
HAL Id: hal-01099338
https://hal.science/hal-01099338v1

Submitted on 2 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tableaux Modulo Theories Using Superdeduction
Mélanie Jacquel, Karim Berkani, David Delahaye, Catherine Dubois

To cite this version:
Mélanie Jacquel, Karim Berkani, David Delahaye, Catherine Dubois. Tableaux Modulo Theories Using
Superdeduction. IJCAR 2012 - 6th International Joint Conference on Automated Reasoning, Jun 2012,
Manchester, UK, United Kingdom. pp.1 - 13, �10.1007/978-3-642-31365-3_26�. �hal-01099338�

https://hal.science/hal-01099338v1
https://hal.archives-ouvertes.fr

Tableaux Modulo Theories using Superdeduction

Mélanie Jacquel1, Karim Berkani1, David Delahaye2, and Catherine Dubois3

1 Siemens IC-MOL, Châtillon, France,
Melanie.Jacquel@siemens.com

Karim.Berkani@siemens.com
2 Cedric/Cnam/Inria, Paris, France,

David.Delahaye@cnam.fr
3 Cedric/ENSIIE/Inria, Évry, France,

dubois@ensiie.fr

Abstract. We propose a method that allows us to develop tableaux
modulo theories using the principles of superdeduction, among which
the theory is used to enrich the deduction system with new deduction
rules. This method is presented in the framework of the Zenon automated
theorem prover, and is applied to the set theory of the B method. This
allows us to provide another prover to Atelier B, which can be used to
verify B proof rules in particular. We also propose some benchmarks,
in which this prover is able to automatically verify a part of the rules
coming from the database maintained by Siemens IC-MOL. Finally, we
describe another extension of Zenon with superdeduction, which is able
to deal with any first order theory, and provide a benchmark coming from
the TPTP library, which contains a large set of first order problems.

Keywords: Automated Deduction, Tableaux, Superdeduction, Zenon,
Set Theory, B Method, First Order Theories.

1 Introduction

Reasoning modulo a theory like arithmetic in first order logic may appear as a
complex task, since even simple formulas become difficult to be proved (using
natural deduction or sequent calculus), and the corresponding proofs are hardly
readable. This is actually due to the fact that Gentzen’s deductive systems, even
if more elaborate than systems à la Hilbert, consist of low-level languages for
deduction. Over the last few years, several approaches have been developed to
palliate this problem, and for instance, deduction modulo [13] and superdeduc-
tion [6], which respectively focus on the computational and deductive parts of a
theory, can be considered as steps toward high-level deductive languages.

Superdeduction has been adapted for usual deductive systems, such as natu-
ral deduction or sequent calculus (see [6], for example). In these systems, we have
to deal with some common permutability problems of automated proof search,
since superdeduction systems are in fact embedding a part of compiled auto-
mated deduction. As a consequence, superdeduction can be naturally integrated
into automated deduction methods, and we propose to do so in the framework

of the tableau method (this corresponds to an alternative approach to the work
described in [4], where a tableau method for deduction modulo is proposed).

The integration of superdeduction into the tableau method is actually mo-
tivated by an experiment that is managed by Siemens IC-MOL regarding the
verification of B proof rules [15]. The B method [1], or B for short, allows engi-
neers to develop software with high guarantees of confidence; more precisely it
allows them to build correct by design software. B is a formal method based on
set theory and theorem proving, and which relies on a refinement-based devel-
opment process. The Atelier B environment [9] is a platform that supports B and
offers, among other tools, both automated and interactive provers. In practice, to
ensure the global correctness of formalized applications, the user must discharge
proof obligations. These proof obligations may be proved automatically, but oth-
erwise, they have to be handled manually either by using the interactive prover,
or by adding new proof rules that the automated prover can exploit. These new
proof rules can be seen as axioms and must be verified by other means, otherwise
the global correctness may be endangered.

In [15], we develop an approach based on the use of the Zenon automated
theorem prover [5], which relies on classical first order logic with equality and
applies the tableau method as proof search. In this context, the choice of Zenon
is strongly influenced by its ability of producing comprehensible proof traces
under the form of Coq proofs [24] in particular. The method used in this ap-
proach consists in first normalizing the formulas to be proved, in order to obtain
first order logic formulas containing only the membership set operator, and then
calling Zenon on these new formulas. This experiment gives satisfactory results
in the sense that it can prove a significant part of the rules coming from the
database maintained by Siemens IC-MOL (we can deal with about 1,400 rules,
1,100 of which can be proved automatically, over a total of 5,300 rules). How-
ever, this approach is not complete (after the normalization, Zenon proves the
formulas without any axiom of set theory, while some instantiations may require
to be normalized), and suffers from efficiency issues (due to the preliminary
normalization). To deal with these problems, the idea developed in this paper
is to integrate the axioms and constructs of the B set theory into the Zenon
proof search method by means of superdeduction rules. This integration can be
concretely achieved thanks to the extension mechanism offered by Zenon, which
allows us to extend its core of deductive rules to match specific requirements.

In this paper, we also propose another extension of Zenon with superdeduc-
tion, which is able to deal with any first order theory, and which must be seen
as a generalization of the extension of Zenon with superdeduction and for the B
set theory that has been described previously. This other extension of Zenon has
been developed as a tool called Super Zenon [16], where each theory is analyzed
to determine the axioms which can be turned into superdeduction rules, and
these superdeduction rules are automatically computed on the fly to enrich the
deductive kernel of Zenon.

The paper is organized as follows: in Sec. 2, we start by briefly reviewing some
related work; in Secs. 3 and 4, we then respectively introduce superdeduction and

present the computation of superdeduction rules from axioms in the framework
of the tableau method used by Zenon; next, we explain, in Sec. 5, the superde-
duction rules corresponding to the set theory which the B method relies on, and
describe, in Sec. 6, the implementation of our extension of Zenon for the B set
theory and provide some comparative benchmarks concerning the verification of
B proof rules coming from the database maintained by Siemens IC-MOL; there-
after, in Sec. 7, we present the other extension of Zenon with superdeduction,
which is able to deal with any first order theory, and also provide a comparative
benchmark coming from the TPTP library, which contains a large set of first
order problems in particular; finally, in Sec. 8, we discuss more generally the use
of superdeduction for proof search in axiomatic theories.

2 Related Work

In the framework of verification of B (or Event-B) proof obligations, and in
addition to B dedicated provers, such as the main prover of Atelier B, some similar
work has been done to use external provers, relying on either SMT (Satisfiability
Modulo Theories) solvers like veriT [14], or proof assistants like Coq [10] or
Isabelle/HOL [21]. However, veriT does not provide proof traces, and automation
is poor in the considered proof assistants, even though dedicated tactics are
offered. More generally, there are also some provers covering set theory, such as
Muscadet [19] or Theorema [25], but they do not provide traces either.

