1

H1(Y )i,k1
H1(Y )k1,j

(νi−νk1
)(νj−νk1

)
. (36)

For k = 2, Eq. (25) becomes

H0(X)⊗ Idy · Ψ̃(2)(Y ) +H1(X, Y ) ·
∑

k1 /∈P νmaxn1
,l1∈P νmaxn1

H1(Y )k1,l1

νl1−νk1
· |ψk1 ⊗ IdV k1

y
〉〈ψl1 ⊗ IdV l1y

|

=
∑

l1∈P νmaxn1

|ψl1〉x〈ψl1| ⊗ IdV l1y
· Ẽ(2)(Y )

+
∑

k1 /∈P νmaxn1
;l1,l2∈P νmaxn1

H1(Y )k1,l1
H1(Y )l1,l2

νl1−νk1
· |ψk1 ⊗ IdV k1

y
〉〈ψl2 ⊗ IdV l2y

|

+ Ψ̃(2)(Y ) ·
∑

l1∈P νmaxn1

νl1 |ψl1〉x〈ψl1| ⊗ IdV l1y
. (37)

Projecting Eq.(29) onto 〈ψi ⊗ IdV iy | on the left and onto |ψj ⊗ IdV jy 〉 on the right, for

i, j ∈ P νmax
n1

, and using Eq.(36), we obtain

〈ψi ⊗ IdV iy |Ẽ
(2)(Y )|ψj ⊗ IdV jy 〉x = 1

2

∑
k1 /∈P νmaxn1

H1(Y )i,k1H1(Y )k1,j

(
1

νi−νk1
+ 1

νj−νk1

)
,

(38)

which determines Ẽ(2). Projecting Eq.(37) onto 〈ψk2 ⊗ IdV k2 | on the left and onto

|ψj ⊗ IdV j〉 on the right, for k2 /∈ P νmax
n1

, j ∈ P νmax
n1

, we obtain

〈ψk2 ⊗ IdV k2
y
|Ψ̃(2)(Y )|ψj ⊗ IdV jy 〉x =

∑
k1 /∈P νmaxn1

H1(Y )k2,k1
H1(Y )k1,j

(νj−νk1
)(νj−νk2

)
−

∑
l1∈P νmaxn1

H1(Y )k2,l1
H1(Y )l1,j

(νl1−νk2
)(νj−νk2

)
.

(39)

Equations (39) and (36) determine Ψ̃(2).

3. Higher orders

We proceeds as for the second order and obtain after some tedious but straightforward

algebra, at order 3, for i, j ∈ P νmax
n1

〈ψi ⊗ IdV iy |Ψ̃
(3)(Y )|ψj ⊗ IdV jy 〉x =

− 1
2

∑
k1,k2 /∈P νmaxn1

H1(Y )i,k1
H1(Y )k1,k2

H1(Y )k2,j

(νi−νk1
)(νj−νk2

)

(
1

νi−νk2
+ 1

νj−νk1

)
+ 1

2

∑
k1 /∈P νmaxn1

,l1∈P νmaxn1

H1(Y )i,l1H1(Y )l1,k1
H1(Y )k1,j

+H1(Y )i,k1
H1(Y )k1,l1

H1(Y )l1,j
(νi−νk1

)(νj−νk1
)(νl1−νk1

)
,

(40)
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〈ψi ⊗ IdV iy |Ẽ
(3)(Y )|ψj ⊗ IdV jy 〉x

= 1
2

∑
k1,k2 /∈P νmaxn1

H1(Y )i,k1H1(Y )k1,k2H1(Y )k2,j

(
1

(νi−νk1
)(νi−νk2

)
+ 1

(νj−νk1
)(νj−νk2

)

)
− 1

2

∑
k1 /∈P νmaxn1

,l1∈P νmaxn1

H1(Y )i,k1
H1(Y )k1,l1

H1(Y )l1,j
(νl1−νk1

)(νj−νk1
)

+
H1(Y )i,l1H1(Y )l1,k1

H1(Y )k1,j

(νi−νk1
)(νl1−νk1

)
.

(41)

For k1 /∈ P νmax
n1

, j ∈ P νmax
n1

〈ψk1 ⊗ IdV k1
y
|Ψ̃(3)(Y )|ψj ⊗ IdV jy 〉x =

∑
k2,k3 /∈P νmaxn1

H1(Y )k1,k2
H1(Y )k2,k3

H1(Y )k3,j

(νj−νk1
)(νj−νk2

)(νj−νk3
)∑

l1,l2∈P νmaxn1

H1(Y )k1,l1
H1(Y )l1,l2H1(Y )l2,j

(νj−νk1
)(νl1−νk1

)(νl2−νk1
)
−

∑
l1∈P νmaxn1

,k2 /∈P νmaxn1

H1(Y )k1,k2
H1(Y )k2,l1

H1(Y )l1,j
(νj−νk1

)(νl1−νk2
)

(
1

(νj−νk2
)

+ 1
(νl1−νk1

)

)
− 1

2

∑
l1∈P νmaxn1

,k2 /∈P νmaxn1

H1(Y )k1,l1
H1(Y )l1,k2

H1(Y )k2,j

(νj−νk1
)

(
1

(νl1−νk2
)(νj−νk2

)
+ 1

(νl1−νk1
)(νl1−νk2

)
+ 1

(νl1−νk1
)(νj−νk2

)

)
.

(42)

Then, at order 4, for i, j ∈ P νmax
n1

〈ψi ⊗ IdV iy
|Ψ̃(4)(Y )|ψj ⊗ Id

V
j
y
〉x =

− 1
2

∑
k1,k2,k3 /∈P

νmax
n1

H1(Y )i,k1
H1(Y )k1,k2

H1(Y )k2,k3
H1(Y )k3,j

(νi−νk1 )(νj−νk3 )

(
1

(νj−νk1 )(νj−νk2 )
+ 1

(νi−νk2 )(νj−νk2 )
+ 1

(νi−νk2 )(νi−νk3 )

)

+ 1
2

∑
k1,k2 /∈P

νmax
n1

,l1∈P
νmax
n1

H1(Y )i,k1
H1(Y )k1,l1

H1(Y )l1,k2
H1(Y )k2,j

(νi−νk1 )(νj−νk2 )

(
3

4(νl1
−νk1 )(νl1

−νk2 )
+ 1

(νi−νk2 )(νl1
−νk2 )

+ 1
(νj−νk1 )(νl1

−νk1 )

)

+ 1
2

∑
k1,k2 /∈P

νmax
n1

,l1∈P
νmax
n1

H1(Y )i,k1
H1(Y )k1,k2

H1(Y )k2,l1
H1(Y )l1,j

(νi−νk1 )(νl1
−νk2 )

(
1

(νi−νk2 )(νj−νk2 )
+ 1

(νj−νk1 )(νj−νk2 )
+ 1

(νl1
−νk1 )(νj−νk1 )

)

