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JOINT RANK AND VARIABLE SELECTION FOR PARSIMONIOUS ESTIMATION

IN HIGH-DIMENSION FINITE MIXTURE REGRESSION MODEL.

EMILIE DEVIJVER

Abstract. We study a dimension reduction method for finite mixture of multivariate response re-
gression models in high dimension. Both the number of responses and of predictors may exceed the
sample size. We consider jointly predictor selection and rank reduction for obtaining lower-dimensional
approximations of parameter matrices. This methodology was already developed in [8]. In this paper,
we prove that these estimators are adaptive to the unknown matrix sparsity. More precisely, we exhibit
a penalty for which the model selected by the penalized likelihood satisfies an oracle inequality. We
support our theoretical result with simulation study and data analysis.

1. Introduction

The multivariate response regression model

Y = βX + E

postulates a linear relationship between Y , the q × n matrix containing q responses for n subjects, and
X , the p×n matrix on p predictor variables. The term E is an q×n matrix with independent columns,
Ei ∼ Nq(0,Σ) for all i ∈ {1, . . . , n}. The unknown q × p coefficient matrix β needs to be estimate. In
a more general way, we could use finite mixture of linear models, which model the relationship between
response and predictors, arising from different subpopulations: if the variable Y , conditionally to X ,
belongs to the cluster k, there exists βk and Σk such that Y = βkX + E, with E ∼ Nq(0,Σk).

If we use this model to deal with high-dimensional data, the number of variables can be quickly much
larger than the sample size, because and predictors and response variables could be high dimensional.
To solve this problem, we will have to reduce the parameter dimension.

One way to solve the dimension problem is to select relevant variables, in order to reduce the number
of unknowns. Indeed, all the information should not be interesting for the clustering. In a density
estimation way, we could cite Pan and Shen, in [16], who focus on mean variable selection, Zhou and
Pan, in [20], who use the Lasso estimator to regularize Gaussian mixture model with general covariance
matrices, Sun and Wang, in [18], who propose to regularize the k-means algorithm to deal with high-
dimensional data, Guo et al, in [10], who propose a pairwise variable selection method.

In a regression framework, we could use the Lasso estimator, introduced by Tibshirani in [19], which
is a sparse estimator, by penalizing the maximum likelihood estimator by the ℓ1-norm, which achieves
the sparsity, as the ℓ0 penalty, but leads also to a convex optimization. Because we work with the
multivariate linear model, to deal with the matrix structure, we could prefer the group Lasso, variables
grouped by columns, which selects columns rather than coefficients. This estimator was introduced by
Zhou in [21] in the general case. If we select |J | columns among the p possible, we have to estimate |J |q
coefficients rather than pq for A, which could be smaller than n if |J | is smaller enough.

Another estimator which reduces the dimension, known in the linear model, is the low rank estimator:
introduced by Izenman in [11], and more used the last decades, with among others Bunea et al. in [4]
and Giraud in [9], the regression matrix could be estimated by matrix of rank r, r < p ∧ q. Then, we
have to estimate r(p + q − r) coefficients, which could be smaller than n.

In this paper, we have chosen to mix these two estimators to provide a sparse and low rank estimator
in mixture models. This method was introduced by Bunea et al. in [4], in the case of linear model and
known noise covariance matrix. They present different ways, more or less computational, with more or
less good results in theory.

They get an oracle inequality, which say that, among a model collection, they are able to choose an
estimator with good rank and good active variables. For this model, Ma et al. in [12] get a minimax
lower bound, which precise that they attain nearly optimal rates of convergence adaptively for square
Schatten norm losses.
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In this paper, we consider finite mixture of K linear models in high-dimension. This model is studied
in details by Städler et al. article for real response variable in [17], and by Devijver for multivariate
response variable in [8]. We will estimate βk for all k ∈ {1, . . . ,K} by a column sparse and low rank
estimator. The Lasso estimator is used to select variables, whereas we refit the estimation by a low rank
estimator, restricted on relevant variables. We propose a procedure which is based on a modeling that
recasts variable selection, rank selection, and clustering problems into a model selection problem. This
procedure is developed in [8], with methodology, computational issues, simulations and data analysis. In
this paper, we focus on theoretical point of view, and developed simulations and data analysis for the low
rank issue. Our procedure constructs a model collection, with models more or less sparse, and with rank
vector more or less small. Among this collection, we have to select a model. We use the slope heuristic,
which is a non-asymptotic criterion. In a theoretical way, in this paper, we get an oracle inequality for
the collection constructed by our procedure, which makes a comparison performance between our model
and the oracle for a specified penalty.

This result is an extension of the work of Bunea et al in [4], to mixture models and with covariance
matrices (Σk)1≤k≤K unknown. They ensure that mixing sparse estimator and low rank matrix could be
interesting. Indeed, whereas we have to estimate p×q coefficients in each cluster for the regression matrix,
we get only r(|J | + q − r) unknown variables, which could be smaller than the number of observations
n if |J | and r are small. Even if the oracle inequality we get in this paper is an extension of Bunea
et al. result, we use a really different way to prove it. Considering the model collection constructed,
we want to select a model as good as possible. For that, we use the slope heuristic, which constructs
a penalty, proportional to the dimension, and select the model minimizing the penalized log-likelihood.
Theoretically, we construct also a penalty, proportional to the dimension (up to a logarithm term). We
provide an oracle inequality which compare, up to a constant, the Jensen-Kullback-Leibler divergence
of our model and the true model to the Kullback-Leibler divergence between the oracle and the true
model. In estimation term, we do as well as possible. This oracle inequality is deduced from a general
model selection theorem for maximum likelihood estimator of Massart in [13]. Controlling the bracketing
entropy of models, we could prove the result. Remark that we work in a regression framework, then we
rather use an extension of this theorem proved in Cohen and Le Pennec article [5], and that our model
collection is random, constructed by the Lasso, then we rather use an extension of this theorem proved
in [7]. To illustrate this procedure, in a computational way, we validate it on simulated dataset, and
benchmark dataset. If the data have a low rank structure, we could easily find it with our methodology.