Regarding the ability of reasoning modulo theories, there exist some alterna-
tive approaches, such as the technology of SMT solvers. This technology is based
on a SAT solver and a combination of several decision procedures for several the-
ories. There are several methods to combine the considered decision procedures,
such as the Nelson-Oppen [18] or Shostak [22] methods. The approach used
by SMT solvers is actually restrictive in the sense that the considered theories
have to be decidable. To preserve this decidability, the combination methods
also impose some restrictions over the theories to be combined, which must have
disjoint signatures. The techniques of deduction modulo [13] and superdeduc-
tion [6], proposed in this paper in particular, are more general approaches to
integrate theories into proof search methods since there is no constraint over the
theories to be integrated, which may be decidable or not.

3 Rationale for Superdeduction

Deduction modulo [13] focuses on the computational part of a theory, where
axioms are transformed into rewrite rules, which induces a congruence over
propositions, and where reasoning is performed modulo this congruence. Su-
perdeduction [6] is actually a variant of deduction modulo, where axioms are
used to enrich the deduction system with new deduction rules, which are called
superdeduction rules. For example, considering the definition of inclusion in set
theory ∀a∀b ((a ⊆ b) ⇔ (∀x (x ∈ a ⇒ x ∈ b))), the proof of A ⊆ A in sequent
calculus has the following form:

Ax
. . . , x ∈ A ⊢ A ⊆ A, x ∈ A

⇒R
. . . ⊢ A ⊆ A, x ∈ A ⇒ x ∈ A

∀R
. . . ⊢ A ⊆ A, ∀x (x ∈ A ⇒ x ∈ A)

Ax
. . . , A ⊆ A ⊢ A ⊆ A

⇒L
. . . , (∀x (x ∈ A ⇒ x ∈ A)) ⇒ A ⊆ A ⊢ A ⊆ A

∧L
A ⊆ A ⇔ (∀x (x ∈ A ⇒ x ∈ A)) ⊢ A ⊆ A

∀L× 2
∀a∀b ((a ⊆ b) ⇔ (∀x (x ∈ a ⇒ x ∈ b))) ⊢ A ⊆ A

In deduction modulo, the axiom of inclusion can be seen as a computation
rule and therefore replaced by the rewrite rule a ⊆ b → ∀x (x ∈ a ⇒ x ∈ b). The
previous proof is then transformed as follows:

Ax
x ∈ A ⊢ x ∈ A

⇒R
⊢ x ∈ A ⇒ x ∈ A

∀R, A ⊆ A → ∀x (x ∈ A ⇒ x ∈ A)
⊢ A ⊆ A

It can be noticed that the obtained proof is much simpler than the one
completed using sequent calculus. In addition to simplicity, deduction modulo
also allows us for unbounded proof size speed-up [7].

Superdeduction proposes to go further than deduction modulo precisely when
the considered axiom defines a predicate P with an equivalence ∀x̄ (P ⇔ ϕ).
While deduction modulo replaces the axiom by a rewrite rule, superdeduction
adds to this transformation the decomposition of the connectives occurring in
this definition. This corresponds to an extension of Prawitz’s folding (resp. un-
folding) rules [20], where a maximum of connectives of the definition are in-
troduced (resp. eliminated). Superdeduction may be seen as the alliance of de-
duction modulo with focusing, which is a technique initially introduced in the
framework of linear logic [3]. For the axiom of inclusion, the proposed superde-
duction rule is therefore the following (there is also a corresponding left rule):

Γ , x ∈ a ⊢ x ∈ b,∆
IncR, x 6∈ Γ ,∆

Γ ⊢ a ⊆ b,∆

Hence, proving A ⊆ A with this new rule can be performed as follows:

Ax
x ∈ A ⊢ x ∈ A

IncR
⊢ A ⊆ A

This new proof is not only simpler and shorter than in deduction modulo,
but also follows a natural human reasoning scheme usually used in mathematics
(in the same vein, see [11] for more details about how superdeduction allows us
to recover intuition from automated proofs).

4 From Axioms to Superdeduction Rules

As mentioned previously, reasoning modulo a theory in a tableau method using
superdeduction requires to generate new deduction rules from some axioms of

the theory. The axioms which can be considered for superdeduction are of the
form ∀x̄ (P ⇔ ϕ), where P is atomic. This specific form of axiom allows us to
introduce an orientation of the axiom from P to ϕ, and we introduce the notion
of proposition rewrite rule (this notion appears in [6], from which we borrow the
following definition and notation):

Definition 1 (Proposition Rewrite Rule). The notation R : P → ϕ denotes
the axiom ∀x̄ (P ⇔ ϕ), where R is the name of the rule, P an atomic proposition,
ϕ a proposition, and x̄ the free variables of P and ϕ.

It should be noted that P may contain first order terms and therefore that
such an axiom is not just a definition. For instance, x ∈ a ∩ b → x ∈ a ∧ x ∈ b

(where a ∩ b is a first order term) is a proposition rewrite rule.
As said in the introduction, one of our main objectives is to develop a proof

search procedure for the set theory of the B method using the Zenon automated
theorem prover [5]. In the following, we will thus consider the tableau method
used by Zenon as the framework in which superdeduction rules will be generated
from proposition rewrite rules.

The proof search rules of Zenon are described in detail in [5] and summarized
in Fig. 1 (for the sake of simplification, we have omitted the unfolding and exten-
sion rules), where ǫ is Hilbert’s operator (ǫ(x).P (x) means some x that satisfies
P (x), and is considered as a term), capital letters are used for metavariables,
and Rr, Rs, Rt, and Rts are respectively reflexive, symmetric, transitive, and
transitive-symmetric relations (the corresponding rules also apply to the equality
in particular). As hinted by the use of Hilbert’s operator, the δ-rules are han-
dled by means of ǫ-terms rather than using Skolemization. What we call here
metavariables are often named free variables in the tableau-related literature;
they are not used as variables as they are never substituted. The proof search
rules are applied with the normal tableau method: starting from the negation of
the goal, apply the rules in a top-down fashion to build a tree. When all branches
are closed (i.e. end with an application of a closure rule), the tree is closed, and
this closed tree is a proof of the goal. Note that this algorithm is applied in strict
depth-first order: we close the current branch before starting work on another
branch. Moreover, we work in a non-destructive way: working on one branch
will never change the formulas of any other branch. We divide these rules into
five distinct classes to be used for a more efficient proof search. This extends
the usual sets of rules dealing with α, β, δ, γ-formulas and closure (⊙) with the
specific rules of Zenon. We list below the five sets of rules and their elements:

α α¬∨, α∧, α¬⇒, α¬¬,¬refl

β β∨, β¬∧, β⇒, β⇔, β¬⇔, pred, fun, sym, trans∗
δ δ∃, δ¬∀

γ γ∀M , γ¬∃M , γ∀inst, γ¬∃inst

⊙ ⊙⊤,⊙⊥,⊙,⊙r,⊙s

where “trans∗” gathers all the transitivity rules.

