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Abstract

We propose an automated deduction method which allows us to produce proofs close to the

human intuition and practice. This method is based on tableaux, which generate more natural

proofs than similar methods relying on clausal forms, and uses the principles of superdeduction,

among which the theory is used to enrich the deduction system with new deduction rules. We

present two implementations of this method, which consist of extensions of the Zenon automated

theorem prover. The first implementation is a version dedicated to the set theory of the B formal

method, while the second implementation is a generic version able to deal with any first order

theory. We also provide several examples of problems, which can be handled by these tools and

which come from different theories, such as the B set theory or theories of the TPTP library.

1 Introduction

These days, theorem proving appears as an appropriate support for education in subjects such as

mathematics and more generally logic, where proofs play a significant role. This can be explained by

the fact that some of the existing theorem prover based systems have a long history of development,

and constantly provide technical innovations not only in terms of design, but also in terms of theory.

Among these theorem prover based systems, interactive theorem provers, such as Coq [20] for exam-

ple, appear to be quite appropriate tools, since they offer special environments dedicated to proving.

In particular, these special environments offer syntax and type checking, as well as a bounded set of

tactics, i.e. commands building proofs when applied to proof goals. These environments also provide

some assistance in the way of building proofs, since tactics are able to automatically and incremen-

tally produce proofs when applied to goals. This assistance does not only concern the application of

tactics, but may also be related to other aspects regarding modeling, such as the automated generation

of induction schemes from inductive types for instance. However, these mechanized frameworks do

not offer any guidance in the way of finding the right proof of a theorem, and if the user does not have

the intuition of this proof (which may be acquired by thinking of the proof on paper), it is likely that

he/she would experience some difficulties in building the corresponding proof, even with an interac-

tive proof loop (even worse, he/she would probably get lost by unnecessarily applying some tactics

in an endless way, like induction tactics for example). To deal with this problem of finding proofs,
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we may consider the use of automated theorem provers as long as they at least provide proof traces

which are comprehensible enough to recover the intuition of the corresponding proofs.

Automated theorem proving is a quite wide and still very active domain of research. In automated

theorem proving, we generally distinguish the semantic methods from the syntactic methods. The se-

mantic methods, such as the Davis-Putnam algorithm [9] or the Binary Decision Diagrams [5] (BDDs)

for instance, have the advantage to be quite intuitive, but are limited to propositional calculus. To deal

with first order logic, we preferably rely on syntactic methods, which may be split into two large

families of methods. The first family of methods is the saturation-based theorem proving, which was

actually introduced by Robinson with the resolution calculus [18]. Resolution is a complete method

working by refutation: a contradiction (i.e. the empty clause) has to be deduced from an unsatisfiable

set of clauses. The search for a contradiction proceeds by saturating the given set of clauses, that is,

systematically (and exhaustively) applying all applicable inference rules. The principle of resolution

is general enough to allow many calculi to be seen as resolution-based calculi (binary resolution,

positive resolution, semantic resolution, hyper-resolution, the inverse method, etc). However, a proof

produced by resolution is not appropriate to get the intuition of the proof, since resolution actually

works on a formula in clausal form (a preliminary step therefore consists in clausifying the initial

formula), and there is little chance to understand the proof of the initial formula from the resolution

proof (unless the initial formula is already in clausal form). The second family of syntactic methods

tend to palliate this difficulty and are called tableau-based methods. Tableaux are actually much older

than resolution-based methods and were introduced by pioneers Hintikka [12] and Beth [2] from the

cut-free version of Gentzen’s sequent calculus [11]. The tableau method still works by refutation but

over the initial formula contrary to resolution, and by case distinction. More precisely, it allows us

to systematically generate subcases until elementary contradictions are reached, building a kind of

tree from which it is possible to almost directly produce a proof. Compared to resolution, tableaux

therefore offer the possibility to build comprehensible proofs which are directly related to the corre-

sponding initial formulas.

If tableaux allow us to produce more comprehensible proofs, some recent deduction techniques

have been developed and tend to improve the presentation of proofs in the usual deductive systems,

in particular when reasoning modulo a theory. Among these new deduction techniques, there are,

for example, deduction modulo [10] and superdeduction [4], which respectively focus on the com-

putational and deductive parts of a theory, and which can be considered as steps toward high-level

deductive languages. If deduction modulo and superdeduction are equivalent when reasoning mod-

ulo a theory, superdeduction appears to be more appropriate to produce proofs close to the human

intuition as it allows us to naturally encode custom deduction schemes. In addition, the principle

of superdeduction relies on the generation of specific deduction rules (called superdeduction rules)

from the axioms of the theory, and in practice, it is quite easier to extend existing tools with ad hoc

deduction rules than with a congruence over the formulas (coming from the computational rules of

deduction modulo).

In this paper, we propose an automated deduction method based both on tableaux and superde-

duction. As said previously, the main motivation is to build a system able to provide a significant

help in matter of education by automatically producing proofs comprehensible enough to recover the

intuition of these proofs. To show that such a system is actually effective in practice, we also propose

to implement this system by realizing an extension of an existing automated theorem prover called

Zenon [3], and which relies on classical first order logic with equality and applies the tableau method
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as proof search. In this context, the choice of Zenon is strongly influenced by its ability of producing

comprehensible proof traces (with several levels of details). In addition, Zenon offers an extension

mechanism, which allows us to extend its core of deductive rules to match specific requirements, and

which is therefore quite appropriate to integrate superdeduction. Two extensions of Zenon with su-

perdeduction have been implemented and will be considered in this paper. The first implementation

is dedicated to the set theory of the B method [1] (or B for short), which is a formal method and

allows engineers to develop software with high guarantees of confidence. This implementation is

used by Siemens IC-MOL to automatically verify B proof rules coming from a database which is

built adding rules from their several projects and applications, such as driverless metro systems for

instance (see [13, 14] for more details). The second implementation is generic and works over any

first order theory, which allows us to use it to prove problems from the TPTP library [19] (which is a

library of test problems for automated theorem proving systems).

The paper is organized as follows: in Section 2, we first introduce the principles of superdeduction;

we then present, in Section 3, the computation of superdeduction rules from axioms in the framework

of the tableau method used by Zenon; finally, in Sections 4 and 5, we respectively describe the

implementation of our extensions of Zenon for the B set theory and for any first order theory, and

also provide some examples respectively coming from the database of B proof rules maintained by

Siemens IC-MOL and the TPTP library.