This paper is organized as follows. In the Section 2, we describe the finite mixture regression model
used in this procedure, and the main step of the procedure. In the Section 3, we present the main result
of this paper, which is an oracle inequality for the procedure proposed. Finally, in Section 4, we illustrate
the procedure on simulated and benchmark dataset. Proof details of the oracle inequality are given in
Appendix.

2. The model and the model collection

We introduce our procedure of estimation by sparse and low rank matrix in the linear model, in
Section 2.1, and extend it in Section 2.2 in mixture models.

2.1. Linear model. We consider the observations ((xi, yi)i=1,...,n) which realized random variables
(X,Y ), satisfying the linear model

Y = βX + ǫ

where Y ∈ Rq are the responses, X ∈ Rp are the regressors, β ∈ Rp×q is an unknown matrix, and ǫ ∈ Rq

are random errors, ǫ ∼ Nq(0,Σ), with Σ ∈ S++
q a symmetric positive definite matrix. We will work in

high-dimension, then p× q could be larger than the number of observations n.
We will construct an estimator which is sparse and low rank for β to cope with the high-dimension

issue. Moreover, to reduce the covariance matrix dimension, we compute a diagonal estimator of Σ. The
procedure we will propose could be explained into two steps. First, we estimate the active columns of β
thanks to the Lasso estimator, for λ > 0, using the estimator

β̂Lasso
λ = argmin

β∈Rp×q

{
||Y − βX ||22 + λ||B||1

}
;

where ||β||1 =
∑p

j=1

∑q
z=1 |βj,z |. We assume that the variance is unknown. From this approach, we

could rescale the parameters by Σ−1 = P tP the Cholesky decomposition, and φ = P−1β, and then get
2



the estimates by, Tq denoting the set of triangular matrices of size q, for λ > 0,

(1) (φ̂Lassoλ , P̂Lasso
λ ) = argmin

(φ,P )∈Rp×q×Tq

{
||PY − φX ||22 + λ||φ||1

}
.

This approach was considered in Städler et al. in [17], in scalar response case. This reparametrization
is done in order to get a scale-invariant estimator and a convex minimization problem.

For λ > 0, from the Lasso estimator of φ̂Lassoλ , we could deduce the relevant columns.
Restricted to these relevant columns, in the second step of the procedure, we compute a low rank

estimator of β, saying of rank at most r. Indeed, as explained in Giraud in [9], we restrict the maxi-
mum likelihood estimator to have a rank at most r, keeping only the r biggest singular values in the
corresponding decomposition. We get an explicit formula.

This two steps procedure leads to an estimator of β which is sparse and has a low rank. We have
also reduced the dimension into two ways. We refit the covariance matrix estimator by the maximum
likelihood estimator.

This estimator is studied in Bunea et al. in [4], in method 3. Let extend it in mixture models.

2.2. Mixture model. We observe n independent couples (x,y) = ((xi, yi)1≤i≤n) of random variables
(X,Y ), with Y ∈ Rq and X ∈ Rp. The conditional density is assumed to be a multivariate Gaussian
mixture regression model. If the observation i belongs to the cluster k, we assume that there exists
βk ∈ Rp×q, and Σk ∈ S++

q such that yi = βrxi + ǫi where ǫi ∼ Nq(0,Σr).
Thus, the random response variable Y ∈ Rq depends on a set of explanatory variables, writtenX ∈ Rp,

through a mixture of linear regression-type model. Give more precisions on the assumptions.

• The variables Yi are independent conditionally to Xi, for all i = 1, . . . , n ;
• we let Yi|Xi = xi ∼ sξ(y|xi)dy, with

sξ(y|x) =
K∑

k=1

πk

(2π)
q
2 det(Σk)1/2

exp

(

− (y − βkx)
tΣ−1

k (y − βkx)

2

)

(2)

ξ = (π1, . . . , πk, β1, . . . , βk,Σ1, . . . ,ΣK) ∈
(
ΠK × (Rq×p)K × (S++

q )K
)

ΠK =

{

(π1, . . . , πK);πk > 0 for k ∈ {1, . . . ,K} and

K∑

k=1

πk = 1

}

S
++
q is the set of symmetric positive definite matrices on R

q.

Wewant to estimate the conditional density function sξ from the observations. For all k ∈ {1, . . . ,K}, βk
is the matrix of regression coefficients, and Σk is the covariance matrix in the mixture component
k. The πks are the mixture proportions. In fact, for all k ∈ {1, . . . ,K}, for all z ∈ {1, . . . , q},
[βt

kx]z =
∑p

j=1[βk]j,zxj is the zth component of the mean of the mixture component k for the con-

ditional density sξ(.|x).
We could introduce, for all k ∈ {1, . . . ,K},

Σ−1
k = P t

kPk

φk = P−1
k βk.

We could define an extension of the Lasso estimator,

(3) (φ̂Lassoλ , P̂Lasso
λ ) = argmin

(φ,P )∈Rp×q×Tq

{

||PY − φX ||22 + λ

K∑

k=1

πk||φk||1
}

.

Remark that the penalty take into account the mixture weight. We could also define a low rank estima-

tor (β̂LR
λ , P̂LR

λ ) restricted to relevant variables detected by the Lasso estimator, for the regularization
parameter λ.

In a computational way, we will use two generalized EM algorithms, in order to deal with high
dimensional data and get a sparse and low rank estimator. Give some details about those algorithms.

Initially, the EM algorithm was introduced by Dempster in [6]. It alternates two steps, an expectation
step to cluster data, and a maximization step to update estimation. In our procedure, we want first to
know which columns are relevant, then we want to compute (3). This algorithm was used and explained
in [8]. It is a generalization of the EM algorithm, for the Lasso estimator, and in a regression context.