Closure and Cut Rules

⊥ ⊙⊥⊙
¬⊤ ⊙¬⊤⊙

cut
P | ¬P

¬Rr(t, t)
⊙r⊙

P ¬P ⊙
⊙

Rs(a, b) ¬Rs(b, a)
⊙s⊙

Analytic Rules

¬¬P α¬¬

P

P ⇔ Q
β⇔

¬P,¬Q | P,Q

¬(P ⇔ Q)
β¬⇔

¬P,Q | P,¬Q

P ∧Q
α∧

P,Q

¬(P ∨Q)
α¬∨

¬P,¬Q

¬(P ⇒ Q)
α¬⇒

P,¬Q

P ∨Q
β∨

P | Q

¬(P ∧Q)
β¬∧

¬P | ¬Q

P ⇒ Q
β⇒

¬P | Q

∃x P (x)
δ∃

P (ǫ(x).P (x))

¬∀x P (x)
δ¬∀

¬P (ǫ(x).¬P (x))

γ-Rules

∀x P (x)
γ∀M

P (X)

¬∃x P (x)
γ¬∃M

¬P (X)

∀x P (x)
γ∀inst

P (t)

¬∃x P (x)
γ¬∃inst

¬P (t)

Relational Rules

P (t1, ..., tn) ¬P (s1, .., sn)
pred

t1 6= s1 | ... | tn 6= sn

f(t1, ..., tn) 6= f(s1, ..., sn)
fun

t1 6= s1 | ... | tn 6= sn

Rs(s, t) ¬Rs(u, v) sym
t 6= u | s 6= v

¬Rr(s, t)
¬refl

s 6= t

Rt(s, t) ¬Rt(u, v)
trans

u 6= s,¬Rt(u, s) | t 6= v,¬Rt(t, v)

Rts(s, t) ¬Rts(u, v)
transsym

v 6= s,¬Rts(v, s) | t 6= u,¬Rts(t, u)

s = t ¬Rt(u, v)
transeq

u 6= s,¬Rt(u, s) | ¬Rt(u, s),¬Rt(t, v) | t 6= v,¬Rt(t, v)

s = t ¬Rts(u, v)
transeqsym

v 6= s,¬Rts(v, s) | ¬Rts(v, s),¬Rts(t, u) | t 6= u,¬Rts(t, u)

Fig. 1. Proof Search Rules of Zenon

Let us now describe how the computation of superdeduction rules for Zenon
is performed from a given proposition rewrite rule.

Definition 2 (Computation of Superdeduction Rules). Let S be a set of
rules composed by the subset of the proof search rules of Zenon formed of the
closure rules, the analytic rules, as well as the γ∀M and γ¬∃M rules. Given a
proposition rewrite rule R : P → ϕ, two superdeduction rules (a positive one R

and a negative one ¬R) are generated in the following way:

1. To get the positive rule R, initialize the procedure with the formula ϕ. Next,
apply the rules of S until there is no open leaf anymore on which they can
be applied. Then, collect the premises and the conclusion, and replace ϕ by
P to obtain the positive rule R.

2. To get the negative rule ¬R, initialize the procedure with the formula ¬ϕ.
Next, apply the rules of S until there is no open leaf anymore on which they
can be applied. Then, collect the premises and the conclusion, and replace
¬ϕ by ¬P to obtain the negative rule ¬R.

If the rule R (resp. ¬R) involves metavariables, an instantiation rule Rinst

(resp. ¬Rinst) is added, where one or several metavariables can be instantiated.

Integrating these new deduction rules to the proof search rules of Zenon
is trivially correct as they are generated from a subset of the rules of Zenon,
while the considered subset of rules only consists of reversible rules, which is a
necessary condition for completeness.

Let us illustrate the computation of superdeduction rules from a proposition
rewrite rule with the example of the set inclusion.

Example 1 (Set Inclusion). From the definition of the set inclusion, we introduce
the proposition rewrite rule Inc : a ⊆ b → ∀x (x ∈ a ⇒ x ∈ b), and the
corresponding superdeduction rules Inc and ¬Inc are generated as follows:

∀x (x ∈ a ⇒ x ∈ b)
γ∀M

X ∈ a ⇒ X ∈ b
β⇒

X 6∈ a | X ∈ b

¬∀x (x ∈ a ⇒ x ∈ b)
δ¬∀

¬(ǫx ∈ a ⇒ ǫx ∈ b)
α¬⇒

ǫx ∈ a, ǫx 6∈ b

where ǫx = ǫ(x).¬(x ∈ a ⇒ x ∈ b).
The resulting superdeduction rules are then the following:

a ⊆ b
Inc

X 6∈ a | X ∈ b

a ⊆ b
Incinst

t 6∈ a | t ∈ b

a 6⊆ b
¬Inc

ǫx ∈ a, ǫx 6∈ b

5 Superdeduction Rules for the B Set Theory

The purpose of this section is to build a superdeduction system for the B set
theory, which can be used for the verification of proof rules of Atelier B, such as
the rules coming from the database maintained by Siemens IC-MOL (see Sec. 6).
To do so, the idea is to apply the computational algorithm of superdeduction
rules described in Sec. 4 to the several axioms of the B set theory.

5.1 The B Set Theory

As said in the introduction, the B method [1] aims to assist experts to develop
certified software. The initial step is defined with abstract properties of a model.
Several steps of property refinement are then applied until the release of the
complete software. A refinement step is characterized by adding details on the
software behavior under construction. For each step, generated proof obligations
must be demonstrated to ensure the global correctness of the formalization.

The B method is based on a typed set theory. There are two rule systems:
one for demonstrating that a formula is well-typed, and one for demonstrating
that a formula is a logical consequence of a set of axioms. The main aim of
the type system is to avoid inconsistent formulas, such as Russell’s paradox for
example. The B proof system is based on a sequent calculus with equality. Six
axioms define the basic operators and the extensionality which, in turn, defines
the equality of two sets. In addition, the other operators (∪, ∩, etc.) are defined
using the previous basic ones. Fig. 2 gathers a part of the axioms and constructs
of the B set theory, where BIG is an infinite set (mostly only used to build
natural numbers in the foundational theory). In this figure, we only consider the
four first axioms of the B set theory, as we do not need the two remaining axioms
in the rules that we want to verify (see Sec. 6). Regarding functions and due to
space restrictions, we only present the notion of partial function, even though
we can deal with the other function constructs in our superdeduction system.
Compared to [1], all type information has been removed from the axioms and
constructs. This can be done since typechecking is performed before proving a
formula, and the pieces of type information dispersed throughout the axioms
and constructs are useless when building a proof (see [2] for details regarding
the modularity between the type and proof systems). Finally, we do not deal
with substitution explicitly (see the axiom for comprehension sets, for example),
as we do not intend to manage rules involving explicit substitutions (see Sec. 6).