2 Principles of Superdeduction

In this section, we present the principles of superdeduction, which is a variant of deduction modulo,

and which allows us to describe proofs in a more compact format in particular. In addition, we show

that proofs in superdeduction are not only shorter, but also follow a more natural human reasoning

scheme, and that custom deduction schemes, such as structural induction over Peano natural numbers

for example, can be naturally encoded using superdeduction.

2.1 Deduction Modulo and Superdeduction

Deduction modulo [10] focuses on the computational part of a theory, where axioms are transformed

into rewrite rules, which induces a congruence over propositions, and where reasoning is performed

modulo this congruence. Superdeduction [4] is a variant of deduction modulo, where axioms are used

to enrich the deduction system with new deduction rules, which are called superdeduction rules. For

instance, considering the inclusion in set theory ∀a, b (a ⊆ b ⇔ ∀x (x ∈ a ⇒ x ∈ b)), the proof of

A ⊆ A in sequent calculus has the following form:

Ax
. . . , x ∈ A ⊢ A ⊆ A, x ∈ A

⇒R
. . . ⊢ A ⊆ A, x ∈ A ⇒ x ∈ A

∀R
. . . ⊢ A ⊆ A, ∀x (x ∈ A ⇒ x ∈ A)

Ax
. . . , A ⊆ A ⊢ A ⊆ A

⇒L
. . . , ∀x (x ∈ A ⇒ x ∈ A) ⇒ A ⊆ A ⊢ A ⊆ A

∧L
A ⊆ A ⇔ ∀x (x ∈ A ⇒ x ∈ A) ⊢ A ⊆ A

∀L× 2
∀a, b (a ⊆ b ⇔ ∀x (x ∈ a ⇒ x ∈ b)) ⊢ A ⊆ A

3
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In deduction modulo, the axiom of inclusion can be seen as a computation rule and therefore

replaced by the rewrite rule a ⊆ b → ∀x (x ∈ a ⇒ x ∈ b). The previous proof is then transformed

as follows:

Ax
x ∈ A ⊢ x ∈ A

⇒R
⊢ x ∈ A ⇒ x ∈ A ∀R, A ⊆ A → ∀x (x ∈ A ⇒ x ∈ A)

⊢ A ⊆ A

It can be noticed that the proof is much simpler than the one completed using sequent calculus. In

addition to simplicity, deduction modulo also allows us for unbounded proof size speed-up [6].

Superdeduction proposes to go further than deduction modulo precisely when the considered ax-

iom defines a predicate P with an equivalence ∀x̄ (P ⇔ ϕ). While deduction modulo replaces the

axiom by a rewrite rule, superdeduction adds to this transformation the decomposition of the connec-

tives occurring in this definition. This corresponds to an extension of Prawitz’s folding and unfolding

rules [17] (called introduction and elimination rules by Prawitz), where the connectives of the defi-

nition are introduced and eliminated. The proposed (right) superdeduction rule is then the following

(there is also a corresponding left rule):

Γ, x ∈ a ⊢ x ∈ b,∆
IncR, x 6∈ Γ,∆

Γ ⊢ a ⊆ b,∆

Hence, proving A ⊆ A with this new rule can be performed as follows:

Ax
x ∈ A ⊢ x ∈ A

IncR
⊢ A ⊆ A

This new proof is not only simpler and shorter than in deduction modulo, but also follows a natural

human reasoning scheme usually used in mathematics as shown more precisely in the next subsection.

2.2 Human Reasoning with Superdeduction

Considering the previous example of inclusion in set theory, we can notice that the superdeduction

rule is more natural and intuitive than a simple folding rule à la Prawitz. Given two sets A and B,

if we aim to prove A ⊆ B, it seems a little unusual to propose to prove ∀x (x ∈ A ⇒ x ∈ B),
instead we propose to prove x ∈ B given x s.t. x ∈ A, which amounts to implicitly introducing

the connectives of the unfolded proposition. This implicit introduction of connectives is precisely

proposed by the previous superdeduction rule, which can be read as “if any element of a is an element

of b, then a ⊆ b”.

Similarly, superdeduction can also be used to naturally encode custom deduction schemes. For ex-

ample, let us consider the structural induction scheme over Peano natural numbers (i.e. non-negative

integers). This scheme can be defined as follows (i.e. the natural numbers are seen as the set of terms

verifying the inductive predicate):

∀n (n ∈ N ⇔ ∀P (0 ∈ P ⇒ ∀m (m ∈ P ⇒ S(m) ∈ P ) ⇒ n ∈ P ))

In sequent calculus, this scheme can be encoded by the two following (right) superdeduction rules

(there are also two corresponding left rules):
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Γ, 0 ∈ P,H(P ) ⊢ n ∈ P,∆
IndR, P 6∈ Γ,∆

Γ ⊢ n ∈ N,∆
Γ, m ∈ P ⊢ S(m) ∈ P,∆

HeredR, m 6∈ Γ,∆
Γ ⊢ H(P ),∆

Let us notice that the induction scheme actually requires two superdeduction rules, whose one

of the rules (the rule HeredR) focuses on the heredity part of the scheme in particular. This focus

is motivated by the need of avoiding permutability problems (between Skolemization and instanti-

ation), which may occur when computing superdeduction rules. These permutability problems are

quite common in automated proof search, and appear here since superdeduction systems are in fact

embedding a part of compiled automated deduction. In [4] and in order to deal with these permutabil-

ity problems, the authors use a method inspired by focusing techniques in the framework of sequent

calculus. It is worth noting that these permutability problems are managed in different ways by au-

tomated deduction methods, and in particular, we will therefore not have to use focusing techniques

when integrating superdeduction to the tableau method in Section 3.

3 Tableaux with Superdeduction

In this section, we present the tableau method used by the Zenon automated theorem prover, which

deals with classical first order logic with equality and a specific support for equivalence relations.

Once the rules of this method have been described, we show how it is possible to compute superde-

duction rules from axiomatic theories, and how these new rules extend the kernel of rules of Zenon.