From the estimate φ̂Lassoλ , we could deduce which columns are relevant. The second algorithm we use
lead to determine φk on relevant columns, for all k ∈ {1, . . . ,K}, with rank Rk. We alternate two steps,

3



E-step and M-step, until relative convergence of the parameters and of the likelihood. We restrict the
dataset to relevant columns, and construct an estimator of size |J | × q rather than p× q.

• E-step: compute for k ∈ {1, . . . ,K}, i ∈ {1, . . . , n}, the expected value of the log likelihood
function,

γ̂i,k = Eθ(ite)(Zi,k|Y )

=
ϕk

∑K
l=1 ϕl

where

ϕl = π
(ite)
l detP

(ite)
l exp

− 1
2

(

P
(ite)
l

Yi−XiΦ
(ite)
l

)t(

P
(ite)
l

Yi−XiΦ
(ite)
l

)

• M-step:
– To get estimation in linear model, we assign each observation in its estimated cluster, by the

MAP principle. We could apply this thanks to the E-step, which compute the a posteriori
probability. Therefore, we say that yi comes from component number argmax

k∈{1,...,K}
γ̂i,k.

– Then, we can define β̃k
(ite)

= (xt
|kx|k)

−1xt
|ky|k, in which x|k and y|k are the sample restric-

tion to the cluster k. We decompose β̃
(ite)
k in singular values such that β̃

(ite)
k = USV t with

S = diag(s1, . . . , sq) and s1 ≥ s2 ≥ . . . ≥ sq the singular values. Then, the estimator β̂
(ite)
k

is defined by β̂
(ite)
k = USrV

t with Sr = diag(s1, . . . , sr, 0, . . . , 0).

To select the regularization parameter for the Lasso estimator and the ranks, we could use criterion as
BIC or cross-validation. In practice, we prefer to construct a model collection with various active columns
and various ranks, and select one as final step. To get various active columns, we construct a data-driven
grid of regularization parameters, coming from EM algorithm formula. See [8] for more details. To get
various ranks, we estimate parameters for different values of ranks, belonging to {rmin, . . . , rmax}.

From this procedure, we construct a model with K clusters, |J | relevant columns and matrix of
regression coefficients of ranks R ∈ NK , as described by the next model S(K,J,R).

S(K,J,R) = {y ∈ R
q|x ∈ R

p 7→ sξ(K,J,R)(y|x)}(4)

where

sξ(K,J,R)(y|x) =
K∑

k=1

πk det(Pk)

(2π)q/2
exp

(

−1

2
(y − β

R(k)
k x

[J]
i )tΣ−1

k (y − β
R(k)
k x

[J]
i )

)

;

ξ(K,J,R) = (π1, . . . , πK , β
R(1)
1 , . . . , β

R(K)
K ,Σ1, . . . ,ΣK) ∈ ΞK

ΞK = ΠK ×Ψ(K,J,R) × (S++
q )K ;

Ψ(K,J,R) = {(βR(1)
1 , . . . , β

R(K)
k ) ∈ (Rq×|J|)K |Rank(βk) = R(k)}.

Varying K ∈ K ⊂ N∗, J ∈ J ⊂ P([1, p]), and R ∈ R ⊂ {1, . . . , p ∧ q}K , we get a model collection with
various number of components, active columns and matrix of regression coefficients.

Among this model collection, during the last step, a model has to be selected. As in Maugis and
Michel in [14], and in Maugis and Meynet in [15], among others, a non asymptotic penalized criterion
is used. The slope heuristic was introduced by Birgé and Massart in [3], and developed in practice by
Maugis and Michel in [2] with the Capushe package. To use it in our context, we have to extend the
theoretical result to determine the penalty shape in the high-dimensional context, with a random model
collection, in a regression framework. The main result is described in the next section, whereas proof
details are given in appendix.

3. Oracle inequality

In a theoretical point of view, we want to ensure that the slope heuristic which construct a penalty
will select a good model. We follow the approach developed by Birgé and Massart in [3] which consists of
defining a non asymptotic penalized criterion, leading to an oracle inequality. In the context of regression,
Cohen and Le Pennec, in [5], and Devijver in [7], propose a general model selection theorem for maximum
likelihood estimation. The result we get is a theoretic penalty, for which the model selected is as good
as the best one, according to the Kullback-Leibler loss.
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3.1. Framework and model collection. Among the model collection constructed by the procedure
developed in section 2.2, with various rank and various sparsity, we want to select an estimator which
is close to the truth. The oracle is by definition the model belonging to the collection which minimizes
the contrast with the true model. In practice, we do not have access to the true model, then we can
not know the oracle. Nevertheless, the goal of the model selection step of our procedure is to be nearest
to the oracle. In this section, we present an oracle inequality, which mean that if we have penalized
the log-likelihood in a good way, we will select a model which is as good as the oracle, according to the
Kullback-Leibler loss.

We consider the model collection defined by (4).
Because we work in high dimension, p could be big, and it will be time-consuming to test all the parts

of {1, . . . , p}. We construct a sub-collection denoted by J L, which is constructed by the Lasso, which is
also random. This step is explained in more details in [8].

Moreover, to get the oracle inequality, we assume that the parameters are bounded:

SB
(K,J,R) =

{
s(K,J,R) ∈ S(K,J,R)| for all k ∈ {1, . . . ,K},

Σk = diag([Σk]1,1, . . . , [Σk]q,q),

for all z ∈ {1, . . . , q}, aΣ ≤ [Σk]z,z ≤ AΣ,

for all k ∈ [1,K], β
R(k)
k =

R(k)
∑

l=1

[σk]l[u
t
k].,l[vk]l,.,

for all l ∈ {1, . . . , R(k)}, [σk]l < Aσ

}
.

Remark that this decomposition of βk is the singular value decomposition, with (σl)1≤l≤R(k) the singular
values, and uk and vk unit vectors, for k ∈ {1, . . . ,K}.