+ 1
2

∑
k1,k2 /∈P

νmax
n1

,l1∈P
νmax
n1

H1(Y )i,l1
H1(Y )l1,k1

H1(Y )k1,k2
H1(Y )k2,j

(νj−νk2 )(νl1
−νk1 )

(
1

(νi−νk1 )(νj−νk1 )
+ 1

(νi−νk1 )(νi−νk2 )
+ 1

(νi−νk2 )(νl1
−νk2 )

)

− 1
2

∑
k1 /∈P

νmax
n1

,l1,l2∈P
νmax
n1

H1(Y )i,l1
H1(Y )l1,k1

H1(Y )k1,l2
H1(Y )l2,j

+H1(Y )i,k1
H1(Y )k1,l1

H1(Y )l1,l2
H1(Y )l2,j

+H1(Y )i,l1
H1(Y )l1,l2

H1(Y )l2,k1
H1(Y )k1,j

(νi−νk1 )(νj−νk1 )(νl1
−νk1 )(νl2

−νk1 )
,

(43)

〈ψi ⊗ IdV iy
|Ẽ(4)(Y )|ψj ⊗ Id

V
j
y
〉x =

1
2

∑
k1,k2,k3 /∈P

νmax
n1

H1(Y )i,k1H1(Y )k1,k2H1(Y )k2,k3H1(Y )k3,j

(
1

(νi−νk1 )(νi−νk2 )(νi−νk3 )
+ 1

(νj−νk1 )(νj−νk2 )(νj−νk3 )

)

− 1
2

∑
k1,k2 /∈P

νmax
n1

,l1∈P
νmax
n1

H1(Y )i,k1H1(Y )k1,l1H1(Y )l1,k2H1(Y )k2,j

(
1

4(νl1
−νk1 )(νl1

−νk2 )

(
1

νi−νk1
+ 1
νj−νk2

)

− 1
4(νi−νk1 )(νj−νk2 )

(
1

νl1
−νk1

+ 1
νl1
−νk2

)
+ 1

(νi−νk1 )(νi−νk2 )(νl1
−νk2 )

+ 1
(νj−νk1 )(νj−νk2 )(νl1

−νk1 )

)
− 1

2

∑
k1,k2 /∈P

νmax
n1

,l1∈P
νmax
n1

H1(Y )i,k1
H1(Y )k1,k2

H1(Y )k2,l1
H1(Y )l1,j

(νl1
−νk2 )(νj−νk1 )

(
1

νj−νk2
+ 1
νl1
−νk1

)

− 1
2

∑
k1,k2 /∈P

νmax
n1

,l1∈P
νmax
n1

H1(Y )i,l1
H1(Y )l1,k1

H1(Y )k1,k2
H1(Y )k2,j

(νi−νk2 )(νl1
−νk1 )

(
1

νi−νk1
+ 1
νl1
−νk2

)

1
2

∑
k1 /∈P

νmax
n1

,l1,l2∈P
νmax
n1

(
H1(Y )i,l1

H1(Y )l1,l2
H1(Y )l2,k1

H1(Y )k1,j
(νi−νk1 )(νl1

−νk1 )(νl2
−νk1 )

+
H1(Y )i,k1

H1(Y )k1,l1
H1(Y )l1,l2

H1(Y )l2,j
(νj−νk1 )(νl1

−νk1 )(νl2
−νk1 )

)
.

(44)

So the perturbative solution to Eq.(17) is actually unique at all orders for a given H,

within the normalization and Hermiticity constraints. Of course, if H is transformed by
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a unitary mapping, the effective wave superoperator and effective superHamiltonian will

be transformed accordingly.

Remark 1: Equations (38), (41) and (44), reduce to the non degenerate formulas of

our previous work, see42. However, they are more involved than the classical formulas

for the quasi-degenerate case reported in textbooks, which consist at second order for

example, in substituting the quasi-degenerate eigenvalues by their barycentric mean:

νi, νj → νbarycentric =
∑

l∈P νmaxn1

νl
Nx

, or by their arithmetic mean: νi, νj → νarithmetici,j =
νi+νj

2
.

The first case has the advantage that νbarycentric is independent from i and j,

〈ψi ⊗ IdV iy |Ẽ
(2)(Y )|ψj ⊗ IdV jy 〉x =

∑
k1 /∈P νmaxn1

H1(Y )i,k1
H1(Y )k1,j

νbarycentric−νk1
.

(45)

However, the convergence of the series is really poor as one departs from exact degener-

acy. The ”arithmetic mean denominator“ ansatz

〈ψi ⊗ IdV iy |Ẽ
(2)(Y )|ψj ⊗ IdV jy 〉x =

∑
k1 /∈P νmaxn1

H1(Y )i,k1
H1(Y )k1,j

νarithmetici,j −νk1

,

(46)

performs better (see ref.43). However, this ad hoc ansatz is not as satisfactory as

the harmonic mean: 1
2

(
1

νi−νk1
+ 1

νj−νk1

)
that comes out from the generalized Rayleigh-

Schrödinger method, and does not perform better for the cases studied so far.

Remark 2: Equations (38), (41) and (44) are exactly equivalent to those of Ap-

pendix B of Ref.44, however, our expression for order 4 is slightly more compact.

II. APPLICATION TO THE TETRADECADE OF METHANE

To assess our generalized quasi-degenerate perturbation theory, and study the inter-

play between the choice of the quasi-degenerate space and the order of perturbation,

we have chosen to focus on the 2ν3-band of the tetradecade of methane. The methane

ro-vibrational spectrum is decomposed into polyads corresponding to the approximate

quantum number P = 2n1 + n2 + 2n3 + n4, where n1 is the (approximate) number of

quanta in the totally symmetric A1 stretching mode ν1, n2 is the number of quanta

in the doubly degenerate bending mode ν2 of E symmetry, n3 corresponds to the an-

tisymmetric stretching mode ν3 of F2-symmetry, and n4 to the bending mode ν4 of

F2-symmetry. The ni being non-negative integers, there are 14 different ways to make

12



up P = 4, hence the name ”tetradecad“ for this polyad. The 2ν3-band, corresponds to

n1 = n2 = n4 = 0, n3 = 2, so is one of the 14 possibilities.

A. Vibrational (J=0)-calculations

The implementation of the perturbation method supposes that the zero order problem

has been solved. So, we first describe how the zero-order, that is to say, the vibrational

(J=0)-Hamiltonian eigenproblem has been dealt with.

The potential energy surface (PES) has been derived from that of Nikitin-Rey-

Tuyterev (NRT) PES45: First the latter has been expanded up to the 14th order in

Cartesian normal coordinates. Then, it has been converted to an expansion in terms

of creation and annihilation operators and truncated at sixth order. Finally, it has

been transformed back to Cartesian normal coordinates. This process allows one to

obtain compact PES expression of lower order while (i) preserving a very good accuracy

and (ii) avoiding spurious minima specific to standard high-order polynomial Taylor

expansions46. The Watson µ-matrix has been treated similarly with an initial expansion

in normal coordinates up to 8th order.