5.2 Generating the Superdeduction Rules

To generate the superdeduction rules corresponding to the axioms and constructs
defined in Fig. 2, we use the algorithm described in Def. 2 of Sec. 4, and we must
therefore identify the several proposition rewrite rules. On the one hand, the
axioms are all of the form Pi ⇔ Qi, and the associated proposition rewrite
rules are Ri : Pi → Qi, where each axiom is oriented from left to right. On
the other hand, the constructs are expressed by the definitions Ei , Fi, where
Ei and Fi are expressions, and the corresponding proposition rewrite rules are
Ri : x ∈ Ei → x ∈ Fi; if Ei and Fi represent relations, the proposition rewrite
rules are Ri : (x, y) ∈ Ei → (x, y) ∈ Fi, where we consider that relations are
defined by means of ordered pairs. The superdeduction rules generated from
this set of proposition rewrite rules are described in Figs. 3 and 4. Due to space
restrictions, we do not include the definitions of ⊆ (as well as ⊂), and ◦ in these
figures, but their rules can be respectively deduced from the rules of P and “ ;”.
For the same reasons, we do not describe the instantiation rules associated with

Axioms

(x, y) ∈ a× b ⇔ x ∈ a ∧ y ∈ b
a ∈ P(b) ⇔ ∀x (x ∈ a ⇒ x ∈ b)
x ∈ { y | P (y) } ⇔ P (x)
a = b ⇔ ∀x (x ∈ a ⇔ x ∈ b)

Derived Constructs

a ⊆ b ⇔ a ∈ P(b) a ⊂ b ⇔ a ⊆ b ∧ a 6= b

a ∪ b , { x | x ∈ a ∨ x ∈ b } a ∩ b , { x | x ∈ a ∧ x ∈ b }

a− b , { x | x ∈ a ∧ x 6∈ b } ∅ , BIG− BIG

{ e1, . . . , en } , { x | x = e1 } ∪ . . . ∪ { x | x = en }

Binary Relation Constructs: First Series

a ↔ b , P(a× b) a−1 , { (y, x) | (x, y) ∈ a }

dom(a) , { x | ∃y (x, y) ∈ a } ran(a) , dom(a−1)

a; b , { (x, z) | ∃y ((x, y) ∈ a ∧ (y, z) ∈ b } a ◦ b , b; a

id(a) , { (x, y) | (x, y) ∈ a× a ∧ x = y }

a⊳ b , id(a); b a⊲ b , a; id(b)

a −⊳ b , (dom(b)− a)⊳ b a −⊲ b , a⊲ (ran(a)− b)

Binary Relation Constructs: Second Series

a[b] , ran(b⊳ a) a −⊳ b , (dom(b) −⊳ a) ∪ b

a⊗ b , { (x, (y, z)) | (x, y) ∈ a ∧ (x, z) ∈ b }

prj
1
(a, b) , (id(a)⊗ (a× b))−1 prj

2
(a, b) , ((b× a)⊗ id(b))−1

a || b , { (x, y), (z, t) | (x, z) ∈ a ∧ (y, t) ∈ b }

Function Constructs: First Series

a p→ b , { t | t ∈ a ↔ b ∧ ∀(x, y, z) ((x, y) ∈ t ∧ (x, z) ∈ t ⇒ y = z) }

Fig. 2. Axioms and Constructs of the B Set Theory

each rule involving metavariables. It should also be noted that the computation
of these superdeduction rules goes further than the one proposed in Sec. 4, since
given a proposition rewrite rule R : P → Q, we apply to Q not only all the
rules considered by Definition 2, but also the new generated superdeduction
rules (except the rules for the extensional equality, in order to benefit from the
dedicated rules of Zenon for equality) whenever applicable.

Regarding the superdeduction rules for the constructs, we can notice that
given a definition E , F , the generation of superdeduction rules is performed
from the proposition rewrite rule R : x ∈ E → x ∈ F , and we can therefore
wonder if completeness can still be ensured. In particular, we have to show that
P (E) ⇔ P (F), where P is a predicate symbol. This is actually possible using

Rules for Axioms

(x, y) ∈ a× b
×

x ∈ a, y ∈ b

a ∈ P(b)
P

X 6∈ a | X ∈ b

x ∈ { y | P (y) }
{|}

P (x)

(x, y) 6∈ a× b
¬×

x 6∈ a | y 6∈ b

a 6∈ P(b)
¬P

ǫx ∈ a, ǫx 6∈ b

with ǫx = ǫ(x).¬(x ∈ a ⇒ x ∈ b)

x 6∈ { y | P (y) }
¬{|}

¬P (x)

a = b =
X 6∈ a,X 6∈ b | X ∈ a,X ∈ b

a 6= b
6=

ǫx 6∈ a, ǫx ∈ b | ǫx ∈ a, ǫx 6∈ b

with ǫx = ǫ(x).¬(x ∈ a ⇔ x ∈ b)

Rules for Derived Constructs

x ∈ a ∪ b
∪

x ∈ a | x ∈ b

x ∈ a ∩ b
∩

x ∈ a, x ∈ b

x ∈ a− b
−

x ∈ a, x 6∈ b

x 6∈ a ∪ b
¬∪

x 6∈ a, x 6∈ b

x 6∈ a ∩ b
¬∩

x 6∈ a | x 6∈ b

x 6∈ a− b
¬−

x 6∈ a | x ∈ b

x ∈ { e1, . . . , en }
{}

x = e1 | . . . | x = e1

x 6∈ { e1, . . . , en }
¬{}

x 6= e1, . . . , x 6= en

x ∈ ∅
∅⊙

Rules for Binary Relation Constructs: First Series

(x, y) ∈ a−1

a−1

(y, x) ∈ a

x ∈ dom(a)
dom

(x, ǫy) ∈ a

with ǫy = ǫ(y).((x, y) ∈ a)

y ∈ ran(a)
ran

(ǫx, y) ∈ a

with ǫx = ǫ(x).((x, y) ∈ a)

(x, y) 6∈ a−1

¬a−1

(y, x) 6∈ a

x 6∈ dom(a)
¬dom

(x, Y) 6∈ a

y 6∈ ran(a)
¬ran

(X, y) 6∈ a

(x, z) ∈ a; b
;