3.1 The Tableau Method

The proof search rules of Zenon are described in detail in [3] and summarized in Figure 1 (for the

sake of simplification, the unfolding and extension rules are omitted), where the “|” symbol is used

to separate the formulas of two distinct nodes to be created, ǫ is Hilbert’s operator (ǫ(x).P (x) means

some x that satisfies P (x), and is considered as a term), capital letters are used for metavariables,

and Rr, Rs, Rt, and Rts are respectively reflexive, symmetric, transitive, and transitive-symmetric

relations (the corresponding rules also apply to the equality in particular). As hinted by the use of

Hilbert’s operator, the δ-rules are handled by means of ǫ-terms rather than using Skolemization. What

we call here metavariables are often named free variables in the tableau-related literature; they are

not used as variables as they are never substituted. The proof search rules are applied with the normal

tableau method: starting from the negation of the goal, apply the rules in a top-down fashion to build

a tree. When all branches are closed (i.e. end with an application of a closure rule), the tree is closed,

and this closed tree is a proof of the goal. This algorithm is applied in strict depth-first order: we close

the current branch before starting work on another branch. Moreover, we work in a non-destructive

way: working on one branch will never change the formulas of another branch.

3.2 From Axioms to Superdeduction Rules

As mentioned in Section 2, reasoning modulo a theory in a tableau method using superdeduction

requires to generate new deduction rules from some axioms of the theory. The axioms which can be
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Closure and Cut Rules

⊥ ⊙⊥⊙
¬⊤ ⊙¬⊤⊙

cut
P | ¬P

¬Rr(t, t)
⊙r⊙

P ¬P ⊙
⊙

Rs(a, b) ¬Rs(b, a)
⊙s⊙

Analytic Rules

¬¬P α¬¬
P

P ⇔ Q
β⇔

¬P,¬Q | P,Q

¬(P ⇔ Q)
β¬ ⇔

¬P,Q | P,¬Q

P ∧Q
α∧

P,Q

¬(P ∨Q)
α¬∨

¬P,¬Q

¬(P ⇒ Q)
α¬⇒

P,¬Q

P ∨Q
β∨

P | Q

¬(P ∧Q)
β¬∧

¬P | ¬Q

P ⇒ Q
β⇒

¬P | Q

∃x P (x)
δ∃

P (ǫ(x).P (x))

¬∀x P (x)
δ¬∀

¬P (ǫ(x).¬P (x))

γ-Rules

∀x P (x)
γ∀M

P (X)

¬∃x P (x)
γ¬∃M

¬P (X)

∀x P (x)
γ∀inst

P (t)

¬∃x P (x)
γ¬∃inst

¬P (t)

Relational Rules

P (t1, . . . , tn) ¬P (s1, . . . , sn)
pred

t1 6= s1 | . . . | tn 6= sn

f(t1, . . . , tn) 6= f(s1, . . . , sn)
fun

t1 6= s1 | . . . | tn 6= sn

Rs(s, t) ¬Rs(u, v) sym
t 6= u | s 6= v

¬Rr(s, t) ¬refl
s 6= t

Rt(s, t) ¬Rt(u, v)
trans

u 6= s,¬Rt(u, s) | t 6= v,¬Rt(t, v)

Rts(s, t) ¬Rts(u, v)
transsym

v 6= s,¬Rts(v, s) | t 6= u,¬Rts(t, u)

s = t ¬Rt(u, v)
transeq

u 6= s,¬Rt(u, s) | ¬Rt(u, s),¬Rt(t, v) | t 6= v,¬Rt(t, v)

s = t ¬Rts(u, v)
transeqsym

v 6= s,¬Rts(v, s) | ¬Rts(v, s),¬Rts(t, u) | t 6= u,¬Rts(t, u)

Figure 1: Proof Search Rules of Zenon
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considered for superdeduction are of the form ∀x̄ (P ⇔ ϕ), where P is atomic. This specific form

of axiom allows us to introduce an orientation of the axiom from P to ϕ, and we introduce the notion

of proposition rewrite rule (this notion appears in [4], from which we borrow the following definition

and notation):

Definition 1 (Proposition Rewrite Rule) The notation R : P → ϕ denotes the axiom ∀x̄ (P ⇔ ϕ),
where R is the name of the rule, P an atomic proposition, ϕ a proposition, and x̄ the free variables

of P and ϕ.

It should be noted that P may contain first order terms and therefore that such an axiom is not just

a definition. For instance, x ∈ { y | y ∈ a ∧ y ∈ b } → x ∈ a ∧ x ∈ b (where the comprehension set

is a first order term) is a proposition rewrite rule.

Let us now describe how the computation of superdeduction rules for Zenon is performed from a

given proposition rewrite rule.

Definition 2 (Computation of Superdeduction Rules) Let S be a set of rules composed by the sub-

set of the proof search rules of Zenon formed of the closure rules, the analytic rules, as well as the

γ∀M and γ¬∃M rules. Given a proposition rewrite rule R : P → ϕ, two superdeduction rules (a

positive one R and a negative one ¬R) are generated in the following way:

1. To get the positive rule R, initialize the procedure with the formula ϕ. Next, apply the rules of

S until there is no open leaf anymore on which they can be applied. Then, collect the premises

and the conclusion, and replace ϕ by P to obtain the positive rule R.

2. To get the negative rule ¬R, initialize the procedure with the formula ¬ϕ. Next, apply the

rules of S until there is no open leaf anymore on which they can be applied. Then, collect the

premises and the conclusion, and replace ¬ϕ by ¬P to obtain the negative rule ¬R.

If the rule R (resp. ¬R) involves metavariables, an instantiation rule Rinst (resp. ¬Rinst) is added,

where one or several metavariables can be instantiated.

Integrating these new deduction rules to the proof search rules of Zenon is sound as they are

generated from a subset of rules of Zenon, while cut-free completeness cannot be preserved in general

(i.e. for any theory). In practice, soundness can be ensured by the ability of Zenon of producing

proofs for some proof assistants, such as Coq and Isabelle, which can be used as proof checkers.

Let us illustrate the computation of superdeduction rules from a proposition rewrite rule with the

example of the set inclusion.