Each modal basis set has been optimized by using a maximum overlap criterium

with respect to a fixed number, p, of eigenstates of the Hamiltonian averaged over the

other modes in their approximate harmonic ground state. These reference eigenfunctions

and corresponding eigenvalues are denoted by {ψm}m∈{0,...,p} and {λm}m∈{0,...,p}, where

m = 0 corresponds to the ground state, m = 1 to the first excited state and so on.

They are supposed to be known with sufficient accuracy. Let {φm(α1, · · · , αl)}m∈{0,...,d}
(d ≥ p) be a d-dimensional basis set made of eigenfunctions of a model potential de-

pending on parameters, (α1, · · · , αl). In the vector space spanned by this basis set,

the same mean field Hamiltonian has approximate eigenfunctions and eigenvalues de-

noted by {ψ̃m(α1, · · · , αl)}m∈{0,...,p} and {λ̃m(α1, · · · , αl)}m∈{0,...,p} with ψ̃m(α1, · · · , αl) =
d∑

k=1

amkφk(α1, · · · , αl) and
d∑

k=1

|amk|2 = 1. The optimal parameters are derived by max-

imising the quantity
p∑

m=1

sup
1≤k≤d

(|amk(α1, · · · , αl)|2) in the case of a non-degenerate mode,

or its generalization
p∑

m=1

sup
K

(
∑
ki∈K
|amki(α1, · · · , αl)|2) where each K gathers the indices

of a set of degenerate basis function. An additional constraint on the eigenvalues of

the type max
m≤p

(|λ̃m(α1, · · · , αl) − λm|) < ε for a given ε can be also considered. In

practice, the NRT PES reexpanded only to 10th order in Cartesian normal coordinates

and transformed to a sixth order expansion was used for the optimization. The ref-
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erence {ψm}m∈{0,...,p} and {λm}m∈{0,...,p} were obtained by diagonalizing the mean field

Hamiltonian in a large basis (dimension larger than d, typically up to quantum number

equal to 20). The parameter p was adjusted for each mode so as to include all eigen-

values below the gap located in the range 23100 − 24300 cm−1 , depending upon the

mode. For modes 1 and 2, the constraint on eigenvalues was considered with ε = 10−2

(given the accuracy of the PES), but it was found transparent for parameter sets such

that
p∑

m=1

sup
K

(
∑
ki∈K
|amki(α1, · · · , αl)|2) ≈ p. (Note that achieving such large values for

the overlap is not always possible when p is close to d). For stretching modes the

maximal sum of quantum numbers of product basis functions was 14 and for bending

modes, it was 16. So, the dimensions of the basis sets used were d + 1 = 15 for ν1,

d+ 1 =
(
17+2−1

2

)
= 153 for ν2, d+ 1 =

(
15+3−1

3

)
= 680 for ν3, and d =

(
17+3−1

3

)
= 969 for

ν4. The optimized modal basis functions for mode 1 were eigenfunctions of a Kratzer

potential47,48, D
(

Q
Q+a

)2
, with parameters (D = 278500 cm−1 , a = 113.75 au), Q mass-

weighted coordinate. The projection criterium was 5.933 for p = 6. This was better

than what could be obtained with a shift and frequency optimized Harmonic oscillator.

For the other modes, they were eigenfunctions of harmonic oscillator potentials with

respective wave numbers equal to 1510 cm−1 , 3150 cm−1 , and 1310 cm−1 for modes 2,

3 and 4. The projection criterium was 53.932 for p = 55 (resp. 31.427 for p = 35, and

261.406 for p = 286) for these three modes.

The 9D (J = 0)-Vibrational Hamiltonian was diagonalized with the vibrational

mean field configuration interaction (VMFCI) method as implemented in the CONVIV

code2,49,50. The contraction-truncation scheme was in our notation:

MSP-VSCFCI/VSCFCI(ν1 − ν3,ν2 − ν4; 32615, 16851)/VCI(0,9343; 27535), in which:

- MSP-VSCFCI stands for minimal symmetry preserving (MSP) vibrational self-consistent

configuration interaction calculation (VSCFCI). It means that the DOFs pertaining to

the same degenerate mode have been contracted together in the mean field of the other

DOFs and that this partition has been iterated until self-consistency was achieved.

- VSCFCI(ν1 − ν3,ν2 − ν4; 32615, 16851) means that the stretching modes 1 and 3 are

contracted with truncation of the product basis functions at 32615 cm−1 on the sum of

the energies of their components, that the bending modes 2 and 4 are contracted with

truncation of the product basis functions at 16851 cm−1 on the sum of the energies of

their components, and that self-consistency was achieved for this new partition. The

truncation thresholds have been chosen to fall in gaps of the spectra.

- VCI(0,9343; 27535) denotes as usual a vibrational configuration interaction (VCI)

14



step where the product basis set made of stretching and bending effective Hamiltonian

eigenfunctions were truncated at 9343 cm−1 for the bending and at 27535 cm−1 on the

sum of the stretching and bending energies. (Here again these values were chosen to fall

in gaps of the spectra). The resulting size of the Hamiltonian matrix was 133646. The

energy levels up to the tetradecad are given as supplementary material.

B. Reference variational calculation

A large variational calculation for the same Hamiltonian was performed by using the

TENSOR computer code developed in Reims. This code is able to make use of the Td

symmetry of the system combined with irreducible tensor operators, and therefore to

reduce the computational effort by a factor 10.

First, the vibrational (J = 0)-Hamiltonian was diagonalized in a harmonic oscillator

product basis set F (13) including all products such that the sum of quantum numbers

was less or equal to 13. The frequencies of the modals were the fundamental harmonic

frequencies of the Hamiltonian after transformation. The (J = 0)-spectrum is given as

supplementary material up to the tetradecad. Although, the differences with the VMFCI

results are small (RMS of 0.385 cm−1 , zero point energy (ZPE) of 9703.172 cm−1 was

converged to better than the thousandth of cm−1 ), these reference values (up to the

tetradecad, only) were used to shift the band centers in the pertubative calculations of

the following sections for a better comparison of rotational levels. For the 2ν3 band of

interest in this study, the shift is only of a few hundredth of cm−1 .

For J > 0, a set of rovibrational basis functions is built as the tensor product be-

tween the vibrational functions ⊗4
i=1φ

(Cvi)
i and symmetry-adapted rotational functions

| J, nCσ〉 =
∑
m

(J)Gm
nCσ | J,m〉, where the orientation matrix G is given in51. However

the size of the rovibrational basis becomes intractable when using the vibrational F (13)

functions. Then, a compact set of orthonormalized vibrational (J = 0)-eigenvectors

has been selected up to F (7). These so-called reduced functions25,52 were directly used

to build a direct product ro-vibrational basis set and diagonalize the full Hamiltonian

for J 6= 0. The so-obtained reference energy levels are estimated to be converged to

the hundredth of cm−1 or better. They are given for the 2ν3 band as supplementary

material.
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C. Quasi-degenerate pertubative calculations

The quasi-degenerate pertubative formulas of section I have been implemented up to

fourth order for quasi-degenerate spaces of arbitrary sizes.