(x, ǫy) ∈ a, (ǫy, z) ∈ b

with ǫy = ǫ(y).((x, y) ∈ a ∧ (y, z) ∈ b)

(x, z) 6∈ a; b
¬;

(x, Y) 6∈ a | (Y, z) 6∈ b

(x, y) ∈ id(a)
idx = y, x ∈ a, y ∈ a

(x, y) 6∈ id(a)
¬id

x 6= y | x 6∈ a | y 6∈ a

(x, y) ∈ a⊳ b
⊳

(x, y) ∈ b, x ∈ a

(x, y) 6∈ a⊳ b
¬⊳

(x, y) 6∈ b | x 6∈ a

Fig. 3. Superdeduction Rules for the B Set Theory (Part 1)

(x, y) ∈ a −⊳ b
−⊳

(x, y) ∈ b, x 6∈ a

(x, y) ∈ a⊲ b
⊲

(x, y) ∈ a, y ∈ b

(x, y) ∈ a −⊲ b
−⊲

(x, y) ∈ a, y 6∈ b

(x, y) 6∈ a −⊳ b
¬−⊳

(x, y) 6∈ b | x ∈ a

(x, y) 6∈ a⊲ b
¬⊲

(x, y) 6∈ a | y 6∈ b

(x, y) 6∈ a −⊲ b
¬−⊲

(x, y) 6∈ a | y ∈ b

Rules for Binary Relation Constructs: Second Series

y ∈ a[b]
a[b]

ǫx ∈ b, (ǫx, y) ∈ a

with ǫx = ǫ(x).(x ∈ b ∧ (x, y) ∈ a)

(x, y) ∈ a −⊳ b
−⊳

(x, y) ∈ a, (x, Y) 6∈ b | (x, y) ∈ b

y 6∈ a[b]
¬a[b]

X 6∈ b | (X, y) 6∈ a

(x, y) 6∈ a −⊳ b
¬ −⊳

(x, y) 6∈ a, (x, y) 6∈ b | (x, ǫy) ∈ b, (x, y) 6∈ b

with ǫy = ǫ(y).((x, y) ∈ b)

(x, (y, z)) ∈ a⊗ b
⊗

(x, y) ∈ a, (x, z) ∈ b

((x, y), z) ∈ prj
1
(a, b)

prj
1x ∈ a, y ∈ b, z ∈ a, z = x

(x, (y, z)) ∈ a⊗ b
¬⊗

(x, y) 6∈ a | (x, z) 6∈ b

((x, y), z) 6∈ prj
1
(a, b)

¬prj
1

x 6∈ a | y 6∈ b | z 6∈ a | z 6= x

((x, y), z) ∈ prj
2
(a, b)

prj
2x ∈ a, y ∈ b, z ∈ b, z = y

(x, y), (z, t)) ∈ a || b
||

(x, z) ∈ a, (y, t) ∈ b

((x, y), z) 6∈ prj
2
(a, b)

¬prj
2

x 6∈ a | y 6∈ b | z 6∈ b | z 6= y

(x, y), (z, t)) 6∈ a || b
¬||

(x, z) 6∈ a | (y, t) 6∈ b

Rules for Functions

a ∈ b p→ c
p→

T /∈ a, (X,Y) 6∈ a | T /∈ a, (X,Z) 6∈ a | T /∈ a, Y = Z |
∆, (X,Y) /∈ a | ∆, (X,Z) /∈ a | ∆,Y = Z

with ∆ ≡ T = (ǫx, ǫy), ǫx ∈ b, ǫy ∈ c

where ǫx = ǫ(x).∃y (T = (x, y) ∧ (x, y) ∈ b × c)

ǫy = ǫ(y).(T = (ǫx, y) ∧ (ǫx, y) ∈ b × c)

a 6∈ b p→ c
¬ p→

ǫ′x ∈ a, ǫ′x 6= (Y, Z) | ǫ′x ∈ a, Y /∈ b | ǫ′x ∈ a, Z /∈ c |
(ǫx, ǫy) ∈ a, (ǫx, ǫz) ∈ a, ǫy 6= ǫz

with ǫ′
x
= ǫ(x).¬(x ∈ a ⇒ x ∈ b × c)

ǫx = ǫ(x).¬(∀y∀z ((x, y) ∈ a ∧ (x, z) ∈ a ⇒ y = z))

ǫy = ǫ(y).¬(∀z ((ǫx, y) ∈ a ∧ (ǫx, z) ∈ a ⇒ y = z))

ǫz = ǫ(z).¬((ǫx, ǫy) ∈ a ∧ (ǫx, z) ∈ a ⇒ ǫy = z)

Fig. 4. Superdeduction Rules for the B Set Theory (Part 2)

the extensional equality (rules = and 6=) together with the substitution rules
(rules pred and fun) as follows:

¬(P (E) ⇔ P (F))
β¬⇔

¬P (E), P (F)
pred

E 6= F
6=

ǫx 6∈ E, ǫx ∈ F

...
⊙

ǫx ∈ E, ǫx 6∈ F

...
⊙

P (E),¬P (F)

...
⊙

where ǫx = ǫ(x).¬(x ∈ E ⇔ x ∈ F), and where the superdeduction rules for
R : x ∈ E → x ∈ F can be respectively applied on ǫx ∈ E and ǫx 6∈ E.

5.3 Dealing with Relations

As mentioned previously, the superdeduction rules for relations are generated
from proposition rewrite rules of the form R : (x, y) ∈ E → (x, y) ∈ F , where E

and F are relations, and the roots of these rules are therefore either (x, y) ∈ E,
or (x, y) 6∈ E. As a consequence, these rules cannot be applied to formulas in
which pairs are not explicit, such as x ∈ E or x 6∈ E for example. To deal with
this problem, the idea is to add another proposition rewrite rule for the product,
i.e. the rule R : x ∈ a × b → ∃y∃z (x = (y, z) ∧ (y, z) ∈ a × b), which generates
the two following superdeduction rules:

x ∈ a× b
×∗

x = (ǫy, ǫz), ǫy ∈ a, ǫz ∈ b

x 6∈ a× b
¬×∗

x 6= (Y, Z) | Y 6∈ a | Z 6∈ b

where the first rule introduces ǫy = ǫ(y).(∃z (x = (y, z)∧ (y, z) ∈ a× b)), and
ǫz = ǫ(z).(x = (ǫy, z) ∧ (ǫy, z) ∈ a× b)).