We also assume that covariates belong to an hypercube: without restrictions, we could assume that
X ∈ [0, 1]p.

Fixing K the possible number of components, J L the active column set constructed by the Lasso,
and R the possible vector of ranks, we get a model collection

⋃

K∈K

⋃

J∈J

⋃

R∈R
SB
(K,J,R).(5)

3.2. Notations. Before enunciate the main theorem which leads to the oracle inequality, for the model
collection (5) we need to define some metrics used to compare the conditional densities. First, the
Kullback-Leibler divergence is defined by

KLλ(s, t) =

∫

log
(s

t

)

sdλ

for s and t two densities, sdλ absolutely continuous with respect to tdλ. To deal with regression data,
for fixed covariates (x1, . . . , xn), we define

KL⊗n

λ (s, t) = E

(

1

n

n∑

i=1

KLλ(s(.|xi), t(.|xi))
)

for s and t two densities, sdλ absolutely continuous with respect to tdλ.
We also define the Jensen-Kullback-Leibler divergence, first introduced in Cohen and Le Pennec [5],

by

JKLλ,ρ(s, t) =
1

ρ
KLλ(s, (1− ρ)s+ ρt)

for ρ ∈]0, 1[, s and t two densities, sdλ absolutely continuous with respect to tdλ. The tensorized one is
defined by

JKL⊗n

λ,ρ(s, t) = E

(

1

n

n∑

i=1

JKLλ,ρ(s(.|xi), t(.|xi))
)

.

Note that those divergences are not metrics, not satisfying the triangular inequality and no symmetric,
but are also wild used in statistics to compare two densities.
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3.3. Oracle inequality. Let state the main theorem.

Theorem 3.1. Assume that we observe ((xi, yi)1≤i≤n) with unknown conditional density s0. Let M =
K×J×R and ML = K×J L×R, where J L is constructed by the Lasso estimator. Let s̄(K,J,R) ∈ SB

(K,J,R)

such that, for δKL > 0,

KL⊗n

λ (s0, s̄(K,J,R)) ≤ inf
t∈SB

(K,J,R)

KL⊗n

λ (s0, t) +
δKL

n

and such that there exists τ > 0 such that

(6) s̄(K,J,R) ≥ e−τs0.

Consider the collection {ŝ(K,J,R)}(K,J,R)∈M of rank constrained log-likelihood minimizer in S(K,J,R),
satisfying

ŝ(K,J,R) = argmin
s(K,J,R)∈SB

(K,J,R)

{

− 1

n

n∑

i=1

log
(
s(K,J,R)(yi|xi)

)

}

.

Denote by D(K,J,R) the dimension of the model SB
(K,J,R). Let pen : M → R+ defined by, for all

(K, J,R) ∈ M,

pen(K, J,R) ≥ κ
D(K,J,R)

n

{
[2B2(Aβ , AΣ, aσ, q)

− log

(
D(K,J,R)

n
B2(Aβ , AΣ, aσ, q) ∧ 1

)

+ log

(
4epq

D(K,J,R)−q2 ∧ pq
+R

)}

for κ > 0 an absolute constant.
Then, the estimator ŝ(K̂,Ĵ,R̂), with

(K̂, Ĵ , R̂) = argmin
(K,J,R)∈ML

{

− 1

n

n∑

i=1

log(ŝ(K,J,R)(yi|xi)) + pen(K, J,R)

}

,

n∑

i=1

− log(ŝ(K̂,Ĵ,R̂)(yi|xi)) + pen(K̂, Ĵ , r̂)

≤ inf
(K,J,R)∈M

(
n∑

i=1

− log(ŝ(K,J,R)(yi|xi)) + pen(K, J,R)

)

+ η
′

satisfies

E(JKL⊗n

ρ,λ(s0, ŝ(K̂,Ĵ,R̂)))

≤ CE

(

inf
(K,J,R)∈ML

(

inf
t∈S(K,J,R)

KL⊗n

λ (s0, t) +
pen(K, J,R)

n

)

+
Σ2

n

)

(7)

for C > 0.

The proof of the theorem 3.1 is given in Section 5. Note that condition (6) leads to control the random
model collection. The mixture parameters are bounded in order to construct brackets over S(K,J,R), and
thus to upper bound the entropy number. The inequality (7) we obtain is not exactly an oracle inequality,
since the Jensen-Kullback-Leibler risk is upper bounded by the Kullback-Leibler bias.

Because we are looking on a small random sub-collection of models, our estimator ŝ(K,J,R) is attainable
in practice. Moreover, it is a non-asymptotic result, which allows us to study cases for which p increases
with n.

Note that we use the Jensen-Kullback-Leibler divergence rather than the Kullback-Leibler divergence,
because it is bounded. This boundedness turns out to be crucial to control the loss of the penalized max-
imum likelihood estimator under mild assumptions on the complexity of the model and their collection.

We could compare our bound with the one of Bunea et al, in [4], who computed a procedure similar to
ours, in a linear model. According to consistent group selection for the group Lasso, they get adaptivity
of the estimator to an optimal rate, and their estimators perform the bias variance trade-off among

6



Table 1. Performances of our procedure. Mean number {K, R̂,M, FA,ARI} of the
Kullback-Leibler divergence between the model selected and the true model, the esti-
mated rank of the model selected in each cluster, the missed variables, the false relevant
variables, and the ARI, over 20 simulations.

KL R̂ M FA ARI

p > n 19.03 [2.8,3] 0 20 0.95

p < n 3.28 [3,3] 0 0.6 0.99

all reduced rank estimators. Nevertheless, their results are obtained according to some assumption,
for instance the mutual coherence on XtX , which postulates that the off-diagonal elements have to be
small. Some assumptions on the design are required, whereas our result just need to deal with bounded
parameters and bounded covariates.

4. Numerical studies

We will illustrate our procedure with simulations and real datasets, to highlight advantages of our
method. We adapt the simulations part of Bunea et al. article, [4]. Indeed, we work in the same way, to
get sparse and low rank estimator. Nevertheless, we add the mixture to be consistent with our clustering
method, and to have more flexibility.

