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JOINT RANK AND VARIABLE SELECTION FOR PARSIMONIOUS

ESTIMATION IN A HIGH-DIMENSIONAL FINITE MIXTURE REGRESSION

MODEL

EMILIE DEVIJVER

Abstract. We study a dimensionality reduction technique for finite mixtures of high-dimensional
multivariate response regression models. Both the dimension of the response and the number of
predictors are allowed to exceed the sample size. We consider predictor selection and rank reduction
to obtain lower-dimensional approximations. A class of estimators with a fast rate of convergence
is introduced. We apply this result to a specific procedure, introduced in [11], where the relevant
predictors are selected by the Group-Lasso.

Finite mixture regression ; Low rank estimation ; Non-asymptotic penalized criterion ; Oracle
inequality ; Variable selection
62H30
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1. Introduction

The popular multivariate response regression model Y = βX+ ε postulates a linear relationship
between a q×n matrix Y containing q responses for n subjects and a p×n matrix X on p predictor
variables. The responses for individual i ∈ {1, . . . , n} are stored in the vector Yi ∈ R

q and the
corresponding predictors are stored in the vector Xi ∈ R

p. In this model, the error term ε is an
unobserved q × n matrix with independent columns ε1, . . . , εn ∼ Nq(0,Σ). The q × p regression
matrix β and the q×q covariance matrix Σ are parameters that need to be estimated. In practice,
however, this model is often too simple for heterogeneous data.

1



2 EMILIE DEVIJVER

This paper considers a finite mixture of K linear multivariate regression models. If the subject
i originates from the class k ∈ {1, . . . , K}, we assume that there exists an unknown matrix of
coefficients βk ∈ R

q×p and an unknown covariance matrix Σk ∈ S
++
q such that the target variable

Yi results from a regression model Yi = βkXi + εi, with εi ∼ Nq(0,Σk). If we use this model to
study complex data with a high number of responses and predictors, the number of parameters
could be quickly larger than the sample size. In order to deal with this issue, we propose to work
with parsimonious models combining two well-known approaches.
The first approach consists in selecting relevant variables. The Lasso estimator, introduced by
Tibshirani [22], is a classical tool. In multiple multivariate regression models, it seems reasonable
to take into account the matrix structure. For this purpose, we focus on row sparsity using the
Group-Lasso estimator, introduced by Yuan and Lin [23]. In our context, the groups correspond to
the rows. Thus if, for k ∈ {1, . . . , K}, a matrix βk has |J | relevant rows, there are |J |q coefficients
to estimate instead of pq per cluster. If |J | ≪ p, the number of parameters to estimate is then
drastically reduced. Moreover, by selecting only the few relevant rows to describe the response,
row sparsity may enhance interpretation.
The second approach is based on rank sparse models, introduced by Anderson [2]. A linear model
is rank sparse if the regression matrix has low rank or can at least be well approximated by a
low-rank matrix. In our model, for each k ∈ {1, . . . , K}, if the matrix βk has rank Rk, βk is fully
determined by Rk(p+ q −Rk) coefficients, which may be smaller than the sample size nq. These
low-rank regression matrices appear in many applications, e.g., analysis of fMRI image data [13]
and the analysis of EEG data decoding [2]. Moreover, note that low-rank estimation generalizes
principal component analysis, often used to reduce the dimension of multivariate data.
Bunea et al. [8] mix these two estimators to provide a row and rank sparse estimator for the linear
model. In practice, row and rank sparse approaches are combined to benefit from the two methods:
fewer parameters to estimate, better interpretation thanks to the selection of relevant variables,
and better estimation for data with low-rank structure. In [11], a method has been proposed, called
the Lasso-Rank procedure, which combines both sparsity constraints for finite-mixture regression
models. Heterogeneous data are then described by several clusters.
In this article, we focus on the theoretical aspects of combining row and rank sparse structures.
Assuming such a structure for linear models, Bunea et al. [8] obtain substantial oracle rate im-
provements over the existing methods, especially when the estimated rank is low. In this paper,
we give a similar result for finite-mixture regression models. Note that, in contrast to Bunea et
al. [8], we do not need to assume that the covariance matrices Σ1, . . . ,ΣK are known. Therefore,
our result generalizes theirs even in the case K = 1. Furthermore, our result does not assume
strong assumptions on the design and on the true underlying density. We discuss its merits under
classical assumptions and show that it can also serve to justify the model selection step of the
Lasso-Rank procedure used to construct a collection of models.
For the general model, we construct a penalty satisfying a non asymptotic control of the risk
of the model minimizing the penalized likelihood, among a random collection of row and rank
sparse models. However, the penalty achieving the oracle type inequality is only known up to
multiplicative constants. As these quantities depend on bounds on the parameters that are difficult
to construct in practice, we propose to calibrate the required constants using slope heuristics.
Since the geometry of mixture models is complex, we use tools which are different from [8]. Our
result exploits a generalization of a model selection theorem for maximum likelihood estimation in
a regression framework developed by Cohen and Le Pennec in [9]. The main difficulty lies in the
randomness of the collection of models under consideration. Indeed, as the number of responses
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and predictors is potentially high, the whole collection of models is not tractable in practice. Thus,
we do not look at every possible sparsity level but rather focus on a random subset constructed
from the data. As an example, in the Lasso-Rank procedure, this random subset corresponding to
the relevant rows is constructed using the Group-Lasso estimator along the regularization path.
To solve this issue, we use an extension of the model selection theorem proved in [10].
The paper is organized as follows. In Section 2, we introduce finite mixtures of linear regression
models, and we describe the collection of models we consider. In Section 3, we define the diver-
gences we need, and we derive an oracle type inequality. Section 4 investigates the Lasso-Rank
procedure, which is a specific procedure used to construct the random subcollection. All proofs
are relegated to an Appendix.