Example 3 (Set Inclusion) From the definition of the set inclusion, we introduce the proposition

rewrite rule Inc : a ⊆ b → ∀x (x ∈ a ⇒ x ∈ b), and the corresponding superdeduction rules Inc
and ¬Inc are generated as follows:

∀x (x ∈ a ⇒ x ∈ b)
γ∀M

X ∈ a ⇒ X ∈ b
β⇒

X 6∈ a | X ∈ b

¬∀x (x ∈ a ⇒ x ∈ b)
δ¬∀

¬(ǫx ∈ a ⇒ ǫx ∈ b)
α¬⇒

ǫx ∈ a, ǫx 6∈ b

where ǫx = ǫ(x).¬(x ∈ a ⇒ x ∈ b).
The resulting superdeduction rules are then the following:

a ⊆ b
Inc

X 6∈ a | X ∈ b

a ⊆ b
Incinst

t 6∈ a | t ∈ b

a 6⊆ b
¬Inc

ǫx ∈ a, ǫx 6∈ b
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4 An Implementation for the B Set Theory

In this section, we describe our first extension of Zenon with superdeduction in the case of the B set

theory, which is the underlying theory of the B formal method, and where superdeduction rules are

hard-coded from the initial axiomatic theory. We also propose an example of B proof rule coming

from the database maintained by Siemens IC-MOL, and that can be verified by this tool producing a

quite comprehensible proof.

4.1 Superdeduction Rules for the B Set Theory

This extension of Zenon for the B set theory is actually motivated by an experiment which is managed

by Siemens IC-MOL regarding the verification of B proof rules [13, 14]. The B method [1], or B for

short, allows engineers to develop software with high guarantees of confidence; more precisely it al-

lows them to build correct by design software. B is a formal method based on set theory and theorem

proving, and which relies on a refinement-based development process. The Atelier B environment [7]

is a platform that supports B and offers, among other tools, both automated and interactive provers.

In practice, to ensure the global correctness of formalized applications, the user must discharge proof

obligations. These proof obligations may be proved automatically, but otherwise, they have to be han-

dled manually either by using the interactive prover, or by adding new proof rules that the automated

prover can exploit. These new proof rules can be seen as axioms and must be verified by other means,

otherwise the global correctness may be endangered.

In [13], we develop an approach based on the use of Zenon to verify B proof rules. The method

used in this approach consists in first normalizing the formulas to be proved, in order to obtain first

order formulas containing only the membership set operator, and then calling Zenon on these new

formulas. This experiment gives satisfactory results in the sense that it can prove a significant part

of the rules coming from the database maintained by Siemens IC-MOL (we can deal with about

1,400 rules, 1,100 of which can be proved automatically, over a total of 5,300 rules). However, this

approach is not complete (after the normalization, Zenon proves the formulas without any axiom

of set theory, while some instantiations may require to be normalized), and suffers from efficiency

issues (due to the preliminary normalization). To deal with these problems, the idea developed in [14]

is to integrate the axioms and constructs of the B set theory into the Zenon proof search method

by means of superdeduction rules. This integration is concretely achieved thanks to the extension

mechanism offered by Zenon, which allows us to extend its core of deductive rules to match specific

requirements. This new tool has emphasized significant speed-ups both in terms of proof time and

proof size compared to the previous approach (see [14] for more details).

The B method is based on a typed set theory. There are two rule systems: one for demonstrating

that a formula is well-typed, and one for demonstrating that a formula is a logical consequence of a

set of axioms. The main aim of the type system is to avoid inconsistent formulas, such as Russell’s

paradox for example. The B proof system is based on a sequent calculus with equality. Six axiom

schemes define the basic operators and the extensionality which, in turn, defines the equality of two

sets. In addition, the other operators (∪, ∩, etc.) are defined using the previous basic ones. To generate

the superdeduction rules corresponding to the axioms and constructs, we use the algorithm described

in Section 2, and we must therefore identify the several proposition rewrite rules. Regarding the

axioms, they are all of the form Pi ⇔ Qi, and the associated proposition rewrite rules are therefore

8
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Ri : Pi → Qi, where each axiom is oriented from left to right. For instance, let us consider the

equality of two sets, which is defined by the following axiom:

a = b ⇔ ∀x (x ∈ a ⇔ x ∈ b)

From this axiom, we can compute two superdeduction rules as follows (a third rule dealing with

instantiation is also implicitly computed since one of the generated rules involves metavariables):

a = b =
X 6∈ a,X 6∈ b | X ∈ a,X ∈ b

a 6= b
6=

ǫx 6∈ a, ǫx ∈ b | ǫx ∈ a, ǫx 6∈ b

with ǫx = ǫ(x).¬(x ∈ a ⇔ x ∈ b)

Concerning the constructs, they are expressed by definitions of the form Ei , Fi, where Ei and

Fi are expressions, and the corresponding proposition rewrite rules are Ri : x ∈ Ei → x ∈ Fi.

Let us illustrate the computation of superdeduction rules for constructs with the example of domain

restriction, which is defined in the following way:

a⊳ b , id(a); b

where:

a; b , { (x, z) | ∃y ((x, y) ∈ a ∧ (y, z) ∈ b }
id(a) , { (x, y) | (x, y) ∈ a× a ∧ x = y }

The corresponding superdeduction rules are computed as follows:

(x, y) ∈ a⊳ b
⊳

(x, y) ∈ b, x ∈ a

(x, y) 6∈ a⊳ b
¬⊳

(x, y) 6∈ b | x 6∈ a

For further details regarding the computation of superdeduction rules for the B set theory, as well

as the corresponding implementation using Zenon, the reader can refer to [14].

4.2 Verification of a B Proof Rule

To assess our extension of Zenon for the B set theory using superdeduction and to show that it

can produce proofs comprehensible enough to recover the intuition of these proofs, we propose to

consider the example of a B proof rule coming from the database maintained by Siemens IC-MOL.

The rule being considered is the rule named “SimplifyRelDorXY.27” (this rule is actually part of the

Atelier B set of rules), and whose proof is small enough to be understood easily and described in the

space restrictions for this paper. The definition of this rule is the following:

∅⊳ a = ∅

When applied to this rule, our extension of Zenon produces the proof of Figure 2 (Zenon pro-

poses several proof formats, and the proof presented in this figure uses the format with the highest

level of abstraction). The statement of the rule, i.e. the command starting with “fof”, is provided

using the TPTP syntax [19], and the proof (if found) is displayed after this statement. The proof

9
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fof(simplifyRelDorXY_27, conjecture,

b_eq (b_drest (b_empty, a), b_empty)).