4.1. Simulations. To illustrate our procedure, we use simulations adapted from the article of Bunea
[4], extended for mixture models.

The design matrix X has iid rows Xi from a multivariate normal distribution N(0,Σ) with Σ = ρI,
ρ > 0. We consider a mixture with 2 components. Depending on the cluster, the coefficient matrix βk
has the form

βk =

[
bkB

0 bkB
1

0 0

]

for k ∈ {1, 2}, with B0 a J × R(k) matrix and B1 a R(k)× q matrix. All entries in B0 and B1 are iid
N(0, 1). The noise matrix E has independent N(0, 1) entries. Let Ei denote its ith row.

The proportion vector π is defined by π = [ 12 ,
1
2 ], all clusters having the same probability.

Each row Yi in Y is then generated as, if the observation i belongs to the cluster k, Yi = βkXi + Ei,
for 1 ≤ i ≤ n. This setup contains many noise features, but the relevant one lie in a low-dimensional
subspace. We report two settings:

• p > n: n = 50, |J | = 6, p = 100, q = 10, R = [3, 3], ρ = 0.1, b = [3,−3].
• p < n: n = 200, |J | = 6, p = 10, q = 10, R = [3, 3], ρ = 0.01, b = [3,−3].

The current setups show that variable selection, without taking the rank information into consideration,
may be suboptimal, even if the correlations between predictors are low. Each model was simulated 20

times, and table 1 summarizes our findings. We evaluate the prediction accuracy of each estimator β̂ by
the mean squared error (MSE) using a test sample at each run. We also report the median rank estimate

(denoted by R̂) over all runs, rates of non included true variables (denoted by M for misses) and the
rates of incorrectly included variables (FA for false actives). Ideally, we are looking for a model with
low MSE, low M and low FA.

We can draw the following conclusions from table 1. When we work in low-dimensional framework, we
get very good results. Even if we could use any estimator, because we do not have dimension problem,
with our procedure we get the matrix structure involved by the model. We get almost exact clustering,
and the Kullback-Leibler divergence between the model we construct and the true model is really low.
In case of high-dimensional data, when p is larger than n, we get also good results. We find the good
structure, selecting the relevant variables (our model will have false relevant variables, but no missed
variables), and selecting the true ranks. We could remark that false relevant variables have low values.
Comparing to another procedure which will not reduce the rank, we will perform the dimension reduction.

4.2. Application. In this section, we apply our procedure to real data set. The Norwegian paper
quality data were obtained from a controlled experiment that was carried out at a paper factory in
Norway to uncover the effect of three control variables X1, X2, X3 on the quality of the paper which
was measured by 13 response variables. Each of the control variables Xi takes values in {−1, 0, 1}.
To account for possible interactions and nonlinear effects, second order terms were added to the set of
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predictors, yielding X1, X2, X3, X
2
1 , X

2
2 , X

2
3 , X1X2, X1X3, X2X3, and the intercept term. There were 29

observations with no missing values made on all response and predictor variables. The Box Behnken
design of the experiment and the resulting data are described in Aldrin [1] and Izenman [11]. Moreover,
Bunea et al in [4] also study this dataset. We always center the responses and the predictors. The
dataset clearly indicates that dimension reduction is possible, making it a typical application for reduced
rank regression methods. Moreover, our method will exhibit different classes among this sample.

We construct a model collection varying the number of clusters in K = {2, . . . , 5}. We select a model
with 2 classes. We select all variables except X1X2 and X2X3, which is consistent with comments of
Bunea et al. In the two classes, we get two mean matrices, with ranks equal to 2 and 4. One cluster
describes the mean comportment (with rank equal to 2), whereas the other cluster contains values more
different.

5. Appendices

In those appendices, we present the details of the proof of the theorem 3.1. This derives from a general
model selection theorem, enunciated in section 5.1, and proved in the paper [7]. Then, the proof of the
theorem 3.1 could be summarized by satisfying assumptions 1, 2 and 3 described in section 5.1.

5.1. A general oracle inequality for model selection. Model selection appears with the AIC crite-
rion and BIC criterion. In a non-asymptotic way, a theory was developed by Birgé and Massart in [3].
With some assumptions that we will detail here, we get an oracle inequality for the maximum likelihood
estimator among a model collection. Le Pennec and Cohen, in [5], generalize this theorem in regression
framework. We have to use a generalization of this theorem because we consider a random collection of
models.

Let us consider a model collection (Sm)m∈M.
Before enunciate the general theorem, begin by talking about the assumptions. First, we impose a

structural assumption. It is a bracketing entropy condition on the model Sm with respect to the Hellinger
divergence

d2⊗n

H (s, t) = E

[

1

n

n∑

i=1

d2H(s(.|xi), t(.|xi))
]

.

A bracket [t−, t+] is a pair of functions such that for all (x, y) ∈ X × Y, t−(y, x) ≤ s(y|x) ≤ t+(y, x).
The bracketing entropy H[.](δ, S, d

⊗n

H ) of a set S is defined as the logarithm of the minimum number

of brackets [t−, t+] of width d⊗n

H (t−, t+) smaller than δ such that every functions of S belong to one of
these brackets.

Assumption 1 (Hm). There is a non-decreasing function φm such that δ 7→ 1
δφm(δ) is non-increasing

on (0,+∞) and for every σ ∈ R+ and every sm ∈ Sm,
∫ σ

0

√

H[.](δ, Sm(sm, σ), d
⊗n

H )dδ ≤ φm(σ);

where Sm(sm, σ) = {t ∈ Sm, d
⊗n

H (t, sm) ≤ σ}. The model complexity Dm is then defined as nσ2
m with σm

the unique root of

1

σ
φm(σ) =

√
nσ.(8)

Denote that the model complexity depends on the bracketing entropies not of the global models Sm

but of the ones of smaller localized sets. This is a weaker assumption.
For technical reason, a separability assumption is also required.