2. The model and the collection of models

2.1. Mixture of linear regression models. Let (X1,Y1), . . . , (Xn,Yn) be a random sample,
and let xi and yi denote the observed values of the random variables Xi ∈ R

p and Yi ∈ R
q,

respectively. We assume that the response variable Yi depends on the set of explanatory variables
Xi through a regression-type model; its conditional probability density function, denoted s⋆, is
approximated by a mixture of K multivariate Gaussian regression models.
If (Xi,Yi) originates from an individual i in class k, we assume that there exists a matrix of
class-specific regression coefficients βk ∈ R

q×p, a q × q positive-definite matrix Σk, and a random
vector εi ∼ Nq(0,Σk), such that

Yi = βkXi + εi.

We further assume that whatever the values of x1, . . . ,xn, the variables Y1|X1 = x1, . . . ,Yn|Xn =
xn are mutually independent. For each i ∈ {1, . . . , n}, we take Yi|Xi = xi ∼ sKξ (y|xi), with

sKξ (y|x) =
K
∑

k=1

πk

(2π)q/2det(Σk)1/2
exp

{

−(y − βkx)
⊤Σ−1

k (y− βkx)

2

}

,(1)

where ξ = (π1, . . . ,πK ,β1, . . . ,βK ,Σ1, . . . ,ΣK) ∈ ΞK with

(2) ΞK = ΠK × (Rq×p)K × (S++
q )K .

In the above, πk denotes the proportion for class k ∈ {1, . . . , K}. For each such class and all
z ∈ {1, . . . , q} and x = (ζ1, . . . , ζp) ∈ R

p, [βkx]z =
∑p

j=1[βk]z,jζj is the zth component of the kth

mixture component. We set ΠK = {(π1, . . . ,πK) : π1 + · · · + πK = 1} ⊂ (0, 1)K and let S
++
q

denote the collection of symmetric positive definite matrices on R
q.

Moreover, we assume that, for all k ∈ {1, . . . , K}, the covariance matrices Σk are diagonal. As q is
potentially large, it reduces drastically the number of parameters to estimate. From a theoretical
viewpoint, if q is not too large, the current result works for full covariance matrices, focusing on
the eigenvalues. However, if q is large, we are unable to estimate these covariance matrices unless
we make some additional assumptions. One way to allow for correlations might be to construct
block-diagonal covariance matrices as in [12]. This strategy, however, will not be further considered
here.

2.2. Framework and collection of models. In what follows, a row will be said to be relevant if
every coefficient of the row is equal to 0 in every cluster. Otherwise, the row is said to be irrelevant.
We denote by J the set of indices of relevant rows.
Given a model with K clusters, to combine rank and row sparsity, we consider models with rank
R = (R1, . . . ,RK) and relevant rows indexed by j ∈ J . We denote by S(K,J,R) the set of conditional
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probability density functions corresponding to a mixture of K regression models, when focusing
on |J | relevant predictors indexed by j ∈ J , and with matrix of regression coefficients βk of rank
Rk in class k, viz.

S(K,J,R) =
{

s
(K,J,R)
ξ

}

,(3)

where

s
(K,J,R)
ξ (y|x) =

K
∑

k=1

πk

(2π)q/2 det(Σk)1/2

× exp

[

−1

2
{y− (βRk

k )[J ]x}⊤Σ−1
k {y − (βRk

k )[J ]x}
]

with ξ = (π1, . . . ,πK ,β
R1
1 , . . . ,βRK

K ,Σ1, . . . ,ΣK) ∈ Ξ(K,J,R), Ξ(K,J,R) = ΠK ×Ψ(K,J,R) × (S++
q )K ,

and

Ψ(K,J,R) =
{

((βR1
1 )[J ], . . . , (βRK

K )[J ]) ∈ (Rq×p)K such that

∀k∈{1,...,K} rank(βRk

k ) = Rk

}

.

Here, A[J ] stands for the matrix A whose coefficients indexed by j ∈ J are the nonzero coefficients.
The dimension of the model S(K,J,R) is

D(K,J,R) =

K
∑

k=1

{Rk(p+ q −Rk) + q + 1} − 1.

The complete collection of models consists of models with K clusters, row sparsity defined by J
describing all subsets of {1, . . . , p}, and vector of ranks for a fixed K and fixed J belonging to
{1, . . . , |J | ∧ q}K , viz.

S =
⋃

K∈{1,2,...}

⋃

J∈P({1,...,p})

⋃

R∈{1,...,|J |∧q}K
S(K,J,R) =

⋃

(K,J,R)∈M
S(K,J,R).(4)

This collection is generally large and hence not tractable in practice. Therefore, we bound the
number of clusters by restricting our attention to a finite set K ⊂ {1, 2, . . .}. We further focus
on a (potentially random) subcollection J̃ of P({1, . . . , p}) of moderate size, and we reduce the
number of possible vectors of ranks considered by introducing R(K,J) ⊂ {1 . . . , |J | ∧ q}K , where
in general, a ∧ b = min(a, b). Accordingly, we consider

S̃ =
⋃

K∈K

⋃

J∈J̃

⋃

R∈R(K,J)

S(K,J,R) =
⋃

(K,J,R)∈M̃

S(K,J,R).(5)

In order to derive theoretical results, we further assume that the parameters are bounded. Our
bounds are expressed in terms of the singular values of βk and the eigenvalues of the covariance
matrices Σ1, . . . ,ΣK . If we fix K, the number of components, the relevant columns J and the
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vector of ranks R, we define the bounded model by

(6) SB
(K,J,R) =

{

s
(K,J,R)
ξ ∈ S(K,J,R) : ξ = (π,β,Σ), such that

∀k∈{1,...,K} Σk = diag([Σk]1,1, . . . , [Σk]q,q), ∀z∈{1,...,q} aΣ ≤ [Σk]z,z ≤ AΣ,

∀k∈{1,...,K} β
Rk

k =

Rk
∑

r=1

[σk]r[uk
⊤]•,r[vk]r,•, ∀r∈{1,...,Rk} [σk]r < Aσ

}

.