(* PROOF-FOUND *)

1. H0: (-. (b_eq (b_drest (b_empty) (a)) (b_empty)))

### [Extension/b/b_not_eq H0 H1 H2 H3 H4 H5 H6] --> 2 3

2. H2: (b_in T_7 (b_empty))

### [Extension/b/b_in_empty H2 H8 H9 H7] --> 4

4. H9: (-. (b_in T_7 (b_BIG)))

H8: (b_in T_7 (b_BIG))

### [Axiom H8 H9]

3. H3: (b_in T_7 (b_drest (b_empty) (a)))

### [Extension/b/b_in_drest H3 H10 H11 H12 H7 H6 H13] --> 5

5. H12: (b_in T_14 (b_empty))

### [Extension/b/b_in_empty H12 H15 H16 H14] --> 6

6. H16: (-. (b_in T_14 (b_BIG)))

H15: (b_in T_14 (b_BIG))

### [Axiom H15 H16]

Figure 2: Proof of Rule “SimplifyRelDorXY.27” of Atelier B

consists of several numbered steps, where each of them is a set of formulas together with a proof rule

which has been applied to the considered proof step. Formulas of a proof step are signed formulas,

and formulas starting with “-.” are negative formulas. A proof rule appears at the end of a proof step

and after the string “###”, and also provides, after the string “–>”, the other proof steps to which it is

connected (these other proof steps represent the result of the application of this proof rule to the set

of formulas of the considered proof step). For example, in this proof, Step 1 is connected to Steps 2

and 3. This connection between proof steps provides the proof with a tree-like structure, where proof

steps with axiomatic rules, i.e. starting with “Axiom”, are leaves, while the other proof steps are

nodes. Among these other proof steps, there are in particular superdeduction rules, which start with

“Extension”. In this proof, the B constructs are prefixed by “b_”, and “b_empty”, “b_BIG”, “b_in”,

“b_eq”, and “b_drest” respectively represent the empty set ∅, the set BIG (which is an infinite set,

mostly only used to build natural numbers in the foundational theory), the membership operator “∈”,

the (extensional) equality “=”, and the domain restriction construct “⊳”.

As can be observed, this proof expressed in this format can be easily understood not only thanks

to the tableau method which follows a natural way to find the proof in this case, but also thanks

to superdeduction rules which allow us to shorten the proof removing formal details useless for the

comprehension of the proof. To justify this claim, let us describe the formal proof sketch which can

be extracted from this formal proof, and which is appropriate to provide the intuition of the proof.

This formal proof sketch is built as follows:

1. The proof starts from the sequent “⊢ ∅⊳a = ∅”, which corresponds to Hypothesis H0 in Step 1

in the formal proof (where the initial formula has been negated since the tableau method works

by refutation). The proof rule applied to this sequent is a superdeduction rule which deals with

the equality, and which corresponds to the superdeduction rule named “b_not_eq” in the formal
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proof, i.e. the negation of the equality still because the initial formula has been negated. In

sequent calculus, this superdeduction rule is the following:

Γ, x ∈ a ⊢ x ∈ b,∆ Γ, x ∈ b ⊢ x ∈ a,∆
=R, x 6∈ Γ,∆

Γ ⊢ a = b,∆

2. Applying the superdeduction rule for equality, we obtain two cases to prove (as shown by

the rule above). The formal proof focuses on the right-hand side of the rule at first, and we

therefore have to prove the sequent “x ∈ ∅ ⊢ x ∈ ∅⊳ a”, which corresponds to Step 2. As can

be seen, in the set of formulas of each proof step, the formal proof only displays the formulas

which are useful to complete the proof. For instance, in Step 2, the formula “x ∈ ∅ ⊳ a” is

not displayed (even though it is present in the set of formulas), because it is not used in the

following of the proof. The formal proof therefore focuses on the hypothesis “x ∈ ∅” and

applies the superdeduction rule named “b_in_empty” and corresponding to the empty set. In B,

the empty set is defined as follows: ∅ , BIG − BIG. In sequent calculus, the corresponding

superdeduction rule is then computed as follows:

Γ, x ∈ BIG, x 6∈ BIG ⊢ ∆
∅L

Γ, x ∈ ∅ ⊢ ∆

Once this rule has been applied, we obtain the sequent “x ∈ BIG, x 6∈ BIG ⊢ x ∈ ∅ ⊳ a”,

which is proved by reductio ad absurdum and corresponds to Step 4 in the formal proof.

3. The second case following the application of the superdeduction rule for equality corresponds

to the sequent “x ∈ ∅ ⊳ a ⊢ x ∈ ∅”, which appears to be Step 3 in the formal proof. In this

step, the formal proof focuses on the hypothesis “x ∈ ∅ ⊳ a”, and applies the superdeduction

rule named “b_in_drest” and corresponding to the domain restriction. This superdeduction rule

is the following in sequent calculus:

Γ, x = (y, z), (y, z) ∈ b, y ∈ a ⊢ ∆
⊳L, y, z 6∈ Γ,∆

Γ, x ∈ a⊳ b ⊢ ∆

Once this rule has been applied, we obtain the sequent “x = (y, z), (y, z) ∈ a, y ∈ ∅ ⊢ x ∈ ∅”,

where the formal proof can again focus on the hypothesis y ∈ ∅ in Step 5 and close the proof

as previously in Step 6.

From this formal proof sketch, it is now quite easy to produce an informal and short proof (as it

would have been done in a textbook) as follows:

• To show ∅⊳ a = ∅, we have to consider two cases: given x ∈ ∅, we must show x ∈ ∅⊳ a, and

given x ∈ ∅⊳ a, we must show x ∈ ∅;

1. If x ∈ ∅ then x ∈ BIG and x 6∈ BIG, which is therefore absurd;

2. If x ∈ ∅⊳ a then x = (y, z), (y, z) ∈ a, and y ∈ ∅, which is absurd as previously.
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5 A Generic Implementation for First Order Theories

In this section, we present our second extension of Zenon with superdeduction, which is able to deal

with any first order theory. In this extension, the theory is analyzed to determine the axioms which can

be turned into superdeduction rules, and these superdeduction rules are automatically computed on

the fly to enrich the deductive kernel of Zenon. We also describe the proofs of two examples coming

from the TPTP library and produced by this tool, and which are quite comprehensible as well.

