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A compactness result for a Gelfand-Liouville system with Lipschitz condition

INTRODUCTION AND MAIN RESULTS

We set ∆ = ∂ 11 + ∂ 22 on open set Ω of R 2 with a smooth boundary.

We consider the following equation:

(P )            -∆u = V e v in Ω ⊂ R 2 , -∆v = W e u in Ω ⊂ R 2 , u = 0 in ∂Ω, v = 0 in ∂Ω.
Here:

0 ∈ ∂Ω When u = v, the above system is reduced to an equation which was studied by many authors, with or without the boundary condition, also for Riemann surfaces, see [START_REF] Aubin | Some Nonlinear Problems in Riemannian Geometry[END_REF][START_REF] Bandle | Isoperimetric Inequalities and Applications[END_REF][START_REF] Bartolucci | sup+Cinf" inequality for Liouville-type equations with singular potentials[END_REF][START_REF] Bartolucci | A 'sup+Cinf' inequality for the equation -∆u = V e u /|x| 2α[END_REF][START_REF] Brezis | A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities[END_REF][START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF][START_REF] Chen | A priori estimates for solutions to nonlinear elliptic equations[END_REF][START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF][START_REF] De Figueiredo | A priori Estimates and Existence of Positive Solutions of Semilinear Elliptic Equations[END_REF][START_REF] De Figueiredo | Semilinear elliptic systems with exponential nonlinearities in two dimensions[END_REF][START_REF] Dupaigne | Regularity of the extremal solutions for the Liouville system[END_REF][START_REF] Yy | Blow-up analysis for solutions of -∆u = V e u in dimension two[END_REF][START_REF] Yy | Harnack Type Inequality: the method of moving planes[END_REF][START_REF] Ma | Convergence for a Liouville equation[END_REF][START_REF] Montenegro | Minimal solutions for a class of ellptic systems[END_REF][START_REF] Shafrir | A sup+inf inequality for the equation -∆u = V e u[END_REF], one can find some existence and compactness results, also for a system.

Among other results, we can see in [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF] the following important Theorem, Theorem A. ).Consider the case of one equation; if (u i ) i = (v i ) i and (V i ) i = (W i ) i are two sequences of functions relatively to the problem (P ) with, 0 < a ≤ V i ≤ b < +∞, then, for all compact set K of Ω, sup K u i ≤ c = c(a, b, K, Ω).

Theorem B (Brezis-Merle [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]).Consider the case of one equation and assume that (u i ) i and (V i ) i are two sequences of functions relatively to the previous problem (P ) with, 0 ≤ V i ≤ b < +∞, and,

Ω e u i dy ≤ C, then, for all compact set K of Ω, sup K u i ≤ c = c(b, C, K, Ω).
Next, we call energy the following quantity:

E = Ω e u i dy.
The boundedness of the energy is a necessary condition to work on the problem (P ) as showed in [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF], by the following counterexample.

Theorem C (Brezis-Merle [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]).Consider the case of one equation, then there are two sequences (u i ) i and Note that in [START_REF] Dupaigne | Regularity of the extremal solutions for the Liouville system[END_REF], Dupaigne-Farina-Sirakov proved (by an existence result of Montenegro, see [START_REF] Ma | Convergence for a Liouville equation[END_REF]) that the solutions of the above system when V and W are constants can be extremal and this condition imply the boundedness of the energy and directly the compactness. Note that in [START_REF] De Figueiredo | Semilinear elliptic systems with exponential nonlinearities in two dimensions[END_REF], if we assume (in particular) that ∇ log V and ∇ log W and V > a > 0 or W > a ′ > 0 and V, W are nonegative and uniformly bounded then the energy is bounded and we have a compactness result.

(V i ) i of the problem (P ) with, 0 ≤ V i ≤ b < +∞,
Note that in the case of one equation, we can prove by using the Pohozaev identity that if +∞ > b ≥ V ≥ a > 0, ∇V is uniformely Lipschitzian that the energy is bounded when Ω is starshaped. In [START_REF] Yy | Harnack Type Inequality: the method of moving planes[END_REF] Ma-Wei, using the moving-plane method showed that this fact is true for all domain Ω with the same assumptions on V . In [START_REF] De Figueiredo | Semilinear elliptic systems with exponential nonlinearities in two dimensions[END_REF] De Figueiredo-do O-Ruf extend this fact to a system by using the moving-plane method for a system.

Theorem C, shows that we have not a global compactness to the previous problem with one equation, perhaps we need more information on V to conclude to the boundedness of the solutions. When ∇ log V is Lipschitz function, Chen-Li and Ma-Wei see [START_REF] Chen | A priori estimates for solutions to nonlinear elliptic equations[END_REF] and [START_REF] Yy | Harnack Type Inequality: the method of moving planes[END_REF], showed that we have a compactness on all the open set. The proof is via the moving plane-Method of Serrin and Gidas-Ni-Nirenberg. Note that in [START_REF] De Figueiredo | Semilinear elliptic systems with exponential nonlinearities in two dimensions[END_REF], we have the same result for this system when ∇ log V and ∇ log W are uniformly bounded. We will see below that for a system we also have a compactness result when V and W are Lipschitzian. Now consider the case of one equation. In this case our equation have nice properties.

