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LND-FILTRATIONS AND SEMI-RIGID DOMAINS

BACHAR ALHAJJAR

Abstract. We investigate the filtration corresponding to the degree function induced by a non-zero locally

nilpotent derivation and its associated graded algebra. We show that this kind of filtration, referred to as

the LND-filtration, is the ideal candidate to study the structure of semi-rigid k-domains, that is, k-domains

for which every non-zero locally nilpotent derivation gives rise to the same filtration. Indeed, the LND-

filtration gives a very precise understanding of these structure, it is impeccable for the computation of the

Makar-Limanov invariant, and it is an efficient tool to determine their isomorphism types and automorphism

groups. Then, we construct a new interesting class of semi-rigid k-domains in which we elaborate the

fundamental requirement of LND-filtrations. The importance of these new examples is due to the fact that

they possess a relatively big set of invariant sub-algebras, which can not be recoverd by known invariants such

as the Makar-Limanov and the Derksen invariants. Also, we define a new family of invariant sub-algebras as a

generalization of the Derksen invariant. Finally, we introduce an algorithm to establish explicit isomorphisms

between cylinders over non-isomorphic members of the new class, providing by that new counter-examples

to the cancellation problem.

Introduction

Let k be a field of characteristic zero and let B be a commutative k-domain. A k-derivation ∂ ∈ Derk(B)
is said to be locally nilpotent if for every a ∈ B, there is an integer n ≥ 0 such that ∂n(a) = 0.

An important invariant of k-domains B admitting non-trivial locally nilpotent derivations is the so called
Makar-Limanov invariant ML(B) which was defined by Makar-Limanov as the intersection of the kernels of
all locally nilpotent derivations on B ([ML3]). This invariant was initially introduced as a tool to distinguish
certain k-domains from polynomial rings but it has many other applications for the study of k-algebras and
their automorphism groups ([ML2]). One of the main difficulties in applications is to compute this invariant
without a prior knowledge of all locally nilpotent derivations of a given k-domain.

In [K-ML1], S. Kaliman and L. Makar-Limanov developed general techniques to determine the ML-
invariant for a class of finitely generated k-domains B = k[X1, . . . , Xn]/I. The idea, referred to as “homoge-
nization of derivations”, is to reduce the problem to the study of homogeneous locally nilpotent derivations
on graded algebras Gr(B) associated to B. For this, one considers appropriate filtrations F = {Fi}i∈R on B
generated by real-valued weight degree functions ω ∈ Rn, in such a way that every non-zero locally nilpotent
derivation on B induces a non-zero homogeneous locally nilpotent derivation on the associated graded alge-
bra GrF(B). Unfortunately, these techniques only work if the associated graded algebra Gr(B) is in fact a

k-domain itself, which will only occur if the ideal Î, generated by top homogenous components relative to ω
of all elements in I, is prime.

Finding a new way to tackle similar complications became an inevitable necessity. Therefore, we start
inspecting real-valued weight degree functions on k[N ] with the following new perspective. The positive
integer N is chosen to be bigger than n, the dimension of the ambient space. The considered ring B = k[n]/I
is identified in a specific “twisting” way to k[N ]/J ≃ B. This different point of view allows us to avoid these
kind of difficulties. Furthermore, it simplifies the study of homogenous locally nilpotent derivation even in
these cases where classical techniques work.

We present a new class of examples for which the “homogenization” method can be effectively applied
with the alternative perspective, while all other approaches fail. The new class comes to be a very interesting
object due to the fact that it possesses a huge set of invariant sub-algebras, which can not be recoverd by
any known invariant such as the Makar-Limanov and the Derksen invariants.
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As a modest outcome, the alternative approach delivers a full description of the filtration induced by any
locally nilpotent derivation, with a finitely generated kernel, and its associated graded algebra. In particular,
a non-zero locally nilpotent derivation ∂ gives rise to a proper N-filtration F = {Fi}i∈N of B by the sub-spaces
Fi = ker∂i+1, i ∈ N. We call it the ∂-filtration, which corresponds to the N-degree function deg∂ induced by
∂. It turns out that deg∂ is nothing but the degree function induced by an N-weight degree function ω ∈ N[N ]

defined on k[N ] for suitable choices of ω and N .
In turn, the ∂-filtration comes out to be the ideal candidate to study the structure of semi-rigid k-domains,

that is, k-domains for which every non-zero locally nilpotent derivation gives rise to the same filtration that
we call the unique LND-filtration. This unique LND-filtration gives a very precise understanding of the
structure of semi-rigid k-domains, it is impeccable for the computation of the ML-invariant, and it is an
efficient tool to determine isomorphism types and automorphism groups. Nevertheless, the computation of
the ML-invariant, isomorphism types, and automorphism groups of similar classically known structures can
be simplified and reduced considering this new point of view.

Another important tool for the study of non-rigid k-domains is the Derksen invariant D(B) which is
defined to be the sub-algebra of B generated by ker∂ for all non-zero locally nilpotent derivations. We
generalize this invariant to obtain a new family {ALi(B)}i∈N

of invariant sub-algebras of B, where for each

i ∈ N we define ALi(B) to be the algebra generated by ker∂i+1 for all non-zero locally nilpotent derivation of
B. We are interested in one particular member of this family of invariants that corresponds to i = 1, which
we call the ring of all local slices of B and which we denote AL-invariant. We show that the new class of
k-domains can be realized as an affine modification of the AL-invariant with center (f, I) for certain ideal I
in AL and some f ∈ I.

Finally, we propose an algorithm to construct explicit isomorphisms between cylinders over non-isomorphic
members of the new class, providing by that new counter-examples to the cancellation problem.

1. Preliminaries

In this section we briefly recall basic facts on filtered algebra and their relation with derivation in a form
appropriate to our needs.

In the sequel, unless otherwise specified B will denote a commutative domain over a field k of characteristic
zero. The set Z>0 of non-negative integers will be denoted by N.

1.1. Filtrations and associated graded algebras.

Definition 1.1. An N-filtration of B is a collection {Fi}i∈N of k-sub-vector-spaces of B with the following
properties:

1- Fi ⊂ Fi+1 for all i ∈ N .
2- B = ∪i∈NFi .
3- Fi.Fj ⊂ Fi+j for all i, j ∈ N .

The filtration is called proper if the following additional property holds:
4- If a ∈ Fi \ Fi−1 and b ∈ Fj \ Fj−1, then ab ∈ Fi+j \ Fi+j−1.

There is a one-to-one correspondence between proper N-filtrations and so called N-degree functions:

Definition 1.2. An N-degree function on B is a map deg : B −→ N∪{−∞} such that, for all a, b ∈ B, the
following conditions are satisfied:

(1) deg(a) = −∞ ⇔ a = 0.
(2) deg(ab) = deg(a) + deg(b).
(3) deg(a+ b) ≤ max{deg(a), deg(b)}.

If the equality in (2) replaced by the inequality deg(ab) ≤ deg(a)+deg(b), we say that deg is an N-semi-degree
function.