5.1 From Theories to Superdeduction Systems

This extension of Zenon is actually a generalization of the previous one dedicated to the B set the-

ory, where superdeduction rules are henceforth automatically computed on the fly. In the previous

extension, superdeduction rules are hard-coded since the B set theory is a higher order theory due to

one of the axioms of the theory (the comprehension scheme), and we have to deal with this axiom

specifically in the implementation of Zenon. Even though some techniques exist to handle higher

order theories as first order theories (like the theory of classes, for example), a hard-coding of these

theories may be preferred as these techniques unfortunately tend to increase the entropy of the proof

search. In addition, in the previous extension, some of the superdeduction rules must be manually

generated as they must be shrewdly tuned (ordering the several branches of the rules, for instance)

to make the tool efficient. The new extension of Zenon dealing with any first order theory has been

developed as a tool called Super Zenon [15], where each theory is analyzed to determine the axioms

which are candidates to be turned into superdeduction rules. As said in Section 3, axioms of the form

∀x̄ (P ⇔ ϕ), where P is atomic, can be transformed, but we can actually deal with more axioms.

Here is the exhaustive list of axioms that can be handled, as well as the corresponding superdeduction

rules that can be generated (in the following, P and P ′ are atomic, and ϕ is an arbitrary formula):

• Axiom of the form ∀x̄ (P ⇔ ϕ): we consider the proposition rewrite rule R : P → ϕ, and the

two superdeduction rules R and ¬R are generated;

• Axiom of the form ∀x̄ (P ⇒ P ′): we consider the proposition rewrite rules R : P → P ′ and

R′ : ¬P ′ → ¬P , and only the superdeduction rules R and R′ are generated;

• Axiom of the form ∀x̄ (P ⇒ ϕ): we consider the proposition rewrite rule R : P → ϕ, and

only the superdeduction rule R is generated;

• Axiom of the form ∀x̄ (ϕ ⇒ P ): we consider the proposition rewrite rule R : ¬P → ¬ϕ, and

only the superdeduction rule R is generated;

• Axiom of the form ∀x̄ P : we consider the proposition rewrite rule R : ¬P → ⊥, and only the

superdeduction rule R is generated.

The axioms of the theory, which are not of these forms, are left as regular axioms. An axiom,

which is of one of these forms, is also left as a regular axiom if the conclusion of one of the generated

superdeduction rules (i.e. the top formula of one of these rules) unifies with the conclusion of an

already computed superdeduction rule (in this case, the theory is actually non-deterministic and we

try to minimize this source of non-determinism by dividing these incriminated axioms among the sets
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of superdeduction rules and regular axioms). An axiom, which is of one of these forms, is still left as

a regular axiom if P is an equality (as we do not want to interfere with the specific management of

equality by the kernel of Zenon). Finally, it should be noted that for axioms of the form ∀x̄ (P ⇒ P ′),
we also consider the proposition rewrite rule which corresponds to the converse of the initial formula;

this actually allows us to keep cut-free completeness in this particular case.

5.2 Proof of a Logic Puzzle

As the Super Zenon tool is able to deal with any first order theory, it can be used in many contexts,

and in particular, it can be applied to all the first order problems of the TPTP library [19] (about

6,600 problems), which is a library of test problems for automated theorem proving systems. To

assess the effectiveness of this tool and to show that it can also produce comprehensible proofs, let

us consider an example of the puzzle category of TPTP and called “Crime in Beautiful Washington”

(Puzzle #132), which is a problem in the same vein as the “Who Killed Aunt Agatha?” well-known

puzzle. This kind of problems is quite appropriate for educational purposes when teaching artificial

intelligence and logic for example. The problem being considered consists of the following axioms:

∀x (capital(x) ⇒ city(x)) (capital_city_type)
capital(washington) (washington_type)
country(usa) (usa_type)
∀x (country(x) ⇒ capital(capital_city(x))) (country_capital_type)
∀x (city(x) ⇒ has_crime(x)) (crime_axiom)
capital_city(usa) = washington (usa_capital_axiom)
∀x (country(x) ⇒ beautiful(capital_city(x))) (beautiful_capital_axiom)

As can be observed, all the axioms can be turned into superdeduction rules, except the axiom

(usa_capital_axiom) since it is an equality, and the axiom (beautiful_capital_axiom) since one

of the generated superdeduction rules for this axiom overlap with one of the superdeduction rules

computed previously for the axiom (country_capital_type).
The conjecture to be proved is expressed as follows:

beautiful(washington) ∧ has_crime(washington)

When applied to this specification, Super Zenon produces the proof of Figure 3 for the previous

conjecture (we still use the proof format with the highest level of abstraction). As in the example of

verification of a B proof rule in Section 4, it is possible to build quite directly the following informal

proof sketch from this formal proof:

• To show beautiful(washington) ∧ has_crime(washington), we have to consider the two cases

beautiful(washington) and has_crime(washington);

1. To show beautiful(washington), we apply the axiom (beautiful_capital_axiom) instan-

tiated with usa, and we have to consider two cases: we must show country(usa), and

given beautiful(capital_city(usa), we must show beautiful(washington);

(a) To show country(usa), we use the axiom (usa_type);
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fof(washington_conjecture, conjecture,

(beautiful (washington) & has_crime (washington))).

(* PROOF-FOUND *)

1. H0: (-. ((beautiful (washington)) /\ (has_crime (washington))))

H1: ((capital_city (usa)) = (washington))

H2: (All X, ((country X) => (beautiful (capital_city X))))

### [NotAnd H0] --> 2 3

2. H3: (-. (beautiful (washington)))

### [All H2] --> 4

4. H4: ((country (usa)) => (beautiful (capital_city (usa))))

### [Imply H4] --> 5 6

5. H5: (-. (country (usa)))

### [Extension/szen/usa_type H5]

6. H6: (beautiful (capital_city (usa)))

### [P-NotP H6 H3] --> 7

7. H7: ((capital_city (usa)) != (washington))

### [Axiom H1 H7]

3. H8: (-. (has_crime (washington)))

### [Extension/szen/crime_axiom H8 H9 H10] --> 8

8. H9: (-. (city (washington)))

### [Extension/szen/capital_city_type H9 H11 H10] --> 9

9. H11: (-. (capital (washington)))

### [Extension/szen/washington_type H11]

Figure 3: Proof of Puzzle #132 of TPTP

(b) Given beautiful(capital_city(usa), to show beautiful(washington), it is enough to

show capital_city(usa) = washington using the axiom (usa_capital_axiom).

2. To show has_crime(washington), we apply the axiom (crime_axiom), and we must show

city(washington);

– To show city(washington), we apply the axiom (capital_city_type), and we must

show capital(washington);

– To show capital(washington), we use the axiom (washington_type).