Assumption 2 (Sepm). There exists a countable subset S
′

m of Sm and a set Y ′

m with λ(Y \ Y ′

m) = 0,
for λ the Lebesgue measure, such that for every t ∈ Sm, there exists a sequence (tk)k≥1 of elements of

S
′

m such that for every x and every y ∈ Y ′

m, log(tk(y|x)) goes to log(t(y|x)) as k goes to infinity.

We also need an information theory type assumption on our model collection. We assume the existence
of a Kraft-type inequality for the collection.

Assumption 3 (K). There is a family (xm)m∈M of non-negative numbers such that
∑

m∈M
e−xm ≤ Σ < +∞.

8



Then, we could write our main global theorem to get an oracle inequality in regression framework,
with a random collection of models.

Theorem 5.1. Assume we observe ((xi, yi)1≤i≤n) with unknown conditional density s0. Let S =
(Sm)m∈M be at most countable collection of conditional density sets. Let assumption (K) holds while
assumptions (Hm) and (Sepm) hold for every models Sm ∈ S. Let δKL > 0, and s̄m ∈ Sm such that

KL⊗n

λ (s0, s̄m) ≤ inf
t∈Sm

KL⊗n

λ (s0, t) +
δKL

n
;

and let τ > 0 such that

(9) s̄m ≥ e−τs0.

Introduce (Sm)m∈M̂ some random sub-collection of (Sm)m∈M. Consider the collection (ŝm)m∈M̂ of
η-log-likelihood minimizer in Sm, satisfying

n∑

i=1

− log(ŝm(yi|xi)) ≤ inf
sm∈Sm

(
n∑

i=1

− log(sm(yi|xi))
)

+ η.

Then, for any ρ ∈ (0, 1) and any C1 > 1, there are two constants κ0 and C2 depending only on ρ and
C1 such that, as soon as for every index m ∈ M,

(10) pen(m) ≥ κ(Dm + (1 ∨ τ)xm)

with κ > κ0, and where the model complexity Dm is defined in (8), the penalized likelihood estimate

ŝm̂ with m̂ ∈ M̂ such that

n∑

i=1

− log(ŝm̂(yi|xi)) + pen(m̂) ≤ inf
m∈M̂

(
n∑

i=1

− log(ŝm(yi|xi)) + pen(m)

)

+ η
′

satisfies

E(JKL⊗n

ρ,λ(s0, ŝm̂)) ≤ C1E

(

inf
m∈M̂

inf
t∈Sm

KL⊗n

λ (s0, t) + 2
pen(m)

n

)

(11)

+ C2(1 ∨ τ)
Σ2

n
+
η′ + η

n
.(12)

Remark 5.2. We get that, among a random model collection, we are able to choose one which is as
good as the oracle, up to a constant C1, and some additive terms being around 1

n . This result is non-
asymptotic, and gives a theoretic penalty to select this model.

Remark 5.3. The proof of this theorem is detailed in [7]. Nevertheless, we could give the main ideas
to understand the assumptions. From assumptions 1 and 2, we could use maximal inequalities which
lead to, except on a set of probability less than e−x

m
′−x, for all x, a control of the ratio of the centered

empirical process of log(ŝm′) over the Hellinger distance between s0 and ŝm′ , this control being around 1
n .

Thanks to Bernstein inequality, satisfied according to the inequality (9), and thanks to the assumption
3, we get the oracle inequality.

Now, to prove theorem (3.1), we have to satisfy assumptions (1), (3), and (2).

5.2. Assumption (Hm).

5.2.1. Decomposition. As done in Cohen and Le Pennec [5], we could decompose the entropy by

H[.](ǫ,SB
(K,J,R), d

⊗n

H ) ≤ H[.](ǫ,ΠK , d
⊗n

H ) + kH[.](ǫ,F(J,R), d
⊗n

H )

9



where

SB
(K,J,R) =







y ∈ Rq|x ∈ Rp 7→ sθ(y|x) =
∑K

k=1 πrΦ(y|(β
R(k)
k x)|J ,Σk)

θ =
{

π1, . . . , πK , β
R(1)
1 , . . . , β

R(K)
K ,Σ1, . . . ,ΣK

}

∈ ΘK

Θk = ΠK × Ψ̃(K,J,R) × ([aΣ, AΣ]
q
+∗)

K







Ψ(K,J,R) = {(βR(1)
1 , . . . , β

R(K)
k ) ∈ [−Aβ, Aβ ]

K |Rank(βk) = R(k)}

Πk =

{

(π1, . . . , πK) ∈ (0, 1)K ;
K∑

k=1

πk = 1

}

F(J,R) =
{

Φ(.|(βRX)|J ,Σ);β ∈ [aβ , Aβ ]
|J|, rank(βR) = R,

Σ = diag(Σ2
1, . . . ,Σ

2
q) ∈ [a2Σ, A

2
Σ]

q
}

Φ the Gaussian density.

For the proportions, we get that

H[.](ǫ,ΠK , d
⊗n

H ) ≤ log

(

K(2πe)K/2

(
3

ǫ

)K−1
)

.

Looking after the Gaussian entropy.

5.2.2. For the Gaussian. We want to bound the integrated entropy. For that, first we have to construct
some brackets to recover Sm. Fix f ∈ Sm. We are looking for functions t− and t+ such that t− ≤ f ≤ t+.
Because f is a Gaussian, t− and t+ are dilatations of Gaussians. We then have to determine the mean,
the variance and the dilatation coefficient of t− and t+. We need the both following lemmas to construct
these brackets.