In the above, for k ∈ {1, . . . , K}, [σk]1, . . . , [σk]Rk
denote the singular values of βRk

k , with corre-
sponding unit vectors uk and vk. We are then led to consider the following collection of models:

S̃B =
⋃

K∈K

⋃

J∈J̃

⋃

R∈R(K,J)

SB
(K,J,R).(7)

Finally, we assume that the covariates X belong to an hypercube. Without loss of generality, this
hypercube is taken to be ∈ [0, 1]p.

3. Oracle inequality

In this section, we first introduce the Kullback–Leibler divergence and some extensions thereof
that are useful to compare two conditional probability density functions. We then derive an oracle
type inequality which ensures that if we have penalized the log-likelihood in an appropriate way,
we select a model which is as good as the oracle.

3.1. Kullback–Leibler and Jensen–Kullback–Leibler divergences. We first need to define
divergences used to compare conditional probability density functions. The Kullback–Leibler di-
vergence is defined, for any two probability density functions s and t, by

(8) KL(s, t) =

{

∫

Rq ln
{

s(y)
t(y)

}

s(y)dy if sdy ≪ tdy,

∞ otherwise.

To deal with regression data, for observed covariates x1, . . . ,xn, we define

(9) KL⊗n(s, t) = E

[

1

n

n
∑

i=1

KL{s(·|xi), t(·|xi)}
]

for any two conditional probability density functions s and t.
For any two probability density functions s and t, we also define the Jensen–Kullback–Leibler
divergence, first introduced in [9], by

JKLρ(s, t) =
1

ρ
KL{s, (1− ρ)s+ ρt}

for any ρ ∈ (0, 1). The tensorized version is defined by

JKL⊗n

ρ (s, t) = E

[

1

n

n
∑

i=1

JKLρ {s(·|xi), t(·|xi)}
]

for any two conditional probability density functions s and t. We use the Jensen–Kullback–Leibler
divergence rather than the Kullback–Leibler divergence because it is bounded. This boundedness
turns out to be crucial to control the loss of the penalized maximum likelihood estimator under
mild assumptions on the complexity of the model and on the parameters.



6 EMILIE DEVIJVER

Note that the above divergences are not metrics because they do not satisfy the triangular inequal-
ity and they are not symmetric. Nevertheless, they are very useful for comparing two probability
density functions.

3.2. Oracle inequality for a general procedure to select relevant columns. Among the
collection of models S̃B defined in (7), with various ranks and various level of sparsities, we want
to select a model which is close to the best one. The oracle is by definition the model belonging
to the collection which minimizes the contrast with the true model (here, the contrast considered
is the log-likelihood).
In practice, we cannot identify the true model and hence the oracle is unknown. Nevertheless,
we could select a model close to the oracle. More precisely, we aim at selecting, among S̃B, the
optimal set of predictors J , the optimal number of clusters K, and the optimal vector of ranks R.
First, for each model defined by (K, J,R) ∈ M̃, we consider the conditional probability density
function ŝ(K,J,R) where the parameters are estimated by the maximum likelihood estimator. Among

all (K, J,R) ∈ M̃, we want to select the density ŝ(K̂,Ĵ ,R̂) which is the closest one to the true
distribution s⋆ according to the divergences defined in Section 3.1.
Even if the oracle is not attainable in practice, it turns out that we can do almost as well as the
oracle. This result, which is our main finding, is formally stated below and proved in the Appendix.

Theorem 3.1. Let (x1,y1), . . . , (xn,yn) ∈ [0, 1]p×R
q be the observations arising from an unknown

conditional probability density function s⋆. Let M denotes the set of every potential model and M̃
the restricted set, as defined in (4) and (5), respectively.

Assume that there exist τ > 0 and δKL > 0 such that, for all (K, J,R) ∈ M, one can find

s̄(K,J,R) ∈ SB
(K,J,R) such that

(10) KL⊗n(s⋆, s̄(K,J,R)) ≤ inf
t∈SB

(K,J,R)

KL⊗n(s⋆, t) +
δKL

n
and s̄(K,J,R) ≥ e−τs⋆.

For (K, J,R) ∈ M, let ŝ(K,J,R) denote the maximum likelihood estimator for the model SB
(K,J,R),

satisfying

ŝ(K,J,R) = argmin
s
(K,J,R)
ξ

∈SB

(K,J,R)

[

−1

n

n
∑

i=1

ln
{

s
(K,J,R)
ξ (yi|xi)

}

]

.

Then the following statements hold true.

a) There exist absolute constants κ > 0 and C such that whenever

pen(K, J,R)

≥ κ
D(K,J,R)

n

[

2B2(Aσ, AΣ, aΣ)− ln

{

D(K,J,R)

n
B2(Aσ, AΣ, aΣ) ∧ 1

}

+(1 ∨ τ) ln
{

4epq

(K(1 + |J |)− q2) ∧ pq +
K
∑

k=1

Rk

}]

(11)
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for every (K, J,R) ∈ M, with B(Aσ, AΣ, aΣ) a constant depending only on parameter

bounds, there exists a random vector (K̂, Ĵ, R̂) ∈ M̃ such that

(K̂, Ĵ , R̂) = argmin
(K,J,R)∈M̃

[

−1

n

n
∑

i=1

ln{ŝ(K,J,R)(yi|xi)}+ pen(K, J,R)

]

.

b) Whatever the true density s⋆,

(12) E
{

JKL⊗n

ρ (s⋆, ŝ(K̂,Ĵ,R̂))
}

≤ CE
[

inf
(K,J,R)∈M̃

{

inf
t∈SB

(K,J,R)

KL⊗n(s⋆, t)

+ pen(K, J,R)
}

+
(1 ∨ τ)
n

]

.