If we assume V with more regularity, we can have another type of estimates, a sup + inf type inequalities. It was proved by Shafrir see [START_REF] Shafrir | A sup+inf inequality for the equation -∆u = V e u[END_REF], that, if (u i ) i , (V i ) i are two sequences of functions solutions of the previous equation without assumption on the boundary and, 0 < a ≤ V i ≤ b < +∞, then we have the following interior estimate:

C a b sup K u i + inf Ω u i ≤ c = c(a, b, K, Ω).
Now, if we suppose (V i ) i uniformly Lipschitzian with A the Lipschitz constant, then, C(a/b) = 1 and c = c(a, b, A, K, Ω), see [START_REF] Brezis | A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities[END_REF].

Here we are interested by the case of a system of this type of equation. First, we give the behavior of the blow-up points on the boundary and in the second time we have a proof of compactness of the solutions to Gelfand-Liouville type system with Lipschitz condition.

Here, we write an extention of Brezis-Merle Problem (see [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]) is:

Problem. Suppose that V i → V and W i → W in C 0 ( Ω), with, 0 ≤ V i ≤ b 1 and 0 ≤ W i ≤ b 2 for some positive constants b 1 , b 2
. Also, we consider a sequence of solutions (u i ), (v i ) of (P ) relatively to

(V i ), (W i ) such that, Ω e u i dx ≤ C 1 , Ω e v i dx ≤ C 2 ,
is it possible to have:

||u i || L ∞ ≤ C 3 = C 3 (b 1 , b 2 , C 1 , C 2 , Ω)?
and,

||v i || L ∞ ≤ C 4 = C 4 (b 1 , b 2 , C 1 , C 2 , Ω)?
In this paper we give a caracterization of the behavior of the blow-up points on the boundary and also a proof of the compactness theorem when V i and W i are uniformly Lipschitzian. For the behavior of the blow-up points on the boundary, the following condition are enough,

0 ≤ V i ≤ b 1 , 0 ≤ W i ≤ b 2 ,
The conditions V i → V and W i → W in C 0 ( Ω) are not necessary.

But for the proof of the compactness for the Gelfand-Liouville type system (Brezis-Merle type problem) we assume that:

||∇V i || L ∞ ≤ A 1 , ||∇W i || L ∞ ≤ A 2 .
Our main result are: Theorem 1.1. Assume that max Ω u i → +∞ and max Ω v i → +∞ Where (u i ) and (v i ) are solutions of the probleme (P ) with:

0 ≤ V i ≤ b 1 ,
and

Ω e u i dx ≤ C 1 , ∀ i,

and,

0 ≤ W i ≤ b 2 ,
and

Ω e v i dx ≤ C 2 , ∀ i,
then; after passing to a subsequence, there is a finction u, there is a number N ∈ N and N points x 1 , x 2 , . . . , x N ∈ ∂Ω, such that,

∂Ω ∂ ν u i ϕ → ∂Ω ∂ ν uϕ + N j=1 α j ϕ(x j ), α j ≥ 4π,
for any ϕ ∈ C 0 (∂Ω), and,

u i → u in C 1 loc ( Ω -{x 1 , . . . , x N }). ∂Ω ∂ ν u i ϕ → ∂Ω ∂ ν uϕ + N j=1 β j ϕ(x j ), β j ≥ 4π,
for any ϕ ∈ C 0 (∂Ω), and,

v i → v in C 1 loc ( Ω -{x 1 , . . . , x N }).
In the following theorem, we have a proof for the global a priori estimate which concern the problem (P ).

Theorem 1.2. Assume that (u i ), (v i ) are solutions of (P ) relatively to (V i ), (W i ) with the following conditions:

x 1 = 0 ∈ ∂Ω, and,

0 ≤ V i ≤ b 1 , ||∇V i || L ∞ ≤ A 1 ,
and

Ω e u i ≤ C 1 , 0 ≤ W i ≤ b 2 , ||∇W i || L ∞ ≤ A 2 ,
and

Ω e v i ≤ C 2 ,
We have,

||u i || L ∞ ≤ C 3 (b 1 , b 2 , A 1 , A 2 , C 1 , C 2 , Ω),
and,

||v i || L ∞ ≤ C 4 (b 1 , b 2 , A 1 , A 2 , C 1 , C 2 , Ω),

PROOF OF THE THEOREMS

Proof of theorem 1.1:

Since V i e v i and W i e u i are bounded in L 1 (Ω), we can extract from those two sequences two subsequences which converge to two nonegative measures µ 1 and µ 2 .

If µ 1 (x 0 ) < 4π, by a Brezis-Merle estimate for the first equation, we have e u i ∈ L 1+ǫ around x 0 , by the elliptic estimates, for the second equation, we have v i ∈ W 2,1+ǫ ⊂ L ∞ around x 0 , and , returning to the first equation, we have u i ∈ L ∞ around x 0 .