For each relation p, we also need to add another proposition rewrite rule of
the form R : x ∈ p → ∃y∃z (x = (y, z) ∧ (y, z) ∈ p), and then generate the
corresponding superdeduction rules. For example, for the inverse relation, we
obtain the rules as follows:

x ∈ a−1

a−1∗

x = (ǫy, ǫz), (ǫz, ǫy) ∈ a

x 6∈ a−1

¬a−1∗

x 6= (Y, Z) | (Z, Y) 6∈ a

where the first rule introduces ǫy = ǫ(y).(∃z (x = (y, z) ∧ (y, z) ∈ a−1)), and
ǫz = ǫ(z).(x = (ǫy, z) ∧ (ǫy, z) ∈ a−1).

With these new rules, we can prove p ⊆ a× b ⇒ x ∈ p ⇒ x ∈ (p−1)−1 in the
following way (we start the proof after the series of α¬⇒ has been applied, and
we do not detail the definitions of the involved ǫ-terms):

p ⊆ a× b, x ∈ p, x 6∈ (p−1)−1

⊆
X 6∈ p

...
⊙

X ∈ a× b
×∗

X = (ǫy, ǫz), ǫy ∈ a, ǫz ∈ b
¬a−1∗

x 6= (Y, Z)

...
⊙

(Z, Y) 6∈ p−1

¬a−1

(Y, Z) 6∈ p
pred

x 6= (Y, Z)

...
⊙

p 6= p
⊙r⊙

where X, Y , and Z are respectively instantiated by x, ǫy, and ǫz.

6 Implementation and Benchmarks

The implementation of our extension of Zenon for the B set theory described
in Sec. 5 has been possible thanks to the ability of Zenon to extend its core of
deductive rules to match specific requirements like superdeduction. Concretely,
this extension is an OCaml file in which the superdeduction rules of Figs. 3
and 4 are implemented (about 2,000 lines of code). This file is loaded through
command-line options when Zenon is started, along with a Coq file containing
the translation of the superdeduction rules and used to generate Coq proofs.

As said in the introduction, one of the main motivations for this extension
of Zenon for the B set theory is to verify B proof rules of Atelier B [9], and
in particular rules coming from the database maintained by Siemens IC-MOL.
Concretely, a rule is mainly a set formula with guards, which are used to control
the application of the rule (verifying that a given hypothesis is in the context,
for example). The verification of a rule has been formally described in [15], and
consists in verifying that the rule is well-typed, well-defined, and that it can
be derived using the rules of the B proof system (see [1]). Over the last few
years, Siemens IC-MOL has developed a formal and mechanized environment,
named BCARe, which is dedicated to the rule verification, and which relies in
particular on a deep embedding of the B set theory in Coq, called BCoq. In this
environment, our extension of Zenon is supposed to deal with the last step of
verification of a rule, i.e. the derivation of the rule within the B proof system.

Regarding benchmarks, we consider a selection of B proof rules coming from
the database maintained by Siemens IC-MOL. This selection actually consists of
well-typed and well-defined rules, which involve all the B set constructs currently
handled by the implementation of our extension of Zenon, i.e. all the constructs
of Chap. 2 of the B-Book [1] until the override construct (noted −⊳). This repre-
sents a subset of 1,397 rules, and we propose two benchmarks whose results are
gathered in Figs. 5 and 6.

The first benchmark aims to compare our extension of Zenon with the ap-
proach coming from another experiment described in [15]. In this approach,
Zenon is simply used as a first order theorem prover (no set theory is added),

0.01

0.1

1

10

100

1000

0 50 100 150 200

Zenon FOL

Z
en

o
n

 S
u

p
er

d
ed

u
ct

io
n

Fig. 5. Proof Time Comparative Benchmark

and the set formulas must be preliminarily normalized in order to obtain first
order logic formulas containing only the ∈ set operator (which is considered as
an uninterpreted predicate symbol). This pre-normalization is performed in Coq
(within the BCoq embedding), before calling Zenon. Over the 1,397 selected rules,
our extension of Zenon is able to prove 1,340 rules (96%), while our initial ap-
proach can deal with 1,145 rules (82%), which represents an increase of 195 rules
(14%). The difference of proved rules mostly comes from ineffective parts of the
implementation of our initial approach, which still have to be optimized, and is
not due to the incompleteness of this approach (which is not pointed out over
the considered subset of rules).

The graph of Fig. 5 presents a comparison of both approaches in terms of
proof time (run on an Intel Core i5-2500K 3.30GHz/12GB computer) for a subset
of the 1,397 selected rules, where both approaches succeed in finding a proof (the
time measurement includes the compilation of Coq proofs generated by Zenon),
i.e. for 1,145 rules. In this figure, a point represents the result for a rule, and the
x/y-axes respectively correspond to the Zenon approach with pre-normalization

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400

Extension B Set Theory

E
xt

en
si

o
n

 S
u

p
er

d
ed

u
ct

io
n

Fig. 6. Proof Size Comparative Benchmark

of the formulas and to our extension of Zenon using superdeduction. For each
point under the triangled curve, our extension based on superdeduction is at
least 10 times faster than our initial approach with pre-normalization of the
formulas; under the crossed curve, it is 100 times faster, and under the squared
curve, it is 1,000 times faster. We can observe that there is a lot of rules for
which the proof is 10 or 100 times faster with superdeduction, and on average,
the superdeduction proofs are obtained 67 times faster (the best ratio is 1,540).
These results are quite satisfactory in the sense that our extension based on
superdeduction solves the inefficiency issues of our initial approach (mainly due
to the pre-normalization, which is highly time-consuming).

We propose a second benchmark whose purpose is to emphasize the proof
size speed-up offered by superdeduction. In this benchmark, the idea is to com-
pare our extension of Zenon using superdeduction with another extension of
Zenon for the B set theory, where the proposition rewrite rules are not computed
into superdeduction rules, but just unfolded/folded (like in Prawitz’s initial ap-
proach [20]). The comparison consists in computing the number of proof nodes

of each proof generated by Zenon. We consider a subset of 1,340 rules, i.e. the
rules for which both extensions succeed in finding a proof. The results are sum-
marized by the graph of Fig. 6, where a point represents the result for a rule, and
where the x/y-axes respectively correspond to the extension without and with
superdeduction. As can be seen, the major part of proofs in superdeduction are
shorter than the proofs where the rules have not been computed and on average,
the former have 1.6 times less proof nodes than the latter (the best ratio is 6.25).

The previous benchmarks tend to show that the use of our extension of
Zenon for the B set theory and based on superdeduction is quite effective in
practice, and very promising in terms of scalability. In particular, this could be
also applied to the verification of B proof obligations (which involve much larger
formulas than B proof rules).

7 A Generic Implementation for First Order Theories

In this section, we present another extension of Zenon with superdeduction,
which is able to deal with any first order theory. In this extension, the theory is
analyzed to determine the axioms that can be turned into superdeduction rules,
and these superdeduction rules are automatically computed on the fly to enrich
the deductive kernel of Zenon. We also provide a comparative benchmark coming
from the TPTP library, which contains a large set of first order problems, and
which is usually used to test the implementations of automated theorem provers.