5.3 Proof of a Geometry Problem

As a second example of proof, we consider a problem coming from the geometry category of the

TPTP library. This problem (Problem #170+3) states that if two distinct points are incident with a

line, then this line is equivalent with the connecting line of these points. The interest of such an

example is actually twofold. First, the corresponding proof is larger (but remains reasonably large

to be presented in this paper) than for the previous considered examples, which tends to show that

our approach is effective even when the proofs require more than 20 steps. Second, the subject of
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geometry is quite fundamental in the high school curriculum in the sense that it is generally the only

mathematical topic where proofs are explicitly mentioned and where formal reasoning is actually

considered. The axioms considered in this example are the axioms of constructive geometry, but

Super Zenon uses classical logic and constructive geometry plus classical logic is equivalent to

textbook theories. The proof of this example uses the following axioms of this theory (we use the

names given in the TPTP files):

∀x, y (distinct_points(x, y) ⇒ ¬apart_point_and_line(x, line_connecting(x, y))) (ci1 )
∀x, y (distinct_points(x, y) ⇒ ¬apart_point_and_line(y, line_connecting(x, y))) (ci2 )
∀x, y, u, v (distinct_points(x, y) ∧ distinct_lines(u, v) ⇒

apart_point_and_line(x, u) ∨ apart_point_and_line(x, v) ∨
apart_point_and_line(y, u) ∨ apart_point_and_line(y, v)) (cu1 )

∀x, y (equal_lines(x, y) ⇔ ¬distinct_lines(x, y)) (ax2 )
∀x, y (incident_point_and_line(x, y) ⇔ ¬apart_point_and_line(x, y)) (a4 )

where distinct_points(x, y) (resp. distinct_lines(x, y)) means that x and y are two distinct points

(resp. lines), incident_point_and_line(x, y) (resp. apart_point_and_line(x, y)) means that the point

x is (resp. is not) incident with the line y, equal_lines(x, y) means that x and y denote the same line,

and line_connecting(x, y) denotes the line connecting the points x and y.

Among these axioms, the axioms (ci2 ), (ax2 ), and (a4 ) are turned into superdeduction rules.

The axiom (ci1 ) is left as an axiom because one of its superdeduction rules overlap with one of the

superdeduction rules computed previously for the axiom (ci2 ). The axiom (cu1 ) is also left as an

axiom because it has not the right form to be turned into superdeduction rules. It should be noted

that for the axiom (ax2 ), a superdeduction rule corresponding to the converse of this axiom is also

generated since both sides of the implication are atomic.

The conjecture given previously is formally expressed as follows:

∀x, y, z (distinct_points(x, y) ∧ incident_point_and_line(x, z) ∧
incident_point_and_line(y, z) ⇒ equal_lines(z, line_connecting(x, y)))

When applied to this problem, Super Zenon is able to produce the proof of Figures 4 and 5 (we

use the same proof format than for the previous examples), where the preliminary Skolemization steps

are compressed (Steps 2 and 3 are left implicit). From this proof, it is possible to build the following

informal proof sketch as previously:

• Given the points x, y, and the line z s.t. distinct_points(x, y), incident_point_and_line(x, z),
and incident_point_and_line(y, z), we have to show equal_lines(z, line_connecting(x, y));

• From the hypotheses incident_point_and_line(x, z) and incident_point_and_line(y, z), we

have ¬apart_point_and_line(x, z) and ¬apart_point_and_line(y, z) using the axiom (a4 );

• Using the axiom (ax2 ), the goal equal_lines(z, line_connecting(x, y)) to be proved is equiva-

lent to ¬distinct_lines(z, line_connecting(x, y));

• Using the axiom (cu1 ) with x, y, z, and line_connecting(x, y), we have to show the previous

goal in the following cases:
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fof(geometry_conjecture, conjecture,

(! [X, Y, Z] : ((distinct_points (X, Y) &

incident_point_and_line (X, Z) &

incident_point_and_line (Y, Z)) =>

equal_lines (Z, line_connecting(X, Y))))).

(* PROOF-FOUND *)

1. H0: (-. (All X, (All Y, (All Z, (((distinct_points X Y) /\

((incident_point_and_line X Z) /\

(incident_point_and_line Y Z))) =>

(equal_lines Z (line_connecting X Y)))))))

H1: (All X, (All Y, ((distinct_points X Y) =>

(-. (apart_point_and_line X (line_connecting X Y))))))

H2: (All X, (All Y, (All U, (All V, (((distinct_points X Y) /\

(distinct_lines U V)) => ((apart_point_and_line X U) \/

((apart_point_and_line X V) \/

((apart_point_and_line Y U) \/

(apart_point_and_line Y V)))))))))

### [NotAllEx H0] --> [...] 4

4. H7: (incident_point_and_line T_4 T_8)

H9: (-. (equal_lines T_8 (line_connecting T_4 T_6)))

H10: (distinct_points T_4 T_6)

H11: (incident_point_and_line T_6 T_8)

### [Extension/szen/a4 H7 H12 H4 H8] --> 5

5. H12: (-. (apart_point_and_line T_4 T_8))

### [Extension/szen/a4 H11 H13 H6 H8] --> 6

6. H13: (-. (apart_point_and_line T_6 T_8))

### [Extension/szen/not_ax2 H9 H14 H8 H15] --> 7

7. H14: (distinct_lines T_8 (line_connecting T_4 T_6))

### [All H2] --> 8

8. H16: (All Y, (All U, (All V, (((distinct_points T_4 Y) /\

(distinct_lines U V)) => ((apart_point_and_line T_4 U) \/

((apart_point_and_line T_4 V) \/

((apart_point_and_line Y U) \/

(apart_point_and_line Y V))))))))

### [All H16] --> 9

9. H17: (All U, (All V, (((distinct_points T_4 T_6) /\

(distinct_lines U V)) => ((apart_point_and_line T_4 U) \/

((apart_point_and_line T_4 V) \/

((apart_point_and_line T_6 U) \/

(apart_point_and_line T_6 V)))))))

### [All H17] --> 10

Figure 4: Proof of Geometry Problem #170+3 of TPTP (Part 1)
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10. H18: (All V, (((distinct_points T_4 T_6) /\

(distinct_lines T_8 V)) =>

((apart_point_and_line T_4 T_8) \/

((apart_point_and_line T_4 V) \/

((apart_point_and_line T_6 T_8) \/

(apart_point_and_line T_6 V))))))