1. Convergence with perturbation order

Different quasi-degenerate spaces have been investigated, as summarized in Tab. I.

For each of these spaces, we have studied the convergence of the energy levels with the

perturbation order.

2ν3 quasi-degenerate space

The first quasi-degenerate space to investigate for calculating the energy levels of the 2ν3-

band, is of course the smallest one, that is to say, the 6-dimensional space corresponding

to the 2ν3-vibrational states. We do not report the results of low orders for this space,

because although some levels were accurate, we feel that there were too many inversions

for the results to be acceptable. We only report results for order 4, where only two

inversions between a pair of close lying A1 and E states occured, one for J = 6 and one

for J = 7.

Fig. 1 displays the absolute errors with respect to the reference levels (νref − ν) for

different truncation thresholds on the spectator states. That is to say, instead of the

infinite summation on the ki appearing in Eq. (44), the ki were limited to 530 (resp.

1232, 2143), which corresponds to the (vibrational) spectator states of the polyads P0

to P5 (resp. P6, P7). Note that for lower order corrections (order 2 and 3 namely) the

summation was not infinite either but limited to all spectator eigenvectors within the

calculated ones, that is to say ki ≤ 16792.

In Fig. 1, we see that each of the dots corresponding to the three different thresholds

are superimposed. This means that, there is almost no difference in the calculated levels

frequencies. This observation is confirmed by Tab. II, which compares the root mean

square (RMS) of the relative error on level wave numbers for a given J-value. This

remark is interesting, because the computational effort grows as the third power of the

threshold for the fourth order correction. This is what is roughly confirmed in Tab. VII.

Another observation particularly evident on Tab. II, is the strong dependence on

J-value of the quality of the results: more than a factor 2000 between J = 1 and J = 7.

This hints to the slow convergence of the perturbation series for this choice of quasi-
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degenerate space, since the lowest the J-value, the least the sensitivity to high order

corrections. Moreover, a maximum absolute error of more than 3 cm−1 is observed on

Fig. 1, which is fairly large for the computational effort.

(ν1 + 2ν2, 2ν3) quasi-degenerate space

One obvious cause for the discrepancies of the 2ν3-calculations, is the strong reson-

nance of this band with the closely lying (ν1 + 2ν2)-band constituted of an A1 and

an E vibrational level. Extending the quasi-degenerate space to this band results in a

9-dimensional degenerate space, see Tab. I. This extension improves the perturbation

series since at order 2, there is a single inversion observed between an A2 and an E

state for J = 7. However, there is still some instabilities, since some order 3 values are

worse than those of order 2, see Tab. III and Fig. 2, and the largest absolute error at

these orders almost reach 4 cm−1 . The series is damped at order 4 (truncated at P6 on

spectators), where absolute errors fall in the ±1 cm−1 range. Tab. III shows that the

RMS of relative errors for J = 7 levels, is also reduced by a factor 3. This is a significant

improvement with respect to the 2ν3-space but it costs roughly twice the computa-

tional effort for the construction of the effective Hamiltonian (see Tab. VII), which is the

bottleneck of the calculation for large order and low dimensional quasi-degenerate spaces.

(ν1 + ν3, 3ν2 + ν4, ν1 + 2ν2, 2ν3, 2ν2 + ν3, 4ν2) quasi-degenerate space

As an intermediate size quasi-degenerate space within the tetradecad, we gathered all

the bands above the 2ν3-band, and a roughly equivalent number of vibrational levels

below the 2ν3-band. The resulting space, denoted (ν1 +ν3)// · · · //4ν2 is 38-dimensional,

see Tab. I. With this choice, the convergence of the series from order 2 to 4 (with

spectators limited to P5 in the fourth order correction) is smooth, as shown by Fig. 3

and Tab. IV. Order 3 is already clearly better than order 4 of the ν1+2ν2, 2ν3-calculation,

the maximum abolute error being less than 0.5 cm−1 , and the RMS of relative errors

for J = 7 levels more than a factor 2 lower. Furthermore, this is achieved for a better

computational cost, see Tab. VII.

Order 4 reduces further the maximum abolute error to slightly more than 0.3 cm−1 ,

and the ratio of RMS of relative errors for J = 7 over J = 1 is about 300, so almost

an order of magnitude better than for the 2ν3-calculation. This is essentially due to the

improvement of high J-value levels.

P4 quasi-degenerate space
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The most natural quasi-degenerate space to select is arguably the one corresponding

to the approximate quantum number P = 4, that is to say, the whole tetradecad itself.

Though, the size of the space rises to 140, which prevents to perform order 4 calculations

in reasonable time, and imposes to truncate the order 3 correction at ki ≤ 4237, that is

to spectators within P0 − P8, in order to run the calculation in about 1.5 day on our

cluster, see Tab. VII.

Fig. 4, shows that the maximum abolute error for order 2 is less than 0.03 cm−1 .

This is about one order of magnitude lower than order 4 of the previous partitioning.

Interestingly, if in the previous case, order 3 was almost systematically overshooting the

energy eigenvalues, for P4 the reverse is observed. The RMS in Tab. V confirm that the

P4-space gives much more accurate results than the previous quasi-degenerate spaces

considered, while at order 2 the computational effort is still very light. This confirms

the relevance of this intuitive choice of quasi-degenerate space.

(P0// · · · //P5), (P0// · · · //P6) and (P0// · · · //P7) quasi-degenerate spaces

Less intuitive but worth studying are larger spaces, which at order 1 should converge

towards the exact eigenvalues. In order to partly balance the addition of P5, P6 and P7

to P4, it is reasonable to also add the lower states of P0−P3, which give denominators

with opposite signs in the perturbation series.

Order 1 of the (P0// · · · //P5)-space gives correct levels with only one set of three

levels (of symmetry F2, E and A1) permuted for J = 7. This was not the case of order 1

for the P4-space, where many permutations were occuring. Even for J = 1 a permutation

of an E and a F1 level was observed. Let us recall that order 1 calculations are in fact

variational. So, it is the variational principle that explains why all the absolute errors are

negative, (we consider that the reference calculation variationnal space should essentially

contain ours in spite of the projection on F (7) and differences in modal basis functions).

For (P0// · · · //P5), at order 1 the maximum abolute error is still as large as about

1 cm−1 , as seen on Fig. 5. However, it decreases with the inclusion of P6 and P7, as

expected from the enlargement of the variational space, (see Figs. 6 and 7). Note that in

all these variational calculations of increasing sizes, the Hylleraas-Undheim-MacDonald

theorem53,54 holds, so that every single level is improved as the space is enlarged. The

RMS of Tab. VI give some quantitative ideas of the improvement with the size of the

quasi-degenerate space. The latter can also be vizualized with the relative errors plotted

in Fig. 8.

The situation is more complex when considering orders 2. Figs. 5, 6, and 7 (which is
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at a larger scale) show that all order 2 calculations improve significantly order 1 results.