Lemme 5.4. Let Φ(.|µ1,Σ1) and Φ(.|µ2,Σ2) be two Gaussian densities. If their variance matrices are
assumed to be diagonal, with Σa = diag([S2

a]1, . . . , [Sa]
2
q) for a ∈ {1, 2}, such that [S2]

2
z > [S1]

2
z > 0 for

all z ∈ {1, . . . , q}, then for all x ∈ Rq,

Φ(x|µ1,Σ1)

Φ(x|µ2,Σ2)
≤

q
∏

z=1

√

[Σ2]z
√

[Σ1]z
exp

1
2 (µ1−µ2)

tdiag
(

1
[Σ2]1−[Σ1]1

,..., 1
[Σ2]q−[Σ1]q

)

(µ1−µ2) .

Lemme 5.5. The Hellinger distance of two Gaussian densities with diagonal variance matrices is given
by the following expression:

d2H(Φ(.|µ1,Σ1),Φ(.|µ2,Σ2)) = 2− 2

(
q
∏

q1=1

2[Σ2
1]q1 [Σ

2
2]q1

[Σ2
1]q1 + [Σ2

2]q1

)1/2

× exp

{

−1

4
(µ1 − µ2)

tdiag

((
1

[Σ2
1]q1 + [Σ2

2]q1

)

q1∈{1,...,q}

)

(µ1 − µ2)

}

To get an ǫ-bracket for the densities, we have to construct a δ-net for the variance and the mean, δ
to be precised later.

• Step 1: construction of a net for the variance

Let ǫ ∈]0, 1], and δ = ǫ√
2q
. Let b2j = (1 + δ)1−

j
2A2

Σ. For 2 ≤ j ≤ N , we have [aΣ, AΣ] =

[bN , bN−1]
⋃
. . .
⋃
[b3, b2], where N is chosen to recover everything. We want that

a2Σ = (1 + δ)1−N/2A2
Σ

⇔ 2 log
aΣ
AΣ

=

(

1− N

2

)

log(1 + δ)

⇔ N =
4 log(AΣ

aΣ

√
1 + δ)

log(1 + δ)
.

We want N to be an integer, then N =

⌈
4 log(

AΣ
aΣ

√
1+δ)

log(1+δ)

⌉

. We get a regular net for the variance.

We could let B = diag(b2i(1), . . . , b
2
i(q)), close to Σ (and deterministic, independent of the values

of Σ), where i is a permutation such that bi(z)+1 ≤ Σz,z ≤ bi(z) for all z ∈ {1, . . . , q}.
10



• Step 2: construction of a net for the mean vectors

We use the singular decomposition of β, β =
∑R

l=1 σlu
t
lvl, with (σl)1≤l≤R the singular values,

and (ul)1≤l≤R and (vl)1≤l≤R unit vectors. Those vectors are also bounded.
We are looking for t− and t+ such that dH(t−, t+) ≤ ǫ, and t− ≤ f ≤ t+. We will use a

dilatation of a Gaussian to construct such an ǫ-bracket of Φ.

We let

t−(x, y) = (1 + δ)−(pqr+3q/4)Φ(y|νJ,Rx, (1 + δ)−1/4Bl+1)

t+(x, y) = (1 + δ)pqr+3q/4Φ(y|νJ,Rx, (1 + δ)Bl)

where Bl and Bl+1 are constructed such that, for all z ∈ {1, . . . , q}, Bl+1
z,z ≤ Σz,z ≤ Bl

z,z (see step 1).

The means νJ,R ∈ R
p×q will be specified later. Just remark that J is the set of the relevant columns,

and R the rank of νJ,R: we will decompose νJ,R =
∑R

l=1 σ̃lũ
t
l ṽl, ũ ∈ R|J|×R, and ṽ ∈ Rq×R.

We get

t−(x, y) ≤ f(y|x) ≤ t+(x, y)

if we have

||βx− νJ,Rx||22 ≤ pqR
δ2

2
a2Σ(1 − 2−1/4).

Remark that ||βx − νJ,Rx||22 ≤ p||β − νJ,R||22||x||∞ We need then

||β − νJ,R||22 ≤ pqR
δ2

2
a2Σ(1 − 2−1/4)(13)

According to [7], dH(t−, t+) ≤ 2(p2qR + 3q/4)2δ2, then, with

δ =
ǫ√

2(p2qr + 3/4q)

we get the wanted bound.
Now, explain how to construct νJ,R to get (13).

||β − νJ,R||22 =

p
∑

j=1

q
∑

z=1

R∑

l=1

|σlul,jvl,z − σ̃ũl,j ṽl,z |2

=

p
∑

j=1

q
∑

z=1

R∑

l=1

||σl − σ̃l||uj,lvz,l| − σ̃|ũl,j − ul,j ||ṽz,l| − σ̃lul,j|vl,z − ṽl,z ||2

≤
p
∑

j=1

q
∑

z=1

R∑

l=1

||σl − σ̃l|+Aσ|ũl,j − ul,j|+Aσ|vl,z − ṽl,z ||2

≤ 2pqr

(

max
l

|σl − σ̃l|2 +Aσ max
l,j

|ũl,j − ul,j |2 +Aσ max
l,z

|ṽl,z − vl,z |2
)

We need ||β − νJ,R||22 ≤ pqr δ
2

2 a
2
Σ(1− 2−1/4).

If we choose σ̃l such that

|σl − σ̃l| ≤
δ√
12
aΣ
√

1− 2−1/4,

and ũl,j such that

|ul,j − ũl,j | ≤
δ√
12Aσ

aΣ
√

1− 2−1/4,

and ṽl,z such that

|vl,z − ṽl,z | ≤
δ√
12Aσ

aΣ
√

1− 2−1/4,

then it works.
To get this, we let, for ⌊.⌋ begin the floor function,

S = Z ∩
[

0,

⌊

Aσ

δ√
12
aΣ

√
1− 2−1/4

⌋]

11



and

σ̃l = argmin
ς∈S

∣
∣
∣
∣
σl −

δ√
12
aΣ
√

1− 2−1/4ς

∣
∣
∣
∣
,

and

U = Z ∩
[

0,

⌊

Aσ

δ√
12Aσ

aΣ
√
1− 2−1/4

⌋]

and

ũl,j = argmin
µ∈U

∣
∣
∣
∣
ul,j −

δ√
12Aσ

aΣ
√

1− 2−1/4µ

∣
∣
∣
∣
,

and

V = Z ∩
[

0,

⌊

Aσ

δ√
12Aσ

aΣ
√
1− 2−1/4

⌋]

and

ṽl,j = argmin
ν∈V

∣
∣
∣
∣
vl,j −

δ√
12Aσ

aΣ
√

1− 2−1/4ν

∣
∣
∣
∣
.