### [All H18] --> 11

11. H19: (((distinct_points T_4 T_6) /\

(distinct_lines T_8 (line_connecting T_4 T_6))) =>

((apart_point_and_line T_4 T_8) \/

((apart_point_and_line T_4 (line_connecting T_4 T_6)) \/

((apart_point_and_line T_6 T_8) \/

(apart_point_and_line T_6 (line_connecting T_4 T_6))))))

### [DisjTree H19] --> 12 13 14 15 16 17

12. H20: (-. (distinct_points T_4 T_6))

### [Axiom H10 H20]

13. H21: (-. (distinct_lines T_8 (line_connecting T_4 T_6)))

### [Axiom H14 H21]

14. H22: (apart_point_and_line T_4 T_8)

### [Axiom H22 H12]

15. H23: (apart_point_and_line T_4 (line_connecting T_4 T_6))

### [All H1] --> 18

18. H24: (All Y, ((distinct_points T_4 Y) =>

(-. (apart_point_and_line T_4 (line_connecting T_4 Y)))))

### [All H24] --> 19

19. H25: ((distinct_points T_4 T_6) =>

(-. (apart_point_and_line T_4 (line_connecting T_4 T_6))))

### [Imply H25] --> 20 21

20. H20: (-. (distinct_points T_4 T_6))

### [Axiom H10 H20]

21. H26: (-. (apart_point_and_line T_4 (line_connecting T_4 T_6)))

### [Axiom H23 H26]

16. H27: (apart_point_and_line T_6 T_8)

### [Axiom H27 H13]

17. H28: (apart_point_and_line T_6 (line_connecting T_4 T_6))

### [Extension/szen/ci2ctrp H28 H20 H4 H6] --> 22

22. H20: (-. (distinct_points T_4 T_6))

### [Axiom H10 H20]

Figure 5: Proof of Geometry Problem #170+3 of TPTP (Part 2)
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1. Given ¬distinct_points(x, y), we have also distinct_points(x, y) in hypothesis, which is

therefore absurd;

2. Given¬distinct_lines(z, line_connecting(x, y)), it is exactly the goal to be proved, which

is then proved directly by hypothesis;

3. Given apart_point_and_line(x, z), we have also ¬apart_point_and_line(x, z) in hy-

pothesis, which is therefore absurd;

4. Given apart_point_and_line(x, line_connecting(x, y)), we use the axiom (ci1 ) with x,

y, and distinct_points(x, y), to have ¬apart_point_and_line(x, line_connecting(x, y)),
which is therefore absurd;

5. Given apart_point_and_line(y, z), we have also ¬apart_point_and_line(y, z) in hy-

pothesis, which is therefore absurd;

6. Given apart_point_and_line(y, line_connecting(x, y)) used with the converse of the ax-

iom (ci2 ) with x and y, we have ¬distinct_points(x, y), which is therefore absurd as we

have also distinct_points(x, y) in hypothesis.

6 Conclusion

In this paper, we have proposed an automated deduction method which allows us to produce proofs

close to the human intuition and practice. This method is based on tableaux and uses the principles of

superdeduction, among which the theory is used to enrich the deduction system with new deduction

rules, called superdeduction rules. We have presented two implementations of this method, which

consist of extensions of the Zenon automated theorem prover. The first implementation is a version

dedicated to the B set theory, where the superdeduction rules are hard-coded from the initial axiomatic

theory. The second implementation is a generic version able to deal with any first order theory, where

the theory is analyzed to determine the axioms which can be turned into superdeduction rules, and

where these superdeduction rules are automatically computed on the fly to enrich the deductive kernel

of Zenon. For information, these two implementations are available as free software at [15]. We have

also provided some examples of problems, which can be handled by these tools and which come from

different theories, such as the B set theory or theories of the TPTP library (in the puzzle and geometry

categories, in particular). In these examples, we have shown that both tools are able to produce formal

proofs comprehensible enough to recover the intuition of these proofs, and that the user can therefore

easily extract informal proof sketches from these proofs.

As future work, it would be interesting to improve the readability of the produced proofs in order

to get more natural proofs and in particular, it might be desirable to turn proofs into pure direct

proofs (searching for a proof of the initial formula), rather than refutational proofs (searching to

invalidate the negation of the initial formula). In a way, this corresponds to get back to Gentzen’s

initial purely proof theoretical motivation when trying to find proofs in the cut-free version of sequent

calculus, and in particular, this is opposed to Hintikka and Beth’s semantic view of tableaux, which

consists of a procedure systematically trying to find a counter example for a given formula (i.e. a

model in which its negation is true). Such an improvement evokes some similar initiatives in other

automated theorem provers, such as Muscadet [16], which is based on natural deduction and which

uses methods resembling those used by humans.

18



The Electronic Journal of Mathematics and Technology, Volume 1, Number 1, ISSN 1933-2823

To increase the readability of the proofs generated by our extensions, it would also be interesting to

export these proofs to other kinds of languages, which appear more appropriate regarding readability.

In particular, we could export the proofs to declarative proof languages, such as Isar [22] for Isabelle,

which tends to bridge the semantic gap between internal notions of proof given by state-of-the-art

interactive theorem proving systems and an appropriate level of abstraction for user-level work. This

translation should be automatic, and to be more effective, it should also be probably combined with an

interactive layer over the automated deduction tool (see below) in order to produce intelligible proofs,

i.e. proofs where a certain number of cuts can be manually introduced. We could even go further and

automatically produce proofs in natural languages using, for example, the ideas of [8], where Coq

formal proofs are translated in a pseudo natural language.

Finally, in this paper, our extensions only produce proofs automatically without any interaction

with the user. In an educational setting, a system able to present sample proofs is already a valuable

bonus, but the students must also be involved in the process of building proofs. To do so, the idea is

to implement an interactive layer over our extensions in the spirit of [21], which will aim to offer the

user the possibility to guide the proof search. This interactive layer would be a benefit for both the

user and the automated deduction tool. For the user, this layer could make the interface with the proof

engine, which could propose a set of applicable rules or next-step hints. For the automated deduction

tool, this layer could be used to find proofs with the help of the user, who could propose to focus on

some branches of the proof search, which would allow the tool to find a proof, while the strategy of

the tool would have focused on inappropriate branches resulting in an endless proof search.
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