7.1 From Theories to Superdeduction Systems

This extension of Zenon is actually a generalization of the previous one dedicated
to the B set theory, where superdeduction rules are automatically computed on
the fly. In the previous extension, superdeduction rules are hard-coded since the
B set theory is a higher order theory due to one of the axioms of the theory (the
comprehension scheme), and we have to deal with this axiom specifically in the
implementation of Zenon. Even though some techniques exist to handle higher
order theories as first order theories (like the theory of classes, for example), a
hard-coding of these theories may be preferred as these techniques unfortunately
tend to increase the entropy of the proof search. In addition, in the previous
extension, some of the superdeduction rules must be manually generated as they
must be shrewdly tuned (ordering the several branches of the rules, for instance)
to make the tool efficient. The new extension of Zenon dealing with any first
order theory has been developed as a tool called Super Zenon [16], where each
theory is analyzed to determine the axioms that are candidates to be turned
into superdeduction rules. As said in Sec. 4, axioms of the form ∀x̄ (P ⇔ ϕ),
where P is atomic, can be transformed, but we can actually deal with more
axioms, in particular with axioms of the form ∀x̄ (P ⇒ ϕ), which is actually
equivalent to perform polarized deduction modulo as introduced in [12]. Here is
the exhaustive list of axioms that can be handled by Super Zenon, as well as the
corresponding superdeduction rules that can be generated (in the following, P
and P ′ are atomic, and ϕ is an arbitrary formula):

– Axiom of the form ∀x̄ (P ⇔ ϕ): we consider the proposition rewrite rule
R : P → ϕ, and the two superdeduction rules R and ¬R are generated;

– Axiom of the form ∀x̄ (P ⇒ P ′): we consider the proposition rewrite rules
R : P → P ′ and R′ : ¬P ′ → ¬P , and only the superdeduction rules R and
R′ are generated;

– Axiom of the form ∀x̄ (P ⇒ ϕ): we consider the proposition rewrite rule
R : P → ϕ, and only the superdeduction rule R is generated;

– Axiom of the form ∀x̄ (ϕ ⇒ P): we consider the proposition rewrite rule
R : ¬P → ¬ϕ, and only the superdeduction rule R is generated;

– Axiom of the form ∀x̄ P : we consider the degenerated proposition rewrite
rule R : ¬P → ⊥, and only the superdeduction rule R is generated.

The axioms of the theory that are not of these forms are left as regular ax-
ioms. An axiom that is of one of these forms is also left as a regular axiom if the
conclusion of one of the generated superdeduction rules (i.e. the top formula of
one of these rules) unifies with the conclusion of an already computed superde-
duction rule (in this case, the theory is actually non-deterministic, and we try to
minimize this source of non-determinism by dividing these incriminated axioms
among the sets of superdeduction rules and regular axioms). An axiom that is
of one of these forms is still left as a regular axiom if P is an equality (as we
do not want to interfere with the specific management of equality by the kernel
of Zenon). Finally, for axioms of the form ∀x̄ (P ⇒ P ′), we also consider the
proposition rewrite rule that corresponds to the converse of the initial formula;
this actually allows us to keep cut-free completeness in this particular case.

7.2 Benchmark from the TPTP Library

To assess the effectiveness of Super Zenon compared to the regular version of
Zenon, we propose a benchmark that consists of problems coming from the TPTP
library [23]. This library is a large collection of problems, which is used to test the
implementations of automated theorem provers in particular. From this library,
we consider a selection of problems that consists of the set of non-clausal first
order problems, i.e. the problems of the FOF category in the TPTP library.
The results of this experiment (run on an Intel Pentium D Xeon 3.60GHz/32GB
computer) are summarized in Tab. 1, where both Zenon and Super Zenon are
called over the problems of the FOF category. As can be observed, Super Zenon
is able to prove more problems than Zenon in the whole FOF category with a
significant rate (about 7%). This rate becomes even much better in some specific
sub-categories of the FOF category, like in the SET sub-category (about 37%),
which gathers problems of set theory. These results in the SET sub-category
tend to confirm the other results described in Sec. 6 in the framework of the B
method, and also tend to show that set theory is an appropriate theory to be
handled by superdeduction and by deduction modulo more generally. In addition
to the problems of the FOF category, Super Zenon has been also applied to the
counter-satisfiable problems of the TPTP library, i.e. problems that are not valid,
and Super Zenon does not find any proof for these problems, which allows us to
have a relative confidence in the correctness of the implementation of this tool.

TPTP

Category
Zenon Super Zenon

FOF

6,644 problems
1,646 1,765 (7.2%)

SET

462 problems
147 202 (37.4%)

Table 1. Experimental Results over the TPTP Library

8 Superdeduction for Automated Deduction

Superdeduction can be seen as a generic method to integrate axiomatic first or-
der theories into deductive formal proof systems, like sequent calculus, as well
as into proof search methods that are very closed to deductive formal proof sys-
tems, like the tableau method, which is a proof search method in sequent calculus
without cut. In particular, as seen previously, it has allowed us to smoothly in-
tegrate the set theory of the B method into the tableau method, which has been
implemented as an extension of the Zenon automated theorem prover, and which
has been used for the verification of B proof rules. The considered approach is
actually so generic that it has been generalized into a new extension of Zenon,
called Super Zenon, which is able to deal with any axiomatic first order theory.
Thus, any user that aims to perform automated deduction in a given axiomatic
first order theory must just provide the theory to Super Zenon, which is able
to automatically integrate a part of this theory as superdeduction rules. The
approach is even more generic since it can be actually implemented in any tool
based on a tableau method. As for the application of superdeduction to other
proof search methods, such as resolution for example, the approach is probably
less straightforward since resolution proofs are actually far from proofs in usual
deductive formal proof systems, like sequent calculus, which makes the intro-
duction of superdeduction rules harder as these rules are pure deduction rules.
However, some work has been done in this direction in the framework of deduc-
tion modulo [13] (whose superdeduction may be considered as a variant), with
a concrete development, called iProver Modulo [8], implemented as an extension
of iProver [17], which is a resolution-based automated theorem prover.

9 Conclusion

We have proposed a method that allows us to develop tableaux modulo theories
using superdeduction. This method has been presented in the framework of the
Zenon automated theorem prover, and applied to the set theory of the B method.
This has allowed us to provide another prover to Atelier B, which can be used
to verify B proof rules automatically. We have also proposed some benchmarks
using rules coming from the database maintained by Siemens IC-MOL. These

benchmarks have emphasized significant speed-ups both in terms of proof time
and proof size compared to previous and alternative approaches. Finally, we have
described another extension of Zenon with superdeduction, called Super Zenon,
which is able to deal with any first order theory. In this extension, the theory is
analyzed to determine the axioms that can be turned into superdeduction rules,
and these superdeduction rules are automatically computed on the fly to enrich
the deductive kernel of Zenon. A comparative benchmark that consists of a large
set of first order problems coming from the TPTP library has shown a significant
improvement of Super Zenon over the regular version of Zenon.

As future work, we must extend our specific implementation realized for ver-
ifying B proof rules in order to deal with a larger set of rules coming from the
database maintained by Siemens IC-MOL. More precisely, the next step is to con-
sider functions, and the corresponding rules should point out the incompleteness
of our initial approach that consists in pre-normalizing the set formulas. For in-
stance, formulas such as { (x, y) | x = y } ∈ a p→ a ⇒ ∃f (f ∈ a p→ a∧(b, b) ∈ f)
should be proved by our extension based on superdeduction, but not by our ini-
tial approach (since an additional normalization is required once f has been
instantiated by the comprehension set in hypothesis). We also plan to enhance
the heuristic used by Super Zenon to transform axioms into superdeduction rules
in order to increase the improvement of Super Zenon over Zenon in the frame-
work of generic theories. In addition, it should be worth building an heuristic
with transformation rules that preserves some important properties (from the
automated deduction point of view) of the initial axiomatic theories, such as
cut-free completeness for example.

Acknowledgement. Many thanks to G. Burel and O. Hermant for their detailed
comments on this paper, to G. Dowek for seminal discussions about this work,
and to D. Doligez for his help in the integration of superdeduction into Zenon.

References

1. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (UK), 1996. ISBN 0-521-49619-5.

2. J.-R. Abrial and L. Mussat. On Using Conditional Definitions in Formal Theories.
In Formal Specification and Development in Z and B (ZB), volume 2272 of LNCS,
pages 317–322, Grenoble (France), Jan. 2002. Springer.

3. J.-M. Andreoli. Logic Programming with Focusing Proofs in Linear Logic. Journal
of Logic and Computation (JLC), 2(3):297–347, June 1992.

4. R. Bonichon. TaMeD: A Tableau Method for Deduction Modulo. In International
Joint Conference on Automated Reasoning (IJCAR), volume 3097 of LNCS, pages
445–459, Cork (Ireland), July 2004. Springer.

5. R. Bonichon, D. Delahaye, and D. Doligez. Zenon: An Extensible Automated
Theorem Prover Producing Checkable Proofs. In Logic for Programming Artificial
Intelligence and Reasoning (LPAR), volume 4790 of LNCS/LNAI, pages 151–165,
Yerevan (Armenia), Oct. 2007. Springer.

6. P. Brauner, C. Houtmann, and C. Kirchner. Principles of Superdeduction. In
Logic in Computer Science (LICS), pages 41–50, Wrocław (Poland), July 2007.
IEEE Computer Society Press.

7. G. Burel. Efficiently Simulating Higher-Order Arithmetic by a First-Order Theory
Modulo. Logical Methods in Computer Science (LMCS), 7(1):1–31, Mar. 2011.

8. G. Burel. Experimenting with Deduction Modulo. In Conference on Automated De-
duction (CADE), volume 6803 of LNCS/LNAI, pages 162–176, Wrocław (Poland),
July 2011. Springer.

9. ClearSy. Atelier B 4.1.1, Dec. 2013. http://www.atelierb.eu/.
10. S. Colin, D. Petit, V. Poirriez, J. Rocheteau, R. Marcano, and G. Mariano. BRIL-

LANT: An Open Source and XML-based platform for Rigourous Software Devel-
opment. In Software Engineering and Formal Methods (SEFM), pages 373–382,
Koblenz (Germany), Sept. 2005. IEEE Computer Society Press.

11. D. Delahaye and M. Jacquel. Recovering Intuition from Automated Formal Proofs
using Tableaux with Superdeduction. Electronic Journal of Mathematics and Tech-
nology (eJMT), 7(2), Feb. 2013.

12. G. Dowek. What is a Theory? In Symposium on Theoretical Aspects of Com-
puter Science (STACS), volume 2285 of LNCS, pages 50–64, Antibes Juan-les-Pins
(France), Mar. 2002. Springer.

13. G. Dowek, T. Hardin, and C. Kirchner. Theorem Proving Modulo. Journal of
Automated Reasoning (JAR), 31(1):33–72, Sept. 2003.

14. D. Déharbe. Integration of SMT-Solvers in B and Event-B Development Environ-
ments. Science of Computer Programming (SCP), 78(3):310–326, Mar. 2013.

15. M. Jacquel, K. Berkani, D. Delahaye, and C. Dubois. Verifying B Proof Rules
using Deep Embedding and Automated Theorem Proving. Software and Systems
Modeling (SoSyM), pages 1–19, June 2013.

16. M. Jacquel and D. Delahaye. Super Zenon, version 0.0.1. Siemens and Cnam, May
2012. http://cedric.cnam.fr/~delahaye/super-zenon/.

17. K. Korovin. iProver – An Instantiation-Based Theorem Prover for First-Order
Logic (System Description). In International Joint Conference on Automated Rea-
soning (IJCAR), volume 5195 of LNCS, pages 292–298, Sydney (Australia), Aug.
2008. Springer.

18. G. Nelson and D. C. Oppen. Simplification by Cooperating Decision Procedures.
ACM Transactions on Programming Languages and Systems (TOPLAS), 1(2):245–
257, Oct. 1979.

19. D. Pastre. Strong and Weak Points of the Muscadet Theorem Prover – Examples
from CASC-JC. AI Communications, 15(2–3):147–160, July 2002.

20. D. Prawitz. Natural Deduction. A Proof-Theoretical Study. Stockholm Studies in
Philosophy, 3, 1965.

21. M. Schmalz. Term Rewriting in Logics of Partial Functions. In International Con-
ference on Formal Engineering Methods (ICFEM), volume 6991 of LNCS, pages
633–650, Durham (UK), Oct. 2011. Springer.

22. R. E. Shostak. Deciding Combinations of Theories. Journal of the Association for
Computing Machinery (JACM), 31(1):1–12, Jan. 1984.

23. G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF
and CNF Parts, v3.5.0. Journal of Automated Reasoning (JAR), 43(4):337–362,
Dec. 2009.

24. The Coq Development Team. Coq, version 8.4pl4. Inria, May 2014.
http://coq.inria.fr/.

25. W. Windsteiger. An Automated Prover for Zermelo-Fraenkel Set Theory in The-

orema. Journal of Symbolic Computation (JSC), 41(3–4):435–470, Mar. 2006.