This theorem is deduced from an adaptation of a model selection theorem for maximum likelihood
estimators developed by Massart [18]. This adaptation, derived in [11], allows us to focus on
regression models (see also [9]) and to focus on a random subcollection of the whole collection of
models.
In Theorem 3.1, the critical assumptions are the control of the bracketing entropy of each model
in the whole collection of models and the construction of weights for each model to control the
complexity of the collection of models. Assumption (10) on the true density s⋆ is needed because

we consider a random subcollection of models S̃B from the whole collection of models SB. Thanks
to this assumption, we can invoke Bernstein’s inequality to control the additional randomness.
The parameter τ depends on the true unknown density s⋆ and cannot be explicitly determined for
this reason. Specific cases can be discussed, e.g., the true conditional probability density function
s⋆ should not be bounded along Y to allow (10). Moreover, if the true density is Gaussian, we
need to bound the variance of the models from below, which is related to the collection of models
constructed in (6).
While we could make appropriate assumptions on the true density s⋆ in order to determine τ
explicitly, we choose not to do so. Under the assumption that the Kullback–Leibler divergence
and the Hellinger distance are equivalent, we can explicitly determine τ . Then, the result is still
meaningful as the equivalence between the Kullback–Leibler divergence and Hellinger’s distance is
well known. Note that the parameter τ appears in the oracle type inequality (12), but also in the
penalty term (11). We may construct a larger penalty independent of τ , achieving an oracle-type
inequality, but the rate will be larger. Details are discussed in the Appendix.
For all (K, J,R) ∈ M, the mixture parameters are bounded in order to construct brackets over
SB
(K,J,R), and thus to bound the entropy from above.

Because we consider a random sub-collection of models which is small enough, our estimator
ŝ(K,J,R) is tractable in practice. Moreover, we remark that this is a finite sample result, which
allows us to study cases for which p increases with n.

4. Lasso-Rank procedure

In this section, we describe briefly the Lasso-Rank procedure introduced in [11], and we derive a
corollary of Theorem 3.1 in this specific context.
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4.1. Description of the main steps. The Lasso-Rank procedure is a method used to construct
a collection of models as defined in (5). We recall here the main steps of this procedure. To this
end, we assume that we have access to a set of potential number of components K.
A) Row selection. Fix K ∈ K. To detect the relevant rows, the empirical contrast is penalized by
a group-penalty on the conditional mean parameters proportional to

||P−1
k βk||gr =

p
∑

j=1

√
q

√

√

√

√

q
∑

z=1

[P−1
k βk]z,j,

where the Cholesky decomposition Pk
⊤Pk = Σ−1

k defines Pk for all k ∈ {1, . . . , K}. We then
consider, for some choice of regularization parameter λ > 0,

ξ̂GL(λ) = argmin
ξ=(π,β,Σ)∈ΞK

[

−1

n

n
∑

i=1

ln{sKξ (yi|xi)}+ λ

K
∑

k=1

πk||P−1
k βk||gr

]

(13)

with ΞK defined in (2).
We remark that the penalty takes into account the mixture weight as, e.g., introduced in [15].
This is in line with the common practice in relating the penalty to the sample size. We refer the
interested reader to Section 7.1.4 of [21] for an interesting empirical discussion about a penalty
similar to this one, focusing on this mixture weight.
To get models that are more or less sparse, we compute the Group-Lasso estimator defined in (13)

with several regularization parameters λ, and deduce sets of relevant rows, denoted by Ĵ(K,λ) for

all λ. We denote by J GL = ∪λĴ(K,λ).

Remark 1. Notice that here, the Group-Lasso penalty is used to select a subset of variables
for one choice of regularization parameter in the Lasso-Rank procedure. One could also use the
Group-Lasso penalty to get a ranking of the variables, as done, e.g., in Bach [4].

B) Refitting. We estimate the parameters by maximum likelihood estimation under rank constraint
on the restricted set of relevant rows.
C) Model selection. Varying K ∈ K, J ∈ J GL,R ∈ R(K,J), we obtain a collection of models

S =
⋃

K∈K

⋃

J∈JGL

⋃

R∈R(K,J)

S(K,J,R).

In practice, in [11], the slope heuristic is used, which is a data-driven non-asymptotic criterion. It
considers a penalized criterion, where the penalty is proportional to the dimension. There are two
ways to calibrate this proportionality constant, but both consider the minimal coefficient κmin,
the optimal one κopt being approximated by twice the minimal coefficient κmin.
One calibration method is the Slope Heuristic Dimension Jump (SHDJ): κmin corresponds to
the largest dimension jump on the graph representing the model dimension as a function of the
coefficient κ. Another method is the Slope Heuristic Robust Regression (SHRR): κmin corresponds
to the slope of a robust regression performed between the log-likehood and the model dimension
for complex models.
The two methods are derived from the same heuristic and they offer two different visual checks of
the adequacy of the model selection procedure to the data. They should select the same model.
For an implementation of this approach, see Baudry et al. [6] and the Capushe package.
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4.2. Oracle inequality for relevant columns selected by the Group-Lasso estimator.

In this section, we comment the use of Theorem 3.1 for this specific Lasso-Rank procedure. In
general, we are not able to combine this theorem with results on the Group-Lasso to bound the
oracle term, and then to bound the divergence between the model selected and the true conditional
probability density function. However, in some specific contexts, we can control the oracle.
For example, if s⋆ corresponds to a linear regression with sparse rank and a few selected row,
then under some conditions on the design matrix, one can prove that this procedure is adaptive
to row and rank sparsity. This kind of result is discussed in Section 2 of Bunea et al. [8], and we
refer to Lounici et al. [17] for results on the Group-Lasso estimator. However, our theorem stands
non asymptotically and without any assumptions on the design. We have proved that we do the
best possible within the collection, although specific conditions are required to prove that the best
model within the random collection is indeed objectively good. There is here a dirth of theoretical
tools and this challenging topic deserves further consideration.