Remark that we just need to determine vectors ((ũl,j)1≤j≤J−l)1≤l≤R and ((ṽl,z)1≤z≤q−l)1≤l≤R because
those vectors are unit.

Then, we let

∀j ∈ Jc, ∀z ∈ [1, p], (νJ,R)j,z = 0

∀j ∈ J, ∀z ∈ [1, p], (νJ,R)j,z =

R∑

l=1

σ̃lũl,j ṽl,z

We have defined our bracket.
We want to control the entropy.

|Bǫ(F(K,J,R))|

≤ N

K∏

k=1

(

Aσ

δ√
12Aσ

aΣ
√
1− 2−1/4

)R(k)(

Aσ

δ√
12Aσ

aΣ
√
1− 2−1/4

)R(k)(|J|+q−R(k)−1)

≤ N

(

Aσ

√
12

δaΣ
√
1− 2−1/4

)∑K
k=1 R(k)(|J|+q−R(k))

≤ 4

(
AΣ

aΣ
+

1

2

)(

Aσ

√
12

aΣ
√
1− 2−1/4

)∑K
k=1 R(k)(|J|+q−R(k))

δ−
∑K

k=1 R(k)(|J|+q−R(k))+1

Then,

N[.](ǫ,SB
(K,J,R), dH) ≤ C

(
1

ǫ

)D(K,J,R)

where

C = 4

(
AΣ

aΣ
+

1

2

)(

Aσ

√
12

aΣ
√
1− 2−1/4

)∑K
k=1 R(k)(|J|+q−R(k))

(14)

×
(√

2(p2qR+ 3/4q)
)∑K

k=1 R(k)(|J|+q−R(k))

and D(K,J,R) =
∑K

k=1R(k)(|J |+ q −R(k)).
12



5.2.3. For the mixture. We have to determine φ(K,J,R) such that
∫ σ

0

√

H[.](ǫ, S(K,J,R)(s(K,J,R), σ), d
⊗n

H )dǫ ≤ φ(K,J,R)(σ).(15)

Let compute the integral.
∫ σ

0

√

H[.](ǫ, S(K,J,R)(s(K,J,R), σ), d
⊗n

H )dǫ

≤ σ
√

log(C2) +
√

D(K,J,R)

∫ σ

0

√

log

(
1

ǫ

)

dǫ

≤
√

D(K,J,R)σ

[

√
π +

√

log(C2)

D(K,J,R)
+

√

log

(
1

σ ∧ 1

)]

with, according to (14),

log(C2) = log(4) +
k

2
log(2πe) + (K − 1) log(3) + log

(
AΣ

aΣ
+

1

2

)

+D(K,J,R) log

(

Aσ

√
12

aΣ
√
1− 2−1/4

)

+D(K,J,R) log

(√
2(p2qR +

3

4
q)

)

+ log(K)

≤ D(K,J,R)

(

log(4) +
log(2πe)

2
+ log 3

)

+D(K,J,R)

(

log

(
AΣ

aΣ
+

1

2

)

+ log((p2qR+
3

4
q)
√
2) + 1

)

≤ D(K,J,R)

(

log

(

24
√
6πe√

1− 2−1/4

)

+ log

(
AΣ

aΣ
+

1

2

)(
Aσ

aΣ

)

+ log(p2qR+
3

4
q)

)

Then,

∫ σ

0

√

H[.](ǫ, S(K,J,R)(s(K,J,R), σ), d
⊗n

H )dǫ

≤
√

D(K,J,R)

(

3 +

√

log

(
AΣ

aΣ
+

1

2

)(
Aσ

aΣ

)

+

√

log(p2qR+
3

4
q) +

√

log

(
1

σ ∧ 1

))

Consequently, by putting

B = 3 +

√

log

(
AΣ

aΣ
+

1

2

)(
Aσ

aΣ

)

+

√

log(p2qR+
3

4
q)

we get that the function Ψ(K,J,R) defined on R∗
+ by

ψ(K,J,R)(σ) =
√

D(K,J,R)σ

(

B +

√

log

(
1

σ ∧ 1

))

satisfies (15). Besides, Ψ(K,J,R) is nondecreasing and σ 7→ Ψ(K,J,R)(σ)

σ is nonincreasing, then Ψ(K,J,R) is
convenient.

Finally, we need to find an upper bound of σ∗ satisfying

Ψ(K,J,R)(σ∗) =
√
nσ2

∗.

Consider σ∗ such that Ψ(K,J,R)(σ∗) =
√

σ2
∗ .
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This is equivalent to solve

σ∗ =

√

D

n

(

B +

√

log

(
1

σ∗ ∧ 1

))

and then we could choose

σ2
∗ ≤ D

n

(

2B2 + log

(

1

1 ∧ D
nB

2

))

.

5.3. Assumption (K). Let x(K,J,R) = D(K,J) log
(

4epq
(D(K,J)−q2)∧pq

)

+ maxk∈{1,...,K}R(k). Then, we

could compute the sum

∑

(K,J,R)

e−x(K,J,R) =




∑

K>0

∑

1≤|J|≤pq

e
−D(K,J) log

(

4epq

(DK,J−q2)∧pq

)





︸ ︷︷ ︸

A

∑

R

e−R

The term A is controlled in proposition 4.5 in [7] by 2. Then,
∑

(K,J,R)

e−x(K,J,R) ≤ 2.
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