However, the effect of the enlargement of the quasi-degenerate space is not systematic

in contrast to order 1. Tab. VI shows that it depends on the J-value. The RMS for

low J-values are better with the (P0// · · · //P5)-space whereas for high J-values they

are better with the (P0// · · · //P6)-space. The quality of the results deteriorates with

the (P0// · · · //P7)-space for all J-values. The instability of order 2 results lies probably

in the fact that the denominators in the perturbation series become very small with

quasi-degenerate space enlargement, the gap with the upper polyads being smaller and

smaller.

2. Convergence with quasi-degenerate space

It is also instructive to look at the relative errors as a function of the quasi-degenerate

space for a fixed order of perturbation. This is what is proposed in Figs. 8 to 11. Or-

der 1 has already been discussed in the previous section. At order 2 in Fig. 9, we see

that the relative errors for the less accurate values vary by about three orders of mag-

nitude with the wavelength. In contrast, for the P4 and larger spaces the variation is

less pronounced. For the (P0// · · · //P6)-space, it is rather flat with all relative errors

falling below 10−6. Fig. 10 which displays order 3 relative errors shows a clear general

improvement of the results and a milder wavelength dependency of the worst levels with

the widening of the quasi-degenerate space. On Fig. 11, we also see a clear general im-

provement with increasing sizes of the quasi-degenerate spaces, (the spectator truncation

thresholds are reduced with the increase of space dimension, but on the basis of Fig. 1

and Tab. II, one does not expect that this affects the results significantly). However, the

wavelength dependency of the worst levels is strong for all calculations. This suggests

a slow series convergence for quasi-degenerate spaces smaller than the tetradecad. This

is not surprising because small denominators will occur due to small energy differences

between the states in the quasi-degenerate space and the other states of the tetradecad

excluded from this space. So, a quasi-degenerate space larger than or equal to P4 seems

necessary to obtain a well-behaved perturbation series, at least up to order 3. But it

must be strictly smaller than the (P0// · · · //P7)-space to prevent the occurence of small

denominators resulting from the tiny P7//P8-gap, as was invoked in the previous section

to explain order 2 results.
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3. Computational cost

Putting all previous observations together, we see that, in order to reach a relative

accuracy better than say 2.10−6 on (J = 7)-levels, one needs an order 3 calculation for

the P4-space, or an order 2 calculation for (P0// · · · //Pk)-spaces with k = 5, 6 or 7, or

of course an order 1 i.e. a variational calculation for an even larger quasi-degenerate

space. One needs to look at the computational cost of these calculations to select the

most efficient one for a given accuracy goal.

Tab. VII gives orders of magnitude of cpu times required for the construction of the

effective super-Hamiltonians. For a given perturbation order, they scale linearly with the

number of symmetry-unique blocks of the super-Hamiltonians, that is to say as Nx(Nx+1)
2

,

for a quasi-degenerate space of dimension Nx. The scaling with perturbation order de-

pends drastically on the truncation threshold since the corrective terms of order n require

(n− 1) nested loops on spectators states. As already stated, for small quasi-degenerate

spaces, the construction of the super-Hamiltonian is the bottleneck of the calculation.

However, for large ones, the cost of the diagonalization of the super-Hamiltonian ma-

trix, which is of size Nx × (2J + 1) for J-levels must be taken into account and will

eventually dominate as Nx and J increase. This is also, of course, the dominant cost for

order 1 calculations. We have not reported diagonalization cost as they depend on the

algorithm, library, plateform and so on, employed but generally speaking one expects a

scaling as the matrix size to the third power. So, a factor 12.6 will incur when going

from (P0// · · · //P5) to (P0// · · · //P6)-space and another factor 5.3 from (P0// · · · //P6)

to (P0// · · · //P7)-space.

In supplementary material, we have reported our most accurate perturbational results,

corresponding to order 2 of perturbation and the (P0// · · · //P6)-space. For J = 7,

the effective super-Hamiltonian matrix to diagonalize was of size 18480. This is to be

compared with the size of the reference variational calculation, that is to say, with the

rovibrational direct product basis set size of 171870 for the same J-value. (In both cases

we do not take into account symmetry, which in methane can reduce sizes by a factor

ten). Clearly, it is worth spending the 2.1 hours of CPU time required to build the order

2 effective super-Hamiltonian. Note that the computation of order 2 corrective terms is

not parallelized in our code, in contrast with higher order corrections.
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III. CONCLUSION

This article has introduced a generalization of our previous effective Hamiltonian

method55 to the case of quasi-degenerate zero order eigenspaces. Our formalism en-

compasses both the Rayleigh-Ritz variational method based on the diagonalization of

an Hamiltonian matrix (order 1 of quasi-degenerate perturbation theory with all zero

order states considered formally as quasi-degenerate even if in practice their associated

energies differ by several orders of magnitude) and the Rayleigh-Schrödinger generalized

perturbation method (when a single zero order state, possibly exactly degenerate, is

included in the quasi-degenerate space). Between these extreme cases, the new formal-

ism allows one to tune up the calculation by playing on only a few simple parameters

such as the perturbation order, the size of the quasi-degenerate space, the spectator

state truncation thresholds for corrective terms of order 2 and higher, so as to solve the

eigenvalue problem in the most economical way for a given accuracy goal.

Our application to methane shows that:

(i) A similar accuracy can be reached for the tetradecad than that obtained for the

ground state in previous applications4,42,56.

(ii) The computational effort can be reduced by introducing perturbative corrections

with respect to large variational calculations without sacrifying significantly the accuracy.

Further developments could include mould calculus techniques to improved our non-

commuting effective operator series speed of convergence, such series being precisely

what is called a ”mould“ in mathematics. Also, as suggested by other authors1, ab initio

effective super-Hamiltonian can be useful to solve the inverse problem raised by spectro-

scopic data processing. In fact, it is well-known in mathematics that inverse problems

are ill-defined and that there are three possible reasons for that57,58:

1) the solution may not exist,

2) it may not be unique,

3) it may be unstable with respect to small changes in the data,

the later being the most difficult to fix. The most common regularization of inverse prob-

lem unstability is known as Tikhonov regularization59. It consists in solving a stabilized

inverse problem whose solution is the solution of the initial inverse problem that is the

closest of a reasonable guess solution. This is precisely what can be achieved by using our

ab initio effective super-hamiltonians as a guess, in the field of molecular spectroscopy.
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TABLES AND FIGURES CAPTION

Label vib. states wave numbers (cm−1 ) size

2ν3 (201 - 206) 5968.27821− 6043.82444 6

(ν1 + 2ν2)//2ν3 (198 - 206) 5939.16404− 6043.82444 9

(ν1 + ν3)// · · · //4ν2 (183 - 220) 5861.06072− 6124.50383 38

P4 (81 - 220) 5123.64379− 6124.50383 140

P0-P5 (1 - 530) 0.00000− 7588.09422 530

P0-P6 (1 - 1232) 0.00000− 9190.45568 1232

P0-P7 (1 - 2143) 0.00000− 10454.77160 2143

P0-P8 (1 - 4237) 0.00000− 12157.21552 4237

TABLE I. Quasi-degenerate vibrational spaces. The labels of the groups are those used through-

out the article. The “ vib. states” column indicates the numbers of the vibrational levels

considered as “quasi degenerate”. The numerotation starts from 1 and counts all exactly de-

generate vectors independently. The corresponding wave numbers are those obtained by our