4.3. Use of the slope heuristic. From a theoretical point of view, we want to ensure that the
slope heuristic which penalizes the log-likelihood with the model dimension selects a good model.
We choose a penalty

pen(K, J,R) = C
D(K,J,R)

n
+ C̃

D(K,J,R)

n
ln

(

D(K,J,R)

n

)

with explicit constants C and C̃ depending on absolute constants and on some bounds on the
parameters. In practice, however, these bounds are not tractable, and so we prefer to calibrate
C and C̃ from the data using the slope heuristic. Moreover, we consider a simple version of the
penalty term, viz.

pen(K, J,R) = C
D(K,J,R)

n
as already proposed in [12] and [16]. The calibration of C from data has originally been proposed
and validated in the context of heteroscedastic regression with fixed design [5, 7], and for ho-
moscedastic regression with fixed design [3]. In this paper, we proved that the shape of an optimal
penalty is close to the one used in the slope heuristic, up to a logarithmic term.
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Appendix

This Appendix contains the details of the proof of Theorem 3.1. It is derived from a general
model selection theorem stated in Part A. The proof of Theorem 3.1 can be derived by checking
Assumptions Hm, Sepm and K described in Parts B and C.

A. A general oracle type inequality for model selection

Model selection can be performed using either the AIC or the BIC criterion [1, 20]. An important
limitation of these criteria, however, is that they are asymptotic. Their use in high-dimensional
settings is thus ad hoc. The slope heuristic is a method which overcomes this difficulty. It was
introduced by Birgé and Massart [7].
In [18], Massart proposed a model selection theorem which guarantees that a penalized criterion
leads to a good model selection, the penalty being defined by the model complexity. It provides
support for the slope heuristic approach in a finite sample setting. Cohen and Le Pennec [9]
generalized this theorem to a regression framework. Here, we need a generalization of their result
detailed in [10] because we consider a random collection of models (Sm)m∈M, indexed by M.
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Let (X,Y) ∈ X × Y . We observe x1, . . . ,xn. Let us start with a description of the required
assumptions. First, we impose a structural assumption. It is a bracketing entropy condition on
the model with respect to the tensorized Hellinger divergence

(d⊗n

H )2(s, t) = E

[

1

n

n
∑

i=1

d2H{s(·|xi), t(·|xi)}
]

for two conditional probability density functions s and t. A bracket [ℓ, u] is a pair of functions
such that for all (x,y) ∈ X × Y , ℓ(y,x) ≤ s(y|x) ≤ u(y,x). For ε > 0, the bracketing entropy
H[·](ε, S, d

⊗n

H ) of a set S is defined as the logarithm of the minimum number of brackets [ℓ, u] of
width d⊗n

H (ℓ, u) smaller than ε such that every probability density function of S belongs to one of
these brackets. In what follows, m denotes any fixed element of M.

Assumption Hm. There exists a non-decreasing function ψm such that ̟ 7→ 1/̟ψm(̟) is non-

increasing on (0,∞). Furthermore, for all ̟ ∈ R
+ and sm ∈ Sm,

∫ ̟

0

√

H[·](ε, Sm(sm, ̟), d⊗n

H )dε ≤ ψm(̟),

where Sm(sm, ̟) = {t ∈ Sm : d⊗n

H (t, sm) ≤ ̟}. The model complexity Dm is then defined by n̟2
m

with ̟m standing for the unique solution of

1

̟
ψm(̟) =

√
n̟.(14)

Observe that the model complexity does not depend on the bracketing entropies of the global
models Sm, but rather on those of the smaller localized sets Sm(sm, ̟). This is a weaker assump-
tion.
For technical reasons, a separability assumption is also required. In what follows, λ denotes
Lebesgue’s measure.

Assumption Sepm. There exists a countable subset S
′

m of Sm and a set Y ′

m with λ(Y \ Y ′

m) = 0
such that for every t ∈ Sm, there exists a sequence (tℓ)ℓ≥1 of elements of S

′

m such that for every x

and every y ∈ Y ′

m, ln{tℓ(y|x)} → ln{t(y|x)} as ℓ→ ∞.

This assumption allows us to work with a countable subset. We also need an information theory
type assumption on our collection of models. We assume the existence of a Kraft-type inequality
for the collection.

Assumption K. There exists a family (wm)m∈M of non-negative numbers such that
∑

m∈M
e−wm ≤ Ω <∞.

We are now in a position to state our global theorem for a random subcollection of models in a
regression framework.

Theorem A. Assume we observe (x1,y1), . . . , (xn,yn) ∈ X × Y with unknown conditional prob-

ability density function s⋆. Let S = (Sm)m∈M be an at most countable collection of conditional

probability density function sets. Suppose that Assumption K holds and that Assumptions Hm and
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Sepm are valid for every model Sm ∈ S. Further assume that there exist τ > 0 and δKL > 0 such

that for all m ∈ M, there is an element s̄m of Sm such that

(15) KL⊗n(s⋆, s̄m) ≤ inf
t∈Sm

KL⊗n(s⋆, t) +
δKL

n
and s̄m ≥ e−τs⋆.

Introduce (Sm)m∈M̃ some random sub-collection of (Sm)m∈M. For m ∈ M̃, consider the collection

ŝm of η-log-likelihood minimizer in Sm, satisfying

n
∑

i=1

− ln{ŝm(yi|xi)} ≤ inf
sm∈Sm

[

n
∑

i=1

− ln{sm(yi|xi)}
]

+ η.