Indeed, for an N-degree function on B, the sub-sets Fi = {b ∈ B | deg(b) ≤ i} are k-subvector spaces of
B that give rise to a proper N-filtration {Fi}i∈N. Conversely, every proper N-filtration {Fi}i∈N, yields an
N-degree function ω : B −→ N∪{−∞} defined by ω(0) = −∞ and ω(b) = i if b ∈ Fi \ Fi−1.

Definition 1.3. Given a k-domain B = ∪i∈NFi equipped with a proper N-filtration, the associated graded
algebra Gr(B) is the k-vector space

Gr(B) = ⊕i∈NFi/Fi−1
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equipped with the unique multiplicative structure for which the product of the elements a+Fi−1 ∈ Fi/Fi−1

and b+ Fj−1 ∈ Fj/Fj−1, where a ∈ Fi and b ∈ Fj, is the element

(a+ Fi−1)(b + Fj−1) := ab+ Fi+j−1 ∈ Fi+j/Fi+j−1.

Property 4 for a proper filtration in Definition 1.1 ensures that Gr(B) is a commutative k-domain when B
is an integral domain. Since for each a ∈ B \ {0} the set {n ∈ N | a ∈ Fn} has a minimum, there exists i
such that a ∈ Fi and a /∈ Fi−1. So we can define a k-linear map gr : B −→ Gr(B) by sending a to its class
in Fi/Fi−1, i.e a 7→ a + Fi−1, and gr(0) = 0. We will frequently denote gr(a) simply by a. Observe that
gr(a) = 0 if and only if a = 0.

Denote by deg the N-degree function deg : B −→ N ∪ {−∞} corresponding to the proper N-filtration
{Fi}i∈N. We have the following properties.

Lemma 1.4. Given a, b ∈ B the following holds:
P1) a b = a b, that is gr is a multiplicative map.

P2) If deg(a) > deg(b), then a+ b = a.
P3) If deg(a) = deg(b) = deg(a+ b), then a+ b = a+ b.
P4) If deg(a) = deg(b) > deg(a+ b), then a+ b = 0. In particular, gr is not an additive map in general.

Proof. Let us assume that deg(a) = i and deg(b) = j. By definition, deg(ab) = i+j means that ab ∈ Fi+j and

ab /∈ Fi+j−1, so ab = ab+Fi+j−1 := (a+Fi−1)(b+Fj−1) = a b. Which gives P1. For P2 we observe that since

deg(a+b) = deg(a), we have a+ b = (a+b)+Fi−1 = (a+Fi−1)+(b+Fi−1), and since Fj−1 ⊂ Fj ⊆ Fi−1 as

i > j, we get b+Fi−1 = 0. P3) is immediate, by definition. Finally, assume by contradiction that a+ b 6= 0,

then a+b = (a+Fi−1)+(b+Fi−1) = ((a+b)+Fi−1) 6= 0, which means that a+b /∈ Fi−1 and deg(a+b) = i,
which is absurd. So P4 follows. �

1.2. Derivations.

By a k-derivation of B, we mean a k-linear map D : B −→ B which satisfies the Leibniz rule: For all a, b ∈ B;
D(ab) = aD(b) + bD(a). The set of all k-derivations of B is denoted by Derk(B).
The kernel of a derivation D is the subalgebra kerD = {b ∈ B;D(b) = 0} of B.
The plinth ideal of D is the ideal pl(D) = kerD ∩D(B) of kerD, where D(B) denotes the image of B.
An element s ∈ B such that D(s) ∈ ker(D) \ {0} is called a local slice for D.

Definition 1.5. Given a k-algebra B = ∪i∈NFi equipped with a proper N-filtration, a k-derivation D of B
is said to respect the filtration if there exists an integer d such that D(Fi) ⊂ Fi+d for all i ∈ N. The smallest
integer d, such that D(Fi) ⊂ Fi+d for all i ∈ N, is called the degree of D with respect to F = {Fi}i∈N and
denoted by degF D.
Note that if D respects the filtration F = {Fi}i∈N then degF D is well-defined. Indeed, denote by deg the
N-degree function corresponding to F = {Fi}i∈N and let U be the non-empty subset of Z∪{−∞} defined by
U := {deg (D(b))− deg (b) ; b ∈ B \ {0}}. Since D respects the filtration F = {Fi}i∈N, the set U is bounded
above by d. Thus it has a greatest element d0 which is exactly degF D by definition.
Suppose that D respects the filtration F = {Fi}i∈N and let d = degF D, we define a k-linear map D :
Gr(B) −→ Gr(B) as follows: If D = 0, then D = 0 the zero map. Otherwise, if D 6= 0 then we define

D : Fi/Fi−1 −→ Fi+d/Fi+d−1

by the rule D(a + Fi−1) = D(a) + Fi+d−1. Now extend D to all of Gr(B) by linearity. One checks that D
satisfies the Leibniz rule, therefore it is a homogeneous k-derivation of Gr(B) of degree d, that is, D sends
homogeneous elements of degree i to zero or to homogeneous elements of degree i+ d .

Observe that D = 0 if and only if D = 0. In addition, gr(kerD) ⊂ kerD.

2. LND-Filtrations and New Invariant sub-algebras

In this section we introduce the ∂-filtration associated with a locally nilpotent derivation ∂. We explain
how to compute this filtration and its associated graded algebra in certain situations. Also we present new
invariants that generalize the Derksen invariant.
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Definition 2.1. A k-derivation ∂ ∈ Derk(B) is said to be locally nilpotent if for every a ∈ B, there exists
n ∈ N (depending of a) such that ∂n(a) = 0. The set of all locally nilpotent derivations of B is denoted by
LND(B).
In particular, every locally nilpotent derivation ∂ of B gives rise to a proper N-filtration of B by the sub-
spaces Fi = ker∂i+1, i ∈ N, that we call the ∂-filtration. It is straightforward to check (see [F, Prop. 1.9])
that the ∂-filtration corresponds to the N-degree function deg∂ : B −→ N ∪ {−∞} defined by

deg∂(a) := min{i ∈ N | ∂i+1(a) = 0}, and deg∂(0) := −∞.

Note that by definition F0 = ker ∂ and that F1 \ F0 consists of all local slices for ∂.

Let Gr∂(B) = ⊕i∈NFi/Fi−1 denote the associated graded algebra relative to the ∂-filtration {Fi}i∈N. Let

gr∂ : B −→ Gr∂(B); a
gr∂7−→ a be the natural map between B and Gr∂(B) defined in 1.3, where a denote

gr∂(a).
The next Proposition, which is due to Daigle ([F, Theorem 2.11], see also [D3, Theorem 1.7 and Corollary

4.12]), implies in particular that if B is of finite transcendence degree over k, then every non-zeroD ∈ LND(B)
respects the ∂-filtration and therefore induces a non-zero homogeneous locally nilpotent derivation D of
Gr∂(B).

Proposition 2.2. (Daigle) Suppose that B is a commutative domain, of finite transcendence degree over
k. Then for every pair D ∈ Derk(B) and ∂ ∈ LND(B), D respects the ∂-filtration. Consequently, D is a
well defined homogeneous derivation of the integral domain Gr∂(B) relative to this filtration, and it is locally
nilpotent if D is locally nilpotent.