J = 0 variational calculation. The size of the group correspond to Nx: the square root of the

number of blocks of the super-Hamiltonian.
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J o4-530 o4-1232 o4-2143

1 8.79774e-08 8.80757e-08 8.74808e-08

2 4.09010e-07 4.09076e-07 4.22824e-07

3 1.11117e-06 1.04565e-06 1.01125e-06

4 5.12308e-06 4.89975e-06 4.79271e-06

5 3.73108e-05 3.73375e-05 3.77563e-05

6 9.73328e-05 9.75357e-05 9.84951e-05

7 1.70857e-04 1.71405e-04 1.72811e-04

TABLE II. Convergence of relative errors for the 2ν3 quasi-degenerate space fourth order per-

turbation with the spectator sum truncation threshold of the order 4 corrective term. “o4-530”

(resp. “o4-1232”, “o4-2143”) means that the infinite summation on the ki’s appearing in

Eq. (44), was limited to ki ≤ 530 (resp. 1232, 2143). See main text for details.
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J o2 o3 o4-1232

1 4.69346e-07 2.09936e-07 8.90504e-08

2 2.05879e-06 1.80785e-06 2.67716e-07

3 8.07932e-06 4.18744e-06 1.02595e-06

4 2.33342e-05 1.04137e-05 4.77393e-06

5 5.34091e-05 6.70347e-05 1.77674e-05

6 1.21060e-04 1.76789e-04 4.69836e-05

7 1.92754e-04 2.91982e-04 5.91106e-05

TABLE III. Convergence of relative errors for the (ν1 + 2ν2)//2ν3 quasi-degenerate space and

different perturbation orders. “o2” means order 2, “o3”: order 3, “o4-1232”: order 4 with

truncation as in Tab. (II).
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J o2 o3 o4-530

1 3.31135e-07 9.08082e-08 8.21053e-08

2 1.01615e-06 3.47092e-07 1.24435e-07

3 2.52242e-06 1.35844e-06 2.80655e-07

4 5.80215e-06 3.81181e-06 1.06746e-06

5 1.41850e-05 9.45332e-06 3.53232e-06

6 2.95286e-05 1.94261e-05 1.00181e-05

7 6.17759e-05 3.28615e-05 2.67881e-05

TABLE IV. Convergence of relative errors for the (ν1+ν3)// · · · //4ν2 ≡ (ν1+ν3, 3ν2+ν4, ν1+

2ν2, 2ν3, 2ν2 + ν3, 4ν2) quasi-degenerate space and different perturbation orders. “o2”: order 2,

“o3”: order 3, “o4-530”: order 4 with truncation as in Tab. (II).
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J o2 o3-4237

1 7.46591e-08 8.94996e-08

2 1.92208e-07 1.47123e-07

3 4.23416e-07 2.36744e-07

4 6.87447e-07 3.54659e-07

5 1.16016e-06 6.69531e-07

6 1.84134e-06 1.11404e-06

7 2.88847e-06 1.72081e-06

TABLE V. Convergence of relative errors for (P4) quasi-degenerate space and different pertur-

bation orders. “o2”: order 2, “o3-4237”: order 3 with infinite summation on the ki’s appearing

in Eq. (41) limited to ki ≤ 4237.
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o1 o2

J (P0// · · · //P5) (P0// · · · //P6) (P0// · · · //P7) (P0// · · · //P5) (P0// · · · //P6) (P0// · · · //P7)

1 3.74223e-06 3.49298e-06 6.68670e-07 8.08064e-08 8.73907e-08 9.11457e-08

2 1.13858e-05 1.04411e-05 2.15160e-06 1.13273e-07 1.36636e-07 1.50637e-07

3 2.32933e-05 2.06020e-05 4.24520e-06 1.56365e-07 2.12608e-07 2.63614e-07

4 4.05039e-05 3.44394e-05 7.25150e-06 1.92121e-07 2.99005e-07 4.57559e-07

5 6.40288e-05 5.08010e-05 1.01577e-05 4.44408e-07 4.33823e-07 8.03109e-07

6 9.46963e-05 7.00951e-05 1.39972e-05 8.83586e-07 5.31268e-07 1.24737e-06

7 1.34007e-04 9.23214e-05 1.82919e-05 1.67086e-06 6.51010e-07 1.93673e-06

TABLE VI. Convergence of relative errors for (P0// · · · //P5), (P0// · · · //P6) and

(P0// · · · //P7) quasi-degenerate spaces and different perturbation orders. “o1”: order 1, “o2”:

order 2.
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quasi-deg.

space nb. blocks o2 o3-4237 o3 o4-530 o4-1232 o4-2143

2ν3 21 0.2 s - 1.0 h 3.4 h 2.1 d 11 d

(ν1 + 2ν2)//2ν3 45 0.5 s - 2.1 h 7.3 h 4.6 d 23 .7d

(ν1 + ν3)// · · · //4ν2 741 7.4 s - 35.5h 5.0d 75 .6d -

P4 9870 2 min 30.8 h 19 .7d 66 .6d - -

P0-P5 140715 24 min 18 .3d 281 .0d - - -

P0-P6 759528 2.1 h 98 .9d - - - -

P0-P7 2297296 6.4 h - - - - -

TABLE VII. Orders of magnitude of CPU times required to construct superHamiltonians on

a node of an HP cluster (each node has 2 processors Intel(R) E5-2670 - 2.60 GHz - 8 cores

with 64 GigaBytes memory). The column “nb. blocks” shows the number of symmetry unique

blocks to be calculated, that is to say, Nx(Nx+1)
2 , for a quasi-degenerate space of dimension

Nx. The notation “on-X” refers to order n correction with sum on spectator basis functions

truncated at the Xth function. If no “X” is specified all the 16792 vibrational functions were

used. Only orders 3 and 4 superHamiltonian corrections were parallelized with openmp, order

2 was not. All calculations were run with 16 threads. Numbers in italics were extrapolated as

calculations were not actually run.
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FIG. 1. Convergence of order 4 perturbation series with truncation threshold: 530 red plus

signs, 1232 blue times signs, 2143 green diamonds.
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FIG. 2. Convergence of perturbation series for (ν1 + 2ν2, 2ν3) quasi-degenerate space. See

Tab. III for definition of acronyms.
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FIG. 4. Convergence of perturbation series for (P4) quasi-degenerate space. See Tab. V for
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FIG. 5. Convergence of perturbation series for (P0// · · · //P5) quasi-degenerate space. See

Tab. VI for definition of acronyms.
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FIG. 6. Convergence of perturbation series for (P0// · · · //P6) quasi-degenerate space. See