Then, for any ρ ∈ (0, 1) and any C1 > 1, there are two constants κ0 and C2 depending only on ρ
and C1 such that, as soon as for every index m ∈ M,

(16) pen(m) ≥ κ{Dm + (1 ∨ τ)wm}

with κ > κ0, and where the model complexity Dm is defined through the equation (14), the penalized

likelihood estimate ŝm̂ with m̂ ∈ M̃ such that

n
∑

i=1

− ln{ŝm̂(yi|xi)}+ pen(m̂) ≤ inf
m∈M̃

[

n
∑

i=1

− ln{ŝm(yi|xi)}+ pen(m)

]

+ η
′

satisfies

E{JKL⊗n

ρ (s⋆, ŝm̂)} ≤ C1E

{

inf
m∈M̃

inf
t∈Sm

KL⊗n(s⋆, t) + 2
pen(m)

n

}

(17)

+ C2(1 ∨ τ)
Ω2

n
+
η′ + η

n
.

Under the conditions of this theorem, we are thus able to choose, within a random subcollection
of models, a representative which is as good as the oracle, up to a constant C1, and some additive
terms of order 1/n. This result is non-asymptotic, and gives a theoretical penalty to select this
model.
The proof of this theorem is detailed in [10]. Nevertheless, we sketch the main ideas here in order
to give the reader a better grasp of the assumptions. From Assumptions Hm and Sepm, one can
call on maximal inequalities to control, except on a set whose probability is less than e−w

m
′−w for

all w, the ratio of the centered empirical process of ln(ŝm′) over the Hellinger distance between
s⋆ and ŝm′ ; the bound is of the order of 1/n. Thanks to Bernstein’s inequality, which is valid in
view of inequality (15), we thus control the process over the random subcollection. Thanks to
Assumption K, we sum up each event over the collection of models. It leads to the oracle type
inequality (17).
Now, to prove Theorem 3.1, we have to satisfy Assumptions Hm and K. As for Assumption Sepm,
it holds for our conditional probability density functions.

B. Assumption Hm
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B1. Decomposition of the mixture conditional probability density function. Proceeding
as in [9], we can decompose the entropy by

H[·](ε,SB
(K,J,R), d

⊗n

H ) ≤ H[·](ε,ΠK , d
⊗n

H ) +
K
∑

k=1

H[·](ε,F(J,Rk), d
⊗n

H ),(18)

where

SB
(K,J,R) =



















y ∈ R
q|x ∈ R

p 7→ s
(K,J,R)
ξ (y|x),

s
(K,J,R)
ξ (y|x) =∑K

k=1 πkϕ
(

y|(βRk

k )[J ]x,Σk

)

,

ξ =
(

π1, . . . ,πK , (β
R1
1 )[J ], . . . , (βRK

K )[J ],Σ1, . . . ,ΣK

)

,

ξ ∈ Ξ(K,J,R) = ΠK × Ψ̃(K,J,R) × ([aΣ, AΣ]
q)K



















,

Ψ(K,J,R) =
{

((βR1
1 )[J ], . . . , (βRK

K )[J ]) ∈ (Rq×p)K : rank(βk) = Rk

}

,

Ψ̃(K,J,R) =

{

((βR1
1 )[J ], . . . , (βRK

K )[J ]) ∈ Ψ(K,J,R) : for all k ∈ {1, . . . , K},

β
Rk

k =

Rk
∑

r=1

σr[u]r,•
⊤[v]r,•, with σr < Aσ for all r ∈ {1, . . . ,Rk}

}

,

ΠK = {(π1, . . . ,πK) : π1 + · · ·+ πK = 1} ⊂ (0, 1)K and

F(J,R) =

{

ϕ(.|(βR)[J ]X,Σ) : βR =
R
∑

r=1

σr[u]r,•
⊤[v]r,•, with σr < Aσ,

Σ = diag(Σ1,1, . . . ,Σq,q) ∈ [aΣ, AΣ]
q











,

where ϕ denotes the Gaussian density. For the proportions, it is known (see, e.g., [14]) that

H[·](ε,ΠK, d
⊗n

H ) ≤ ln

{

K(2πe)K/2

(

3

ε

)K−1
}

.

B.2 Entropy of the Gaussian probability density functions with low rank. We need to
bound the integrated entropy. To this end, first we have to construct some brackets to recover F(J,R)

for fixed rank R and arbitrary set J of relevant rows. Fix f ∈ F(J,R). We are looking for functions ℓ
and u such that ℓ ≤ f ≤ u. Because f is Gaussian, we will choose ℓ and u as Gaussian dilatations.
Therefore, we need only to determine the mean, the variance and the dilatation coefficients of ℓ
and u. To construct these brackets, we rely on the following two lemmas; see [19] for details.

Lemma A Let ϕ(·|µ1,Σ1) and ϕ(·|µ2,Σ2) be two Gaussian probability density functions. Suppose

that their covariance matrices are diagonal, with Σa = diag([Σa]1,1, . . . , [Σa]q,q) for a ∈ {1, 2}, and
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that [Σ2]z,z > [Σ1]z,z > 0 for all z ∈ {1, . . . , q}. Then, for all x ∈ R
q,

ϕ(x|µ1,Σ1)

ϕ(x|µ2,Σ2)
≤

q
∏

z=1

√

[Σ2]z,z
√

[Σ1]z,z

× e
1
2
(µ1−µ2)

⊤diag

(

1
[Σ2]1,1−[Σ1]1,1

,..., 1
[Σ2]q,q−[Σ1]q,q

)

(µ1−µ2)
.

Lemma B. The Hellinger distance between two Gaussian probability density functions with diag-

onal covariance matrices is given by

d2H{ϕ(·|µ1,Σ1), ϕ(·|µ2,Σ2)} = 2− 2

(

q
∏

z=1

2
√

[Σ1]z,z[Σ2]z,z
[Σ1]z,z + [Σ2]z,z

)1/2

× exp

[

−1

4
(µ1 − µ2)

⊤diag

{

(

1

[Σ1]z,z + [Σ2]z,z

)

z∈{1,...,q}

}

(µ1 − µ2)

]

.

To get an ε-bracket for the probability density functions, we have to construct a δ-net for the
variance and the mean for some value of δ to be specified later.