If µ 2 (x 0 ) < 4π, then u i and v i are also locally bounded around x 0 . Thus, we take a look to the case when, µ 1 (x 0 ) ≥ 4π and µ 2 (x 0 ) ≥ 4π. By our hypothesis, those points x 0 are finite.

We will see that inside Ω no such points exist. By contradiction, assume that, we have µ 1 (x 0 ) ≥ 4π. Let us consider a ball B R (x 0 ) which contain only x 0 as nonregular point. Thus, on ∂B R (x 0 ), the two sequence u i and v i are uniformly bounded. Let us consider:

-∆z i = V i e v i in B R (x 0 ) ⊂ R 2 , z i = 0 in ∂B R (x 0 ).
By the maximum principle we have:

z i ≤ u i
and z i → z almost everywhere on this ball, and thus,

e z i ≤ e u i ≤ C,
and,

e z ≤ C.
but, z is a solution to the following equation:

-∆z = µ 1 in B R (x 0 ) ⊂ R 2 , z = 0 in ∂B R (x 0 ).
with, µ 1 ≥ 4π and thus, µ 1 ≥ 4πδ x 0 and then, by the maximum principle:

z ≥ -2 log |x -x 0 | + C
thus,

e z = +∞,
which is a contradiction. Thus, there is no nonregular points inside Ω Thus, we consider the case where we have nonregular points on the boundary, we use two estimates:

∂Ω ∂ ν u i dσ ≤ C 1 , ∂Ω ∂ ν v i dσ ≤ C 2 ,
and,

||∇u i || L q ≤ C q , ||∇v i || L q ≤ C ′ q , ∀ i and 1 < q < 2.
We have the same computations, as in the case of one equation.

We consider a points x 0 ∈ ∂Ω such that:

µ 1 (x 0 ) < 4π.
We consider a test function on the boundary η we extend η by a harmonic function on Ω, we write the equation:

-∆((u i -u)η) = (V i e v i -V e v )η+ < ∇(u i -u)|∇η >= f i with, |f i | ≤ 4π -ǫ + o(1) < 4π -2ǫ < 4π, -∆((v i -v)η) = (W i e u i -W e u )η+ < ∇(v i -v)|∇η >= g i , with, |g i | ≤ 4π -ǫ + o(1) < 4π -2ǫ < 4π,
By the Brezis-Merle estimate, we have uniformly, e u i ∈ L 1+ǫ around x 0 , by the elliptic estimates, for the second equation, we have v i ∈ W 2,1+ǫ ⊂ L ∞ around x 0 , and , returning to the first equation, we have u i ∈ L ∞ around x 0 .

We have the same thing if we assume:

µ 2 (x 0 ) < 4π.
Thus, if µ 1 (x 0 ) < 4π or µ 2 (x 0 ) < 4π, we have for R > 0 small enough:

(u i , v i ) ∈ L ∞ (B R (x 0 ) ∩ Ω).
By our hypothesis the set of the points such that:

µ 1 (x 0 ) ≥ 4π, µ 2 (x 0 ) ≥ 4π,
is finite, and, outside this set u i and v i are locally uniformly bounded. By the elliptic estimates, we have the C 1 convergence to u and v on each compact set of Ω -{x 1 , . . . x N }.

Proof of theorem 1.2:

Without loss of generality, we can assume that 0 is a blow-up point (either, we use a translation). Also, by a conformal transformation, we can assume that Ω = B + 1 , the half ball, and ∂ + B + 1 is the exterior part, a part which not contain 0 and on which u i and v i converge in the C 1 norm to u and v. Let us consider B + ǫ , the half ball with radius ǫ > 0.

The Pohozaev identity gives :

B + ǫ ∆u i < x|∇v i > dx = - B + ǫ ∆v i < x|∇u i > dx + ∂ + B + ǫ g(∂ ν u i , ∂ ν v i )dσ, (1) 
Thus,

B + ǫ V i e v i < x|∇v i > dx = - B + ǫ W i e u i < x|∇u i > dx + ∂ + B + ǫ g(∂ ν u i , ∂ ν v i )dσ, (2) 
After integration by parts, we obtain: 

B + ǫ V i e v i dx + B + ǫ < x|∇V i > e v i dx + ∂B + ǫ < ν|∇V i > dσ+

  and, Ω e u i dy ≤ C, and sup Ω u i → +∞.

WW

  i e u i dx + B + ǫ < x|∇W i > e u i dx + ∂B + ǫ < ν|∇W i > dσ = = ∂ + B + ǫ g(∂ ν u i , ∂ ν v i )dσ,Also, for u and v, we have: ν u, ∂ ν v)dσ, If, we take the difference, we obtain: i e u i dx -B + ǫ W e u dx) = = α 1 + β 1 + o(ǫ) + o(1) = o(1), a contradiction.