Tab. VI for definition of acronyms.
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FIG. 7. Convergence of perturbation series for (P0// · · · //P7) quasi-degenerate space. See

Tab. VI for definition of acronyms.
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FIG. 9. Convergence of order 2 perturbation series with quasi-degenerate space.
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FIG. 10. Convergence of order 3 perturbation series with quasi-degenerate space.
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FIG. 11. Convergence of order 4 perturbation series with quasi-degenerate space.
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SUPPLEMENTARY MATERIAL

Approximate and reference band centers (in cm−1 )

VMFCI (27535 cm−1 ) Ref. (F13P7) difference

1310.744 1310.742 0.002

1533.315 1533.314 0.001

2587.285 2587.267 0.018

2614.249 2614.237 0.012

2624.740 2624.731 0.009

2830.626 2830.614 0.012

2846.078 2846.070 0.008

2916.478 2916.474 0.005

3019.477 3019.474 0.003

3063.818 3063.811 0.006

3065.172 3065.166 0.006

3871.051 3870.933 0.118

3909.300 3909.210 0.089

3920.729 3920.647 0.083

3931.293 3931.222 0.071

4102.106 4101.946 0.159

4129.284 4129.150 0.134

4133.735 4133.624 0.111

4143.183 4143.068 0.115

4151.600 4151.498 0.103

4162.142 4162.044 0.099
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– Continued from previous page

VMFCI (27535 cm−1 ) Ref. (F13P7) difference

4223.228 4223.215 0.013

4319.070 4319.057 0.013

4321.808 4321.790 0.019

4322.051 4322.034 0.018

4322.940 4322.921 0.019

4349.516 4349.407 0.109

4364.087 4363.994 0.093

4379.237 4379.154 0.084

4434.995 4434.982 0.014

4537.327 4537.314 0.012

4543.640 4543.624 0.016

4592.580 4592.507 0.073

4595.476 4595.411 0.065

4595.766 4595.701 0.065

5124.267 5123.631 0.636

5145.207 5144.629 0.578

5168.924 5168.468 0.456

5211.525 5211.157 0.368

5229.654 5229.343 0.310

5231.445 5231.127 0.319

5241.392 5241.107 0.285

5373.367 5372.724 0.643
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– Continued from previous page

VMFCI (27535 cm−1 ) Ref. (F13P7) difference

5391.502 5390.914 0.587

5425.773 5425.302 0.470

5431.427 5431.026 0.401

5438.476 5438.080 0.396

5445.591 5445.219 0.371

5463.729 5463.400 0.329

5493.085 5492.987 0.097

5521.194 5521.132 0.063

5533.191 5533.137 0.054

5588.550 5588.459 0.091

5606.766 5606.500 0.266

5614.273 5613.989 0.285

5614.735 5614.448 0.287

5615.289 5615.235 0.053

5615.387 5615.311 0.076

5619.345 5619.111 0.233

5625.702 5625.652 0.051

5627.256 5627.195 0.061

5644.091 5643.699 0.393

5655.640 5655.326 0.314

5656.936 5656.589 0.347

5664.970 5664.677 0.294
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– Continued from previous page

VMFCI (27535 cm−1 ) Ref. (F13P7) difference

5669.609 5669.295 0.313

5682.453 5682.183 0.270

5691.893 5691.625 0.267

5727.221 5727.153 0.068

5744.631 5744.586 0.046

5790.404 5790.365 0.039

5824.016 5823.959 0.057

5825.439 5825.400 0.039

5832.593 5832.514 0.079

5835.462 5835.394 0.068

5842.428 5842.388 0.039

5842.636 5842.593 0.042

5843.969 5843.919 0.050

5846.919 5846.873 0.046

5861.135 5861.059 0.077

5868.619 5868.402 0.217

5880.865 5880.607 0.258

5895.303 5895.069 0.234

5909.979 5909.755 0.224

5939.179 5939.163 0.016

5952.297 5952.271 0.026

5968.288 5968.277 0.010
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VMFCI (27535 cm−1 ) Ref. (F13P7) difference

6004.460 6004.417 0.043

6043.857 6043.824 0.033

6054.503 6054.480 0.023

6060.449 6060.421 0.028

6065.742 6065.703 0.038

6118.020 6117.835 0.185

6119.619 6119.439 0.180

6124.665 6124.502 0.164

RMS 0.385
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Approximate and reference energy levels (in cm−1 )

of 2ν3

J irrep. P0-P6 o2 Ref. (F13P7) difference

1 F1 5978.86872 5978.86912 4.00e-04

1 E 6014.42282 6014.42253 -2.90e-04

1 F1 6014.43407 6014.43387 -2.00e-04

1 F2 6015.13600 6015.13658 5.80e-04

1 A2 6015.45383 6015.45497 1.14e-03

1 F2 6054.02780 6054.02775 -5.00e-05

1 F1 6054.16116 6054.16126 1.00e-04

2 F2 6000.08210 6000.08327 1.17e-03

2 E 6000.09006 6000.09121 1.15e-03

2 F2 6034.77683 6034.77645 -3.80e-04

2 F1 6034.79618 6034.79591 -2.70e-04

2 A1 6034.82061 6034.82050 -1.10e-04

2 F1 6035.88205 6035.88282 7.70e-04

2 E 6035.89135 6035.89222 8.70e-04

2 F2 6036.50223 6036.50425 2.02e-03

2 A2 6074.26929 6074.26891 -3.80e-04

2 F2 6074.45644 6074.45629 -1.50e-04

2 E 6074.64707 6074.64714 7.00e-05

2 F1 6074.84421 6074.84448 2.70e-04

2 A1 6075.03906 6075.03953 4.70e-04

3 A2 6065.45609 6065.45564 -4.50e-04
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– Continued from previous page

J irrep. P0-P6 o2 Ref. (F13P7) difference

3 F2 6065.47680 6065.47642 -3.80e-04

3 E 6065.49176 6065.49144 -3.20e-04

3 F1 6065.53439 6065.53425 -1.40e-04

3 A1 6066.97179 6066.97261 8.20e-04

3 F1 6066.99260 6066.99366 1.06e-03

3 F2 6067.00856 6067.00980 1.24e-03

3 E 6067.89629 6067.89931 3.02e-03

3 F1 6067.90049 6067.90353 3.04e-03

3 F2 6104.88789 6104.88727 -6.20e-04

3 F1 6105.23656 6105.23641 -1.50e-04

3 E 6105.51398 6105.51409 1.10e-04

3 F2 6105.78226 6105.78265 3.90e-04

3 F1 6106.15283 6106.15359 7.60e-04

4 F2 6106.48215 6106.48168 -4.70e-04

4 F1 6106.51248 6106.51207 -4.10e-04

4 E 6106.58121 6106.58093 -2.80e-04

4 F2 6106.59529 6106.59506 -2.30e-04

4 F1 6108.42637 6108.42743 1.06e-03

4 E 6108.45772 6108.45919 1.47e-03

4 F2 6108.46648 6108.46807 1.59e-03

4 A2 6108.47904 6108.48080 1.76e-03

4 F2 6109.62744 6109.63147 4.03e-03
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J irrep. P0-P6 o2 Ref. (F13P7) difference