Step 1: Construction of a net for the variance. Fix ε ∈ (0, 1] and δ = ε/
√
2q. Let bj = (1 +

δ)1−j/2AΣ. For each j ∈ {2, . . . N}, we have [aΣ, AΣ] = [bN , bN−1]
⋃ · · ·⋃[b3, b2], where N is

chosen to recover everything. We want

aΣ = (1 + δ)1−N/2AΣ ⇔ ln
aΣ
AΣ

=

(

1− N

2

)

ln(1 + δ)

⇔ N =
2 ln(AΣ

aΣ

√
1 + δ)

ln(1 + δ)
.

As we want N to be an integer, we choose

N =

⌈

2 ln(AΣ

aΣ

√
1 + δ)

ln(1 + δ)

⌉

,

where ⌈·⌉ denotes the ceiling function. We then get a regular net for the variance. We could let
B = diag(bi(1), . . . , bi(q)), close to Σ (and deterministic, independent of the values of Σ), where i
is a permutation such that bi(z)+1 ≤ [Σ]z,z ≤ bi(z) for all z ∈ {1, . . . , q}.

Step 2: Construction of a net for the mean vectors. We use the singular decomposition of β,
β =

∑R
r=1 σr[u]r,•

⊤[v]r,•, with (σr)1≤r≤R the singular values, and ([u]r,•)1≤r≤R and ([v]r,•)1≤r≤R

unit vectors. These vectors are also bounded.
We are looking for ℓ and u such that dH(ℓ, u) ≤ ε, and ℓ ≤ f ≤ u. We use a dilatation of a
Gaussian to construct such an ε-bracket of ϕ. We let

ℓ(x,y) = (1 + δ)−(p2qR+3q/4)ϕ{y|νJ,Rx, (1 + δ)−1/4B1},
u(x,y) = (1 + δ)p

2qR+3q/4ϕ{y|νJ,Rx, (1 + δ)B2},
where B1 and B2 are such that, for all z ∈ {1, . . . , q}, [B1]z,z ≤ Σz,z ≤ [B2]z,z (see step 1).
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The means νJ,R ∈ R
q×p will be specified later. Just remark that J is the set of the relevant

columns, and R the rank of νJ,R: we decompose νJ,R =
∑

R

r=1 σ̃r[ũ]r,•
⊤[ṽ]r,•, with ũ ∈ R

R×|J | and
ṽ ∈ R

R×q. We have

ℓ(x,y) ≤ f(y|x) ≤ u(x,y) ⇔ ||βx− νJ,Rx||22 ≤ p2qR
δ2

2
a2
Σ
(1− 2−1/4).

Note that ||βx− νJ,Rx||22 ≤ p||β − νJ,R||22||x||∞. Thus we need

||β − νJ,R||22 ≤ pqR
δ2

2
a2
Σ
(1− 2−1/4).(19)

According to [10], dH(ℓ, u) ≤ 2(p2qR+ 3q/4)2δ2 and hence by choosing δ = ε/{
√
2(pqR+ 3/4q)},

we get the desired bound. Let us now see how to construct νJ,R to get (19). First write

||β − νJ,R||22 =

p
∑

j=1

q
∑

z=1

∣

∣

∣

∣

∣

R
∑

r=1

σr[u]r,j [v]r,z − σ̃r[ũ]r,j[ṽ]r,z

∣

∣

∣

∣

∣

2

=
∑

j,z

|
R
∑

r=1

|σr − σ̃r||[u]r,j[v]r,z|

−σ̃r|[ũ]r,j − [u]r,j||[ṽ]r,z| − σ̃r[u]r,j|[v]r,z − [ṽ]r,z||2.

Then

||β − νJ,R||22 ≤
p
∑

j=1

q
∑

z=1

∣

∣

∣

∣

∣

R
∑

r=1

|σr − σ̃r|+ Aσ|[ũ]r,j − [u]r,j|+ Aσ|[v]r,z − [ṽ]r,z|
∣

∣

∣

∣

∣

2

≤ 2pqR(max
r

|σr − σ̃r|2 + Aσ max
r,j

|[ũ]r,j − [u]r,j|2

+Aσ max
r,z

|[ṽ]r,z − [v]r,z|2).

If we now choose σ̃r, [ũ]r,j and [ṽ]r,z such that

|σr − σ̃r| ≤
δ√
12
aΣ
√

1− 2−1/4,

|[u]r,j − [ũ]r,j| ≤
δ√
12Aσ

aΣ
√

1− 2−1/4,

|[v]r,z − [ṽ]r,z| ≤
δ√
12Aσ

aΣ
√

1− 2−1/4,

we can conclude, as desired, that

||β − νJ,R||22 ≤ pqR
δ2

2
a2
Σ
(1− 2−1/4).
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To accomplish this, let ⌊·⌋ the floor function and, for all r ∈ {1, . . . , R}, j ∈ {1, . . . , p}, z ∈
{1, . . . , q}, set

S = Z ∩
[

0,

⌊

Aσ

δ√
12
aΣ

√
1− 2−1/4

⌋]

,

σ̃r = argmin
ς∈S

∣

∣

∣

∣

σr −
δ√
12
aΣ
√

1− 2−1/4ς

∣

∣

∣

∣

,

U = Z ∩
[

0,

⌊

Aσ

δ√
12Aσ

aΣ
√
1− 2−1/4

⌋]

,

[ũ]r,j = argmin
µ∈U

∣

∣

∣

∣

[u]r,j −
δ√
12Aσ

aΣ
√

1− 2−1/4µ

∣

∣

∣

∣

,

V = Z ∩
[

0,

⌊

Aσ

δ√
12Aσ

aΣ
√
1− 2−1/4

⌋]

,

[ṽ]r,z = argmin
ν∈V

∣

∣

∣

∣

[v]r,z −
δ√
12Aσ

aΣ
√

1− 2−1/4ν

∣

∣

∣

∣

.