2.1. New Invariants (ALi-invariants).

Definition 2.3. Let ∂ ∈ LND(B) be non-zero and let {Fi}i∈N be the ∂-filtration. We denote by L∂ the
sub-algebra of B generated by F1 = ker ∂2 and we call it the ring of local slices for ∂. The sub-algebra of B
generated by L∂ for all non-zero locally nilpotent derivation of B will be called the ring of all local slices of
B. It will be denoted by AL(B) and referred to as the AL-invariant, which is manifested by the fact that
AL(B) is invariant by all algebraic k-automorphisms of B.

In a sense, the AL-invariant is a generalization of the Derksen invariant D(B) which is defined to be the
sub-algebra of B generated by ker ∂ for all non-zero LND(B).

In a more general way we define the following invariants for non-rigid k-domains. Let ALi(B) denotes
the sub-algebra of B generated by ker ∂i+1 for all non-zero locally nilpotent derivation of B, then it is
clear that ALi(B) is invariant by all algebraic k-automorphisms of B. Indeed, let ∂ ∈ LND(B) \ {0} and
α ∈ Autk(B), then (α−1∂α)n = α−1∂nα for every n ∈ N, which implies that ∂α := α−1∂α ∈ LND(B).
Therefore, α.∂nα = ∂n.α so we get deg∂α

(b) = deg∂(α(b)) for any b ∈ B. In other words, α respects deg∂ and
deg∂α

, that is, α sends an element of degree i relative to deg∂α
, to an element of the same degree i relative

to deg∂ .
Note that AL0(B) = D(B), AL1(B) = AL(B), and ALi(B) ⊆ ALi+1(B) for all i.

In the case where B = k[X1, . . . , Xn]/I = k[x1, . . . , xn] is a finitely generated k-domain that admits a
non-zero ∂ ∈ LND(B), the chain of inclusions AL0(B) →֒ AL1(B) →֒ AL2(B) →֒ · · · →֒ ALi(B) →֒ · · · will
eventually stabilize, that is, there exists d ∈ N such that ALd(B) = B. Indeed, by definition of LND, there
exist d1, . . . , dn ∈ N such that ∂di+1(xi) = 0. Denote by {Fi}i∈N the ∂-filtration and let d = maxi∈{1,...,n}{di},
then xi ∈ Fd for all i. Since Fd ⊂ ALd(B) by definition, we see that B ⊆ ALd(B) and we are done.

Recall that the Makar-Limanov invariant ML(B) is defined to be the intersection of the kernels of all
locally nilpotent derivations on B. One might think that ALi∈N-invariants, in addition to the ML-invariant,
cover all invariant sub-algebras of B. This, however, is not correct, see §4.1.3 below.

2.2. Computing the ∂-filtration and its associated graded algebra.

Here, given a finitely generated k-domain B, we describe a general method which enables the computation
of the ∂-filtration for a locally nilpotent derivation with finitely generated kernel. First we consider a more
general situation where the plinth ideal pl(∂) is finitely generated as an ideal in ker ∂ then we deal with the
case where ker ∂ is itself finitely generated as a k-algebra.
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2.2.1. LetB = k[X1, . . . , Xn]/I = k[x1, . . . , xn] be a finitely generated k-domain, and let ∂ ∈ LND(B) be such
that pl(∂) is generated by precisely m elements say f1, . . . , fm as an ideal in ker ∂. Denote by F = {Fi}i∈N

the ∂-filtration, then: By definition F0 = ker ∂. Furthermore, given elements si ∈ F1 such that ∂(si) = fi
for every i ∈ {1, . . . ,m}, it is straightforward to check that

F1 = F0s1 + . . .+ F0sm + F0.

Letting deg∂(xi) = di, we denote by Hj the F0-sub-module in B generated by elements of degree j relative
to deg∂ of the form su1

1 . . . sum
m xv11 . . . xvnn , that is,

Hj :=
∑

∑
l ul+

∑
i di.vi=j

F0 (s
u1

1 . . . sum
m xv11 . . . xvnn )

where ul, vi ∈ N for all i and l. The integer
∑

l ul+
∑

i divi is nothing but deg∂(s
u1

1 su2

2 . . . .sum
m xv11 x

v2
2 . . . . .x

vn
n ).

Then we define a new N-filration G = {Gi}i∈N of B by setting

Gi =
∑

j≤i

Hj .

By construction Gi ⊆ Fi for all i ∈ N, with equality for i = 0 and i = 1. The following result provides a
characterization of when these two filtrations coincide:

Lemma 2.4. The filtrations F and G are equal if and only if G is proper.

Proof. One direction is clear since F is proper. Conversely, suppose that G is proper with the corresponding
N-degree function ω on B (see §1.1). Given f ∈ Fi \ Fi−1, i > 1, for every local slice s ∈ F1 \ F0, there exist
f0 6= 0, ai 6= 0, ai−1, . . . , a0 ∈ F0 such that f0f = ais

i + ai−1s
i−1 + · · ·+ a0 (see [ML1, Proof of Lemma 4]).

Since ω(g) = 0 (resp. ω(g) = 1) for every g ∈ F0 (resp. g ∈ F1 \ F0), we obtain

ω(f) = ω(f0f) = ω(ais
i + ai−1s

i−1 + · · ·+ a0) = max{ω(ais
i), . . . , ω(a0)} = i,

and so f ∈ Gi. �

2.2.2. The twisting technique.
Next, we determine the ∂-filtration, for a locally nilpotent derivation ∂ with finitely generated kernel, by
giving an effective criterion to decide when the N-filtration G defined above is proper.

Hereafter, we assume that 0 ∈ Spec(B) and that ker(∂) is generated by elements zj ∈ B such that
zj(0, . . . , 0) = 0, j ∈ {1, . . . , r}. Since ker(∂) is finitely generated k-algebra, the plinth ideal pl(∂) is finitely
generated. So there exist s1, . . ., sm ∈ F1 such that F1 = F0s1 + . . .+F0sm +F0. We can also assume that
si is irreducible and si(0, . . . , 0) = 0 for all i.

Letting J ⊂ k[r+n+m] = k[Z1, . . . , Zr][X1, . . . , Xn][S1, . . . , Sm] be the ideal generated by I and the elements
Zj = zj(X1, . . . , Xn), j ∈ {1, . . . , r}, Si = si(X1, . . . , Xn), i ∈ {1, . . . ,m}, then we have

B = k[Z1, . . . , Zr][X1, . . . , Xn][S1, . . . , Sm]/J.

Note that by construction 0 ∈ Spec(k[r+n+m]/J).
We define an N-weight degree function ω on k[r+n+m] by declaring that ω(Zi) = 0 = deg∂(zi) for all

i ∈ {1, . . . , r}, ω(Si) = 1 = deg∂(si) for all i ∈ {1, . . . ,m}, and ω(Xi) = deg∂(xi) = di for all i ∈ {1, . . . , n}.
The corresponding proper N-filtration Qi := {P ∈ k[n] | ω(P ) ≤ i}, i ∈ N, on k[r+n+m] has the form
Qi = ⊕j≤iHj where

Hj := ⊕∑
j uj+

∑
i divi=jk[Z1, . . . , Zr]S

u1

1 . . . Sum
m Xv1

1 . . . Xvn
n .

By construction π (Qi) = Gi where π : k[r+n+m] −→ B denotes the natural projection. Indeed, since

π (Qi) =
∑

j≤i

π (Hj)

and π (Hj) =
∑

∑
j uj+

∑
i divi=j k[z1, . . . , zr]s

u1

1 . . . .sum
m xv11 . . . xvnn , we get

π (Hj) =
∑

∑
j uj+

∑
i divi=j

(ker ∂) su1

1 . . . . sum
m xv11 . . . . x

vn
n

which means precisely that π (Qi) = Gi.
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Let Ĵ ⊂ k[r+n+m] be the homogeneous ideal generated by the highest homogeneous components relative
to ω of all elements in J . Then we have the following result, which is inspired by the technique developed by
S. Kaliman and L. Makar-Limanov:

Proposition 2.5. The N-filration G is proper if and only if Ĵ is prime.

Proof. It is enough to show that G = {π (Qi)}i∈N coincides with the filtration corresponding to the N-semi-
degree function ωB on B defined by

ωB(p) := min
P∈π−1(p)

{ω(P )}.

Indeed, if so, the result will follow from [K-ML1, Lemma 3.2] which asserts in particular that ωB is an

N-degree function on B if and only if Ĵ is prime. Let {G
′

i}i∈N be the filtration corresponding to ωB. Given

f ∈ G
′

i there exists F ∈ Qi such that π(F ) = f , which means that G
′

i ⊂ π (Qi). Conversely, it is clear that
ωB(zi) = ω(Zi) = 0 for all i ∈ {1, . . . , r}. Furthermore ωB(si) = ω(Si) = 1 for all i ∈ {1, . . . ,m}, for otherwise
si ∈ ker ∂ which is absurd. Finally, if di 6= 0 and ωB(xi) < ω(Xi) = di 6= 0, then xi ∈ π (Qdi−1) ⊂ ker ∂di−1

which implies that deg∂(xi) < di, a contradiction. So ωB(xi) = di. Thus ωB(f) ≤ i for every f ∈ π (Qi)

which means that π (Qi) ⊂ G
′

i . �

The next Proposition, which is a reinterpretation of [K-ML1, Prop. 4.1], describes the associated graded
algebra Gr∂(B) of the filtered algebra (B,F) in the case where the N-filtration G is proper:

Proposition 2.6. If the N-filtration G is proper then Gr∂(B) ≃ k[r+n+m]/Ĵ .

Proof. By virtue of ([K-ML1, Prop. 4.1]) the graded algebra associated to the filtered algebra (B,G) is

isomorphic to k[r+n+m]/Ĵ . So the assertion follows from Lemma 2.4. �

3. Semi-Rigid k-Domains

3.1. Definitions and basic properties.

In [F-M], D. Finston and S. Maubach considered rings B whose sets of locally nilpotent derivations are
“one-dimensional” in the sense that LND(B) = ker(∂).∂ for some non-zero ∂ ∈ LND(B). They called them
almost-rigid rings. Hereafter, we consider the following definition which seems more natural in our context
(see Prop. 3.3 below for a comparison between the two notions).

Definition 3.1. A commutative domain B over a field k of characteristic zero is called semi-rigid if all non-
zero locally nilpotent derivations of B induce the same proper N-filtration (equivalently, the same N-degree
function).
The unique proper N-filtration of a semi-rigid k-domain B, that corresponds to any non-zero ∂ ∈ LND(B),
will be referred to and called the unique LND-filtration of B.

Semi-rigid k-domains B can be equivalently characterized in terms of their Makar-Limanov invariant
ML(B) := ∩D∈LND(B) ker(D) as follows:

Proposition 3.2. A k-domain B is semi-rigid if and only if ML(B) = ker(∂) for any non-zero ∂ ∈ LND(B).

Proof. Given D,E ∈ LND(B) \ {0} such that A := ker(D) = ker(E), there exist non-zero elements a, b ∈ A
such that aD = bE ([F, Principle 12]) which implies that the D-filtration is equal to the E-filtration. So
if ML(B) = ker(∂) for any non-zero ∂ ∈ LND(B) then B is semi-rigid. The other implication is clear by
definition. �

Recall that D ∈ Derk(B) is irreducible if and only if D(B) is contained in no proper principal ideal of B,
and that B is said to satisfy the ascending chain condition (ACC) on principal ideals if and only if every
infinite chain (b1) ⊂ (b2) ⊂ (b3) ⊂ · · · of principal ideals of B eventually stabilizes. B is said to be a highest
common factor ring, or HCF-ring, if and only if the intersection of any two principal ideals of B is again
principal.

Proposition 3.3. Let B be a semi-rigid k-domain satisfying the ACC on principal ideals. If ML(B) is an
HCF-ring, then there exists a unique irreducible ∂ ∈ LND(B) up to multiplication by unit. Consequently,
every D ∈ LND(B) has the form D = f∂ for some f ∈ ker(∂), and so B is almost rigid.
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Proof. Existence follows from the fact that since B satisfies the ACC on principal ideals, then for every
non-zero T ∈ LND(B), there exists an irreducible T0 ∈ LND(B) and c ∈ ker(T ) such that T = cT0. ([F,
Prop. 2.2 and Principle 7]). The argument for uniqueness is similar to that in [F, Prop. 2.2.b], but with
a little difference, that is, in [F] it is assumed that B itself is an HCF-ring while here we only require that
ML(B) is an HCF-ring. Namely, let D,E ∈ LND(B) be irreducible derivations, and let A = ML(B). By
hypothesis ker(D) = ker(E) = A, so there exist non-zero a, b ∈ A such that aD = bE ([F, Principle 12]).
Here we can assume that a, b are not units otherwise we are done. Set T = aD = bE. Since A is an HCF-ring,
there exists c ∈ A such that aA ∩ bA = cA. Therefore, T (B) ⊂ cB, and there exists T0 ∈ LND(B) such that
T = cT0. Write c = as = bt for s, t ∈ B. Then cT0 = asT0 = aD implies D = sT0, and likewise E = tT0. By
irreducibility, s and t are units of B, and we are done. �

3.2. Elementary examples of semi-rigid k-domains.

3.2.1. Polynomial rings in one variable over rigid k-domains. Recall that a k-domain A is called
rigid if the zero derivation is the only locally nilpotent k-derivation of A. Equivalently, A is rigid if and
only if ML(A) = A. The next Proposition, which is due to Makar-Limanov ([ML1, Lemma 21], also [C-ML,
Theorem 3.1]), presents the simplest examples of semi-rigid k-domains.

Proposition 3.4. (Makar-Limanov) Let A be a rigid domain of finite transcendence degree over a field k
of characteristic zero. Then the polynomial ring A[x] is semi-rigid.

Proof. For the convenience of the reader, we provide an argument formulated in the LND-filtration language.
Let ∂ be the locally nilpotent derivation of A[x] defined by ∂(a) = 0 for every a ∈ A and ∂(x) = 1. Then the
∂-filtration {Fi}i∈N is given by Fi = Axi ⊕Fi−1 where F0 = ker(∂) = A, and the associated graded algebra
is Gr(A[x]) = ⊕i∈NAx

i, where x := gr(x) and A = A. Since A[x] is of finite transcendence degree over k,
Proposition 2.2 implies that every non-zero D ∈ LND(A[x]) respects the ∂-filtration and induces a non-zero
homogeneous locally nilpotent derivation D of Gr(A[x]) of a certain degree d = deg∂(D) ≥ −1. It is enough
to check that in fact d = −1. Indeed, if so then D = a∂, for some a ∈ A which implies the semi-rigidity of
A[x]. So suppose for contradiction that d ≥ 0, then D(x) ∈ Fd+1 = Axd+1 + Fd. Therefore, D sends x to

zero or to axd+1. Either way, we have x ∈ ker(D), see Corollary 1.20 [F]. Furthermore, D(a) =

{
0

a0x
d

,

so D = xdE where E(a) =

{
0

a0
and E(x) = 0. This asserts that E ∈ LND(A[x]) by virtue of [F, Principle

7]. Clearly, E restricts to LND(A), so by hypothesis E = 0 which yields D = 0, a contradiction. �

3.2.2. Danielewski k-domains. Let

Bn,P = k[X,S, Y ]/〈XnY − P (X,S)〉

where n ≥ 1, d ≥ 2, P (X,S) = Sd + fd−1(X)Sd−1 + · · · + f0(X), and fi(X) ∈ k[X ]. We call Bn,P the
Danielewski k-domain corresponding to the pair (n, P ). Let x, s, y be the class of X , S, and Y in Bn,P .
It is well known (see [ML1, Section 4] for the case P ∈ k[S]; and [P, Section 2.4] for the case, where
P (X,S) ∈ k[X,S]) that if n ≥ 2, then ML(Bn,P ) = k[x] and LND(Bn,P ) = k[x].∂, for the locally nilpotent
derivation ∂ of B defined by

∂ = xn∂s +
∂P

∂s
∂y,

where ∂P
∂s

= dsd−1 + (d− 1)fd−1(x)s
d−2 + . . .+ f1(x). Hence, Bn,P is almost rigid.

We easily recover these previous results using the LND-filtration method as follows:
The ∂-filtration {Fi}i∈N of Bn,P is given by:

Fdi+j = k[x]sjyi + Fdi+j−1.

where i ∈ N and j ∈ {0, . . . d−1}. The associated graded algebra is Gr∂(Bn,P ) = k[X,S, Y ]/〈XnY −Sd〉, and
B[di+j] := Fdi+j/Fdi+j−1 = k[x]sjyi where i ∈ N and j ∈ {0, . . . d− 1} (see §4.3 for more details). Corollary
4.6 below provides, in particular, an alternative argument formulated in the LND-filtration language proving
directly that {Fi}i∈N is indeed the unique LND-filtration of B.
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3.3. Algebraic isomorphisms between semi-rigid k-domains.

Let Ψ : A −→ B be an algebraic isomorphism between two k-domains. Given ∂ ∈ LND(B), then for any
n ∈ N we have (Ψ−1∂Ψ)n = Ψ−1∂nΨ. So we see that ∂Ψ := Ψ−1∂Ψ ∈ LND(A). An immediate consequence
is that Ψ(ML(A)) = ML(B). Furthermore, Ψ{ker(∂Ψ)} = ker(∂), and more generally, Ψ sends elements of
degree n, relative to ∂Ψ, to elements of the same degree n relative to ∂, that is, deg∂Ψ

(a) = deg∂(Ψ(a)) for
all a ∈ A. So in particular, Ψ(AL(A)) = AL(B). These properties, combined with Definition 3.1, give the
following result.

Proposition 3.5. Let Ψ : A −→ B be an isomorphism between two semi-rigid k-domains. Let {Fi}i∈N (resp.
{Gi}i∈N ) be the unique LND-filtration of A (resp. B). Then: Ψ(Fi) = Gi for every i.

In the case where A = B, we obtain an action of the group Autk(B) of algebraic k-automorphisms of
B by conjugation on LND(B). As a consequence of Proposition 3.5, every k-automorphism of a semi-rigid
k-domain B preserves its unique LND-filtration {Fi}i∈N. Letting Autk (B,ML(B)) be the sub-group of
Autk(B) consisting of elements whose induced action on ML(B) is trivial, we have the following Corollary
which describes the structure of Autk(B).

Corollary 3.6. For every semi-rigid k-domain B, there exists an exact sequence

0 → Autk (B,ML(B)) → Autk(B) → Autk (ML(B)) .

Furthermore, every element of Autk (B,ML(B)) induces for every i ≥ 1 an automorphism of F0-module of
each Fi.

4. A new class of semi-rigid k-domains

In this section, we introduce a new family of domains Rn,e,P,Q of the form

Rn,e,P,Q := k[X,Y, Z]/ 〈XnY − P (X,Q(X,Y )−XeZ)〉

where e ≥ 0, n ≥ 1, (n, e) 6= (1, 0), d,m ≥ 2,

P (X,S) = Sd + fd−1(X)Sd−1 + · · ·+ f1(X)S + f0(X) , and

Q(X,Y ) = Y m + gm−1(X)Y m−1 + · · ·+ g1(X)Y + g0(X).

The trivial case (e = 0), corresponds to the Danielewski k-domains Bn,P = k[X,S, Y ]/ 〈XnY − P (X,S)〉.
Indeed, the ring Rn,0,P,Q = k[X,Y, Z]/ 〈XnY − P (X,Q(X,Y )− Z)〉 is isomorphic to Bn,P via an isomor-
phism induced by Φ : k[X,S, Y ] −→ k[X,Y, Z], where Φ(X) = X , Φ(S) = −Z +Q(X,Y ), and Φ(Y ) = Y . It
is clear that Φ∗ = πXnY−P (X,Q(X,Y )−Z) ◦Φ is surjective, where πXnY−P (X,Q(X,Y )−Z) : k[X,Y, Z] → Rn,e,P,Q

is the natural projection. Thus Rn,0,P,Q = ImΦ∗ ≃ k[X,S, Y ]/ kerΦ∗. This yields, in particular, that the

ideal kerΦ∗ ⊂ k[3] is principal. But since Φ∗(XnY − P (X,S)) = 0, 〈F 〉 ⊂ kerΦ∗, and XnY − P (X,S) is
irreducible, we conclude that 〈XnY − P (X,S)〉 = kerΦ∗. Therefore, Φ∗ induces an isomorphism between
the two rings.

Remark 4.1. Computing the ML-invariant for these examples using known techniques up to date is rather
a hopeless task. Indeed, for the non-trivial case of Rn,e,P,Q where e 6= 0, a real-valued weight degree

function ω on k[3] has to be of the form ω = ( md−1
nm−md+1λ,

n
nm−md+1λ, λ), where λ ∈ R, to induce a degree

function ω0 on Rn,e,P,Q. Hence, the associated graded algebra, corresponding to ω0-filtration, takes the form
Grω(Rn,e,P,Q) = k[X,Y, Z]/〈XnY − (Y m − XeZ)d〉. The latter ring is again another member of the new
family that corresponds to Rn,e,Sd,Y m = Grω(Rn,e,P,Q). So any hope of simplifying the study of locally
nilpotent derivation of Rn,e,P,Q, by studying the homogenous locally nilpotent derivation on the associated

graded algebra Rn,e,Sd,Y m , collapses. On the other hand, the remaining choices of ω in R[3] induces a semi-

degree function on Rn,e,P,Q with the associated graded algebra Grω(Rn,e,P,Q) = k[X,Y, Z]/〈(Y m −XeZ)d〉.
This is not an integral domain, which complicates the situation even more.

Nevertheless, the LND-filtration method allows us to pass through these complications as will be shown
in the rest of this paper. Indeed, consider ω ∈ N[4] the N-weight degree function on k[4] defined by
ω(X,S, Y, Z) = (0, 1, d,md), then it induces ωRn,e,P,Q

a degree function on

Rn,e,P,Q ≃ k[X,S, Y, Z]/ 〈XnY − P (X,S) , Q(X,Y )−XeZ − S〉 .
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It turns out that the degree function ωRn,e,P,Q
coincides with deg∂ for any non-zero ∂ ∈ LND(Rn,e,P,Q).

4.1. Properties of the new class.

Here, we point out some properties of Rn,e,P,Q that we will establish in the rest of this section:

4.1.1. Algebraic construction: Consider the following k-domain

Bn,P = k[X,S, Y ]/〈XnY − P (X,S)〉,

which is the Danielewski k-domain corresponding to the pair (n, P ). Let us extend this ring by taking the
sub-algebra of k[X±1, S] generated by Bn,P ⊂ k[X±1, S] and z ∈ k[X±1, S], where z is an algebraic element
over k[X,S] that has a dependence relation of the form

Xnm+eZ − [P (X,S)]m −Xgm−1(X)[P (X,S)]m−1 − · · · −Xm−1g1(X)P (X,S)−Xmg0(X) +XnmS.

By sending S to Q(X,Y )−XeZ we immediately see that:

Bn,P ⊂ Rn,e,P,Q , and Bnm+e,F ⊂ Rn,e,P,Q ,

where Bnm+e,F is the Danielewski k-domain corresponding to the pair (nm+ e, F ):

Bnm+e,F = k[X,S, Z]/〈Xnm+eZ − F (X,S)〉,

and F (X,S) = [P (X,S)]m +Xgm−1(X)[P (X,S)]m−1 + · · ·+Xm−1g1(X)P (X,S) +Xmg0(X).
Clearly, we have Bn,P .Bnm+e,F = Rn,e,P,Q, which simply means that Rn,e,P,Q can be realized as the

sub-algebra of k[X±1, S] generated by both Bn,P and Bnm+e,F .
These new rings Rn,e,P,Q, for e 6= 0, are not isomorphic to any of Danielewski rings, see Proposition

4.13. Nevertheless, they share with them the property to come naturally equipped with an irreducible locally
nilpotent derivation. But in contrast with the Danielewski rings, the corresponding derivation on k[X,Y, Z]
are no longer triangular, in fact not even triangulable by virtue of the characterization due to Daigle [D1].
For instance: let D be the locally nilpotent (triangular) derivation of k[X,S, Y, Z] defined by:

∂(X) = 0, ∂(S) = Xn+e, ∂(Y ) = Xe ∂P
∂S

, and ∂(Z) = ∂Q
∂Y

∂P
∂S

−Xn

where ∂P
∂S

= dSd−1+(d−1)fd−1(X)Sd−2+· · ·+f1(X), and ∂Q
∂Y

= mY m−1+(m−1)gm−1(X)Y m−2+· · ·+g1(X).
Then ∂ induces a non-zero irreducible locally nilpotent derivation of Rn,e,P,Q. Let x, s, y, z be the class of
X, S := Q(X,Y )−XeZ, Y , and Z in Rn,e,P,Q , then:

∂ = xe
∂P

∂s
∂y + (

∂Q

∂y

∂P

∂s
− xn)∂z ∈ LND(Rn,e,P,Q)

Furthermore, ML(Rn,e,P,Q) = k[x] whenever (n, e) 6= (1, 0), see Corollary 4.6. This implies that Rn,e,P,Q

is semi-rigid, even almost rigid by virtue of Proposition 3.3. Hence AL(Rn,e,P,Q) = k[X,S]. In addition,
every non-zero locally nilpotent derivation of Rn,e,P,Q restricts to a non-zero locally nilpotent derivation
on Bn,P . And most importantly, every k-automorphism of Rn,e,P,Q restricts to an automorphism of Bn,P .
Also, it restricts to an k-automorphism of AL(Rn,e,P,Q) (resp. ML(Rn,e,P,Q)). So in particular, every k-
automorphism of Bn,P (≃ Rn,0,P,Q) restricts to a k-automorphism of AL(Rn,e,P ) (resp. ML(Rn,e,P,Q)). But
of course this is not the full picture, see 4.1.3.

4.1.2. Affine modification of the AL-invariant: Here, we present another point of view about the
construction of the new class.
The affine modification of the AL-invariant AL(Rn,e,P,Q) = k[X,S] along Xnm+e with center

I1 = 〈Xnm+e, Xn(m−1)+eP (X,S), F (X,S)〉,

see [K-Z, Definition 1.1], coincides by virtue of [K-Z, Proposition 1.1] with

k[X,S]
[
I1/X

nm+e
]
= k[X,S][P (X,S)/Xn, F (X,S)/Xnm+e] = k[X,S, y, z] ≃ Rn,e,P,Q.

Also, the affine modification of the AL-invariant AL(Rn,e,P,Q) = k[X,S] alongXn with center I2 = 〈Xn, P (X,S)〉
coincides with

k[X,S] [I2/X
n] = k[X,S][P (X,S)/Xn] = k[X,S, y] ≃ Bn,P .

Finally, the affine modification of Bn,P along Xe with center I3 = 〈Xe, Q(X,Y )− S〉 coincides with

Bn,P [I3/X
e] = Bn,P [(Q(X,Y )− S) /Xe]) = Bn,P [z] ≃ Rn,e,P,Q.
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We put together previous observations in the following Proposition.

Proposition 4.2. with the above notation we have:
(1) Rn,e,P,Q is the affine modification of the AL-invariant along Xnm+e with center I1.
(2) Bn,P is the affine modification of the AL-invariant along Xn with center I2.
(3) Rn,e,P,Q is the affine modification of Bn,P along Xe with center I3.

4.1.3. Invariant sub-algebras of Rn,e,P,Q: For simplicity let Q(X,Y ) = Y m. Denote Rn,e,P :=
Rn,e,P,Y m and Bn,P ≃ Rn,0,P . Consider the two chains of inclusions:

The first chain of inclusions, which is realized by sending S to Y m − XZ for the first inclusion and by
sending Z to XZ for the rest steps

Bn,P →֒ Rn,1,P →֒ · · · →֒ Rn,e,P .

The second chain of inclusions, which is realized by sending Y to XY for every step

B1,P →֒ B2,P →֒ · · · →֒ Bn,P .

Together they produce the following chain of inclusions

B1,P →֒ B2,P →֒ · · · →֒ Bn,P →֒ Rn,1,P →֒ · · · →֒ Rn,e,P

with the following properties.

Theorem 4.3. With the above notation the following holds:
(a) Every non-zero ∂ ∈ LND(Rn,e,P ) restricts to a non-zero LND(Rn,e0,P ) for any e0 ∈ {1, . . . , e}. Also,

it restricts to a non-zero LND(Bn0,P ) for any n0 ∈ {0, . . . , n}.
(b) Every algebraic k-automorphism of Rn,e,P restricts to an algebraic k-automorphism of Rn,e0,P for any

e0 ∈ {1, . . . , e}. Also, it restricts to a k-automorphism of Bn0,P for any n0 ∈ {1, . . . , n}.
(c) Rn1,e1,P ≃ Rn2,e2,P if an only if n1 = n2 and e1 = e2. Hence these k-domains are not algebraically

isomorphic to each other (pairwise).
(d) Every element of the set

{ML(Rn,e,P ) = k[X ], AL(Rn,e,P ) = k[X,S], Bn0,P , Rn,e0,P ; n0 ∈ {1, . . . , n}, e0 ∈ {1, . . . , e}}

represents an invariant sub-algebra of Rn,e,P .
(e) AL0(Rn,e,P ) = D(B) = ML(Rn,e,P ) →֒ AL(Rn,e,P ) = AL1(Rn,e,P ) = · · · = ALd−1(Rn,e,P ) →֒ Bn,P =

ALd(Rn,e,P ) = · · · = ALmd−1(Rn,e,P ) →֒ ALmd(Rn,e,P ) = Rn,e,P .

Proof. (a) Is immediate by Corollary 4.6 below. (b) is an immediate consequence of Theorem 4.10 below.
(c) a consequence of Proposition 4.12 and Proposition 4.13 below. (a), (b), and Corollary 4.6 implies (d).
Finally, (e) is a trivial consequence of Theorem 4.5, and Definition 2.3. �

4.2. A toy example.

We will begin with a very elementary example illustrating the steps needed to determine the LND-filtration
and its associated graded algebra, and then we proceed to the general case. We let

R = k[X,Y, Z]/〈X2Y − (Y 2 −XZ)2〉

and we let x, y, z be the class of X , Y , and Z in R. A direct computation reveals that the derivation

2XS∂Y + (4Y S −X2)∂Z

of k[X,Y, Z] where S := Y 2 −XZ is locally nilpotent and annihilates the polynomial X2Y − (Y 2 −XZ)2.
Therefore, it induces a locally nilpotent derivation ∂ of R for which we have ∂(x) = 0, ∂3(y) = 0, ∂5(z) = 0.
Furthermore, the element s = y2 − xz is a local slice for ∂ with ∂(s) = x3. So we have deg∂(x) = 0,
deg∂(y) = 2, deg∂(z) = 4, deg∂(s) = 1. The kernel of ∂ is k[x] and the plinth ideal is the principal ideal
generated by x3.

Proposition 4.4. With the notation above, we have:
(1) The ∂-filtration {Fi}i∈N is given by :

F4i+2j+l = k[x]slyjzi + F4i+2j+l−1

where i ∈ N, j ∈ {0, 1}, l ∈ {0, 1}.
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(2) The associated graded algebra Gr∂(R) = ⊕i∈NR[i], where R[i] = Fi/Fi−1, is generated by x = gr∂(x),

y = gr∂(y), z = gr∂(z), s = gr∂(s) as an algebra over k with relations x2y = s2 and x z = y2, that is
Gr∂(R) ≃ k[X,Y, Z, S]/〈X2Y − S2, X Z − Y 2〉. Furthermore:

R[4i+2j+l] = k[x]slyjzi

where i ∈ N, j ∈ {0, 1}, l ∈ {0, 1, 2, 3}.

Proof. 1) First, the ∂-filtration {Fi}i∈N is given by Fr =
∑

h≤rHh where Hh :=
∑

u+2v+4w=h k[x] (s
uyvzw)

and u, v, w, h ∈ N. To show this, let J be the ideal in k[4] = k[X,Y, Z, S] defined by

J = 〈X2Y − S2, Y 2 −XZ − S〉.

Define an N-weight degree function ω on k[4] by declaring that ω(X) = 0, ω(S) = 1, ω(Y ) = 2, and ω(Z) = 4.

By Proposition 2.5, the N-filtration {Gr}i∈N where Gr =
∑

h≤rHh is proper if and only if Ĵ is prime. Which

is the case since Ĵ =
〈
X2Y − S2, Y 2 −XZ

〉
is prime. Thus by Lemma 2.4 we get the desired description.

Second, let l ∈ {0, 1} and j ∈ {0, 1, 2, 3} be such that l := r mod 2, j := r − l mod 4, and i := r−2j−l
4 .

Then we get the following unique expression r = 4i+ 2j + l. Since Fr =
∑

u+2v+4w=r k[x] (s
uyvzw) + Fr−1,

we conclude in particular that Fr ⊇ k[x]slyjzi+Fr−1. For the other inclusion, the relation x
2y = s2 allows to

write suyvzw = xeslyv0zw and from the relation y2 = s+zx we get xeslyv0zw = xeslyj(s+xz)nzw. Since the
monomial with the highest degree relative to deg∂ in (s+xz)n is xn.zn, we deduce that xeslyj(s+xz)nzw =
xe+nslyjzw+n +

∑
Mβ where Mβ is monomial in x, y, s, z of degree less than r. Since the expression

r = 4i + 2j + l is unique, we get w + n = i. So suyvzw = xe+nslyjzi + f where f ∈ Fr−1. Thus
k[x] (suyvzw) ⊆ k[x]slyjzi + Fr−1 and finally Fr = k[x]slyjzi + Fr−1.

2) By part (1), an element f of degree r can be written as f = g(x)slyjzi + f0 where f0 ∈ Fr−1, l = r

mod 2, j = r − l mod 4, i = r−2j−l
4 , and i ∈ N, j ∈ {0, 1}, l ∈ {0, 1}. So by Lemma 1.4, P2, P1, and P3,

respectively we get

f = g(x)slyjzi + h = g(x)slyjzi = g(x)slyjzi = g(x)slyjzi

and therefore B[4i+2j+l] = k[x]slyjzi.

Finally, by Proposition 2.6, Gr∂(B) = k[X,Y, Z, S]/〈X2Y − S2, X Z − Y 2〉. �

4.3. The general case.

We now consider more generally rings Rn,e,P,Q of the form

k[X,Y, Z]/ 〈XnY − P (X,Q(X,Y )−XeZ)〉

where e ≥ 0, n ≥ 1, (n, e) 6= (1, 0), d,m ≥ 2,

P (X,S) = Sd + fd−1(X)Sd−1 + · · ·+ f1(X)S + f0(X) , and

Q(X,Y ) = Y m + gm−1(X)Y m−1 + · · ·+ g1(X)Y + g0(X)

Up to a change of variable of the form Y 7→ Y −c where c ∈ k, we may assume that 0 ∈ Spec(Rn,e,P,Q). Let
x, y, z be the class of X , Y , and Z in Rn,e,P,Q. Define ∂ by: ∂(x) = 0, ∂(s) = xn+e where s := Q(x, y)−xez.

Considering the relation xny = P (x,Q(x, y) − xez), a simple computation leads to ∂(y) = xe ∂P
∂s

,∂(z) =
∂Q
∂y

∂P
∂s

− xn, that is

∂ := xe
∂P

∂s
∂y + (

∂Q

∂y

∂P

∂s
− xn)∂z

where ∂P
∂s

= dsd−1+(d− 1)fd−1(x)s
d−2+ · · ·+ f1(x), and

∂Q
∂y

= mym−1+(m− 1)gm−1(x)y
m−2+ · · ·+ g1(x).

Since ∂(xny − P (x,Q(x, y) − xez)) = 0 and ∂d+1(y) = 0, ∂md+1(z) = 0, ∂ is a well-defined locally nilpotent
derivation of Rn,e,P,Q. The element s is a local slice for ∂ by construction, and a direct computation shows
that deg∂(x) = 0, deg∂(y) = d, deg∂(z) = md and deg∂(s) = 1. The kernel of ∂ is equal to k[x]. One checks
further that the plinth ideal is equal to pl(∂) = 〈xn+e〉. Furthermore, the exact same method as in the proof
of Proposition 4.4 provides a full description of the ∂-filtration and its associated graded algebra, that is:

Theorem 4.5. Let ∂ be defined as above, then we have:
(1) The ∂-filtration F = {Fi}i∈N is given by :

Fmdi+dj+l = k[x]slyjzi + Fmdi+dj+l−1

where i ∈ N, j ∈ {0, . . . ,m− 1}, l ∈ {0, . . . , d− 1}.
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(2) The associated graded algebra Gr(Rn,e,P,Q) = ⊕i∈NR[i], where R[i] = Fi/Fi−1, is generated by x =

gr∂(x), y = gr∂(y), z = gr∂(z), s = gr∂(s) as an algebra over k with relations xny = sd and xe z = ym , that
is, Gr(Rn,e,P,Q) = k[X,Y, Z, S]/〈XnY − Sd, XeZ − Y m〉. In addition, we have:

R[mdi+dj+l] = k[x]slyjzi

where i ∈ N, j ∈ {0, . . . ,m− 1}, l ∈ {0, . . . , d− 1}.

Proof. Consider ω ∈ N[4] the N-weight degree function on k[4] = k[X,S, Y, Z] defined by ω(X,S, Y, Z) =
(0, 1, d,md). Let J = 〈XnY − P (X,S), Q(X,Y ) − XeZ − S〉, it is clear that we can identify Rn,e,P,Q

with Rn,e,P,Q ≃ k[X,S, Y, Z]/ 〈XnY − P (X,S) , Q(X,Y )−XeZ − S〉. Since Ĵ = 〈XnY − Sd, Y m − XeZ〉

and 〈XnY − Sd, Y m − XeZ〉 is a prime ideal in k[4], ω induces ωRn,e,P,Q
(defined as in Proposition 2.5) a

degree function on k[X,S, Y, Z]/ 〈XnY − P (X,S) , Q(X,Y )−XeZ − S〉. The latter coincides with deg∂ by
virtue of Lemma 2.4. Hence by Proposition 2.6, the associated graded algebra is given by Gr(Rn,e,P,Q) =
k[X,Y, Z, S]/〈XnY −Sd, XeZ−Y m〉. The explicit description of Fmdi+dj+l and R[mdi+dj+l], using the exact
same method as in the proof of Proposition 4.4, is left to the reader. �

Corollary 4.6. With the above notation, the following hold:
(1) ML(Rn,e,P,Q) = k[x]. Consequently, Rn,e,P,Q is semi-rigid, and its unique LND-filtration is the ∂-

filtration.
(2) Every D ∈ LND(Rn,e,P,Q) has the form D = f(x)∂. Consequently, Rn,e,P,Q is almost-rigid.

Proof. (1) Given a non-zero D ∈ LND(Rn,e,P,Q). By Proposition 2.2, D respects the ∂-filtration and induces

a non-zero locally nilpotent derivation D of Gr(Rn,e,P,Q). Suppose that f ∈ ker(D) \ k, then f ∈ ker(D) \ k

is an homogenous element of Gr(Rn,e,P,Q). So there exists i ∈ N such that f ∈ R[i].

Assume that f /∈ k[x] = R[0], then one of the elements s, y, z must divides f by Theorem 4.5. This leads
to a contradiction as follows:

If s divides f , then s ∈ ker(D) as ker(D) is factorially closed, and for the same reason x, y ∈ ker(D) due
to the relation xny = sd. Then by the relation xe z = ym, we must have z ∈ ker(D), which means D = 0, a
contradiction. In the same way, we get a contradiction if y divides f .

Finally, if z divides f , then D(z) = 0. So D induces in a natural way a locally nilpotent derivation D̃ of

the ring R̃ = k(Z)[X,Y, S]/〈Xn Y −Sd, Xe Z−Y m〉. It follows from the Jacobian criterion that 0 ∈ Spec(R̃)

is a singular point, therefore R̃ is rigid, see [F, Corollary 1.29]. Hence D̃ = 0, which implies D = 0, a
contradiction.

So the only possibility is that f ∈ k[x], and this means deg∂(f) = 0, thus f ∈ k[x] and ker(D) ⊂
k[x]. Finally, k[x] = ker(D) because tr.degk(ker(D)) = 1 and k[x] is algebraically closed in Rn,e,P,Q. So
ML(Rn,e,P,Q) = k[x].

(2) follows immediately from Proposition 3.3. �

As a direct consequence of Theorem 4.6, we have the following two Corollary.

Corollary 4.7. The ALi-invariant of Rn,e,P,Q are given by:
(1) AL0(Rn,e,P,Q) = D(B) = ML(Rn,e,P,Q) = k[x].
(2) AL(Rn,e,P,Q) = AL1(Rn,e,P,Q) = · · · = ALd−1(Rn,e,P,Q) = k[x, s].
(3) Bn,P = ALd(Rn,e,P,Q) = · · · = ALmd−1(Rn,e,P,Q) = k[x, s, y] ≃ Bn,P .
(4) ALmd(Rn,e,P,Q) = Rn,e,P,Q.

Also, we have an interesting fact. Consider the following chain of inclusions, realized by the identity for
the first inclusion and by sending S to Q(X,Y )−XeZ for the second one.

AL(Rn,e,P,Q) = k[X,S] →֒ Bn,P = k[X,S, Y ]/ 〈XnY − P (X,S)〉 →֒ Rn,e,P,Q.

Then every non-zero locally nilpotent derivation of Rn,e,P,Q restricts to a non-zero locally nilpotent derivation
of k[x, s, y] ≃ Bn,P (≃ Rn,0,P,Q). Also, it restricts to a non-zero locally nilpotent derivation of the sub-algebra

k[x, s] ≃ k[2].

Corollary 4.8. Every non-zero D ∈ LND(Rn,e,P,Q) restricts to a non-zero locally nilpotent derivation of
Bn,P (resp. AL(Rn,e,P,Q)).
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4.4. Autk for the new class 4.3.

For simplicity we only deal