4 F1 6109.63865 6109.64270 4.05e-03

4 A1 6109.65244 6109.65653 4.09e-03

4 E 6145.74446 6145.74344 -1.02e-03

4 F1 6145.80070 6145.79975 -9.50e-04

4 A1 6146.21253 6146.21223 -3.00e-04

4 F1 6146.57171 6146.57172 1.00e-05

4 F2 6146.83582 6146.83609 2.70e-04

4 A2 6147.18397 6147.18454 5.70e-04

4 F2 6147.62785 6147.62888 1.03e-03

4 E 6147.68377 6147.68485 1.08e-03

5 F1 6128.30444 6128.30923 4.79e-03

5 E 6128.43992 6128.44450 4.58e-03

5 F2 6128.85892 6128.86274 3.82e-03

5 F1 6129.14876 6129.15218 3.42e-03

5 E 6157.81763 6157.81697 -6.60e-04

5 F1 6157.82839 6157.82773 -6.60e-04

5 A1 6157.86355 6157.86295 -6.00e-04

5 F1 6157.95804 6157.95743 -6.10e-04

5 F2 6157.98626 6157.98567 -5.90e-04

5 A2 6158.01034 6158.00977 -5.70e-04

5 F2 6160.20811 6160.20932 1.21e-03

5 E 6160.21324 6160.21454 1.30e-03
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J irrep. P0-P6 o2 Ref. (F13P7) difference

5 F1 6160.25131 6160.25322 1.91e-03

5 F2 6160.26120 6160.26328 2.08e-03

5 A2 6161.67334 6161.67826 4.92e-03

5 F2 6161.68815 6161.69308 4.93e-03

5 E 6161.69865 6161.70358 4.93e-03

5 F1 6161.72993 6161.73489 4.96e-03

5 F2 6196.87977 6196.87808 -1.69e-03

5 F1 6196.98663 6196.98508 -1.55e-03

5 A1 6197.30356 6197.30227 -1.29e-03

5 F1 6197.96145 6197.96121 -2.40e-04

5 E 6198.23936 6198.23940 4.00e-05

5 F2 6198.52321 6198.52350 2.90e-04

5 A2 6199.21864 6199.21967 1.03e-03

5 F2 6199.51205 6199.51325 1.20e-03

5 F1 6199.61645 6199.61775 1.30e-03

6 A1 6192.98807 6192.99441 6.34e-03

6 F1 6193.31777 6193.32381 6.04e-03

6 F2 6193.67868 6193.68440 5.72e-03

6 A2 6194.29779 6194.30264 4.85e-03

6 F2 6194.87121 6194.87563 4.42e-03

6 E 6194.97122 6194.97550 4.28e-03

6 F2 6219.45496 6219.45378 -1.18e-03
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J irrep. P0-P6 o2 Ref. (F13P7) difference

6 F1 6219.47706 6219.47589 -1.17e-03

6 A1 6219.60195 6219.60055 -1.40e-03

6 F1 6219.66472 6219.66339 -1.33e-03

6 E 6219.69491 6219.69358 -1.33e-03

6 F2 6219.73567 6219.73430 -1.37e-03

6 A2 6222.29551 6222.29666 1.15e-03

6 F2 6222.30142 6222.30273 1.31e-03

6 F1 6222.30717 6222.30863 1.46e-03

6 A1 6222.34505 6222.34725 2.20e-03

6 F1 6222.34882 6222.35115 2.33e-03

6 E 6222.35039 6222.35277 2.38e-03

6 F2 6224.04062 6224.04620 5.58e-03

6 F1 6224.06324 6224.06879 5.55e-03

6 E 6224.12300 6224.12851 5.51e-03

6 F2 6224.13369 6224.13920 5.51e-03

6 A2 6258.26341 6258.26049 -2.92e-03

6 F2 6258.34048 6258.33768 -2.80e-03

6 E 6258.39352 6258.39082 -2.70e-03

6 F1 6258.91890 6258.91669 -2.21e-03

6 F2 6259.84444 6259.84382 -6.20e-04

6 E 6260.13940 6260.13903 -3.70e-04

6 F1 6260.41911 6260.41903 -8.00e-05
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J irrep. P0-P6 o2 Ref. (F13P7) difference

6 F2 6261.38435 6261.38535 1.00e-03

6 E 6261.86122 6261.86242 1.20e-03

6 F1 6261.91178 6261.91304 1.26e-03

6 A1 6261.98465 6261.98597 1.32e-03

7 F1 6269.42277 6269.43037 7.60e-03

7 E 6269.95729 6269.96471 7.42e-03

7 F2 6270.37772 6270.38514 7.42e-03

7 A2 6271.79778 6271.80479 7.01e-03

7 F2 6272.21209 6272.21816 6.07e-03

7 F1 6272.41698 6272.42263 5.65e-03

7 A2 6291.36944 6291.36725 -2.19e-03

7 F2 6291.38885 6291.38667 -2.18e-03

7 E 6291.40080 6291.39865 -2.15e-03

7 F1 6291.59991 6291.59720 -2.71e-03

7 F2 6291.70511 6291.70253 -2.58e-03

7 E 6291.76985 6291.76710 -2.75e-03

7 F1 6291.79295 6291.79019 -2.76e-03

7 F2 6294.67864 6294.67972 1.08e-03

7 E 6294.68453 6294.68584 1.31e-03

7 F1 6294.68544 6294.68688 1.44e-03

7 A1 6294.68670 6294.68833 1.63e-03

7 F2 6294.72068 6294.72317 2.49e-03
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J irrep. P0-P6 o2 Ref. (F13P7) difference

7 F1 6294.72121 6294.72363 2.42e-03

7 E 6296.69332 6296.69913 5.81e-03

7 F1 6296.70175 6296.70753 5.78e-03

7 A1 6296.72655 6296.73226 5.71e-03

7 F1 6296.82124 6296.82683 5.59e-03

7 F2 6296.84500 6296.85054 5.54e-03

7 A2 6296.86613 6296.87164 5.51e-03

7 F2 6330.01416 6330.00945 -4.71e-03

7 F1 6330.08421 6330.07961 -4.60e-03

7 E 6330.79575 6330.79197 -3.78e-03

7 F2 6330.89423 6330.89058 -3.65e-03

7 A2 6331.94810 6331.94650 -1.60e-03

7 F2 6332.24950 6332.24818 -1.32e-03

7 F1 6332.51103 6332.50998 -1.05e-03

7 A1 6332.79522 6332.79444 -7.80e-04

7 F1 6333.88574 6333.88629 5.50e-04

7 E 6333.97400 6333.97464 6.40e-04

7 F2 6334.59698 6334.59783 8.50e-04

7 F1 6334.66138 6334.66231 9.30e-04

RMS 0.003
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