Note that we just need to determine vectors (([ũ]r,j)1≤j≤J−r)1≤r≤R and (([ṽ]r,z)1≤z≤q−r)1≤r≤R be-
cause these are unit vectors. Then we let, for all z ∈ {1, . . . , p},

[νJ,R]z,j =

{

∑R
r=1 σ̃r[ũ]r,j[ṽ]r,z if j ∈ J,

0 if j ∈ Jc.

Step 3: Upper bound of the number of ε-brackets for F(J,R). We have defined the brackets. Let

c = (1 − 2−1/4)/12. We want to control the entropy. We denote by Bε(F(J,R)) the minimum
number of brackets of width d⊗n

H smaller than ε such that every density of F(J,R) belongs to one
of those brackets. We have

|Bε(F(J,R))| ≤
N
∑

l=2

(

Aσ

δaΣ
√
c

)R(
A2

σ

δaΣ
√
c

)R( 2J−R−1
2

+ 2q−R−1
2 )

≤ (N − 1)

(

A2
σ

δaΣ
√
c

)R(J+q−R)

A−R
σ

≤ C(aΣ, AΣ, Aσ, J, R)δ
−D(J,R)−1

with

C(aΣ, AΣ, Aσ, J, R) = 2

(

AΣ

aΣ
+

1

2

)(

A2
σ

aΣ
√
c

)R(J+q−R)

A−R
σ .

B.3 For the mixture. We begin by computing the bracketing entropy: according to (18),

H[·](ε,SB
(K,J,R), dH) ≤ ln

{

C

(

1

ε

)D(K,J,R)

}

,
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where

(20) C = 2KK(2πe)K/23K−1

(

AΣ

aΣ
+

1

2

)K

×
(

Aσ

√
12

a2
Σ

√
1− 2−1/4

)D(K,J,R)

A−∑K
k=1 Rk

σ ,

and D(K,J,R) =
∑K

k=1Rk(|J |+ q −Rk). We must determine ψ(K,J,R) such that
∫ ̟

0

√

H[·](ε,SB
(K,J,R)(s

(K,J,R), ̟), d⊗n

H )dε ≤ ψ(K,J,R)(̟).(21)

To this end, we compute the integral, viz.
∫ ̟

0

√

H[·](ε,SB
(K,J,R)(s

(K,J,R), ̟), d⊗n

H )dε

≤ ̟
√

ln(C) +
√

D(K,J,R)

∫ ̟

0

√

ln

(

1

ε

)

dε

≤
√

D(K,J,R)̟

{

√
π +

√

ln(C)

D(K,J,R)

+

√

ln

(

1

̟ ∧ 1

)

}

with, according to (20),

ln(C) = K ln(2) +
K

2
ln(2πe) + (K − 1) ln(3) +K ln

(

AΣ

aΣ
+

1

2

)

+D(K,J,R) ln

(

A2
σ

√
12

aΣ
√
1− 2−1/4

)

+ ln(K) +

K
∑

k=1

Rk ln

(

1

Aσ

)

≤ D(K,J,R)

{

ln(2) + ln(2πe) + ln 3 + 1 + ln

(

A2
σ

√
12

aΣ
√
1− 2−1/4

)}

+D(K,J,R)

{

ln

(

AΣ

aΣ
+

1

2

)}

≤ D(K,J,R)

[

ln

(

12
√
12πe√

1− 2−1/4

)

+ ln

{

A2
σ

aΣ

(

AΣ

aΣ
+

1

2

)}

]

.

Then
∫ ̟

0

√

H[·](ε,SB
(K,J,R)(s

(K,J,R), ̟), d⊗n

H )dε

≤
√

D(K,J,R)

{

2 +

√

ln

{

A2
σ

aΣ

(

AΣ

aΣ
+

1

2

)}

+

√

ln

(

1

̟ ∧ 1

)

}

.

Consequently, by putting

B = 2 +

√

ln

{

A2
σ

aΣ

(

AΣ

aΣ
+

1

2

)}

,
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we find that the function ψ(K,J,R) defined on (0,∞) by

ψ(K,J,R)(̟) =
√

D(K,J,R)̟

{

B +

√

ln

(

1

̟ ∧ 1

)

}

satisfies (21). Besides, ψ(K,J,R) is non-decreasing and ̟ 7→ ψ(K,J,R)(̟)/̟ is non-increasing, so
ψ(K,J,R) is convenient.
Finally, we need to find an upper bound on ̟∗ satisfying ψ(K,J,R)(̟∗) =

√
n̟2

∗. Consider ̟∗ such

that ψ(K,J,R)(̟∗) =
√

̟2
∗. This is equivalent to solving

̟∗ =

√

D(K,J,R)

n

{

B +

√

ln

(

1

̟∗ ∧ 1

)

}

.

We then choose

̟2
∗ ≤

D(K,J,R)

n

{

2B2 + ln

(

1

1 ∧ D(K,J,R)

n
B2

)}

.

C Assumption K. Let

w(K,J,R) = D̃(K,J) ln

{

4epq

(D̃(K,J) − q2) ∧ pq

}

+
∑

k∈{1,...,K}
Rk,

where D̃(K,J) = K(1 + |J |). Then

∑

(K,J,R)

e−w(K,J,R) ≤
∑

K≥1

(

∑

R≥1

e−R

)K






∑

1≤|J |≤p

e
−D̃(K,J) ln

(

4epq

(D̃(K,J)−q2)∧pq

)







≤
∑

K≥1

1K







∑

1≤|J |≤p

e
−D̃(K,J) ln

(

4epq

(D̃(K,J)−q2)∧pq

)







≤ 2,

where the last inequality stems from Proposition 4.5 in [10].
We observe that the weights depend on (K, J,R), which leads to a sharper control but forces the
penalty to depend on τ , the parameter related to Bernstein’s inequality, according to (16). Larger
weights can be used to avoid this dependence, however. We prefer to use the present weights to
get the thinest control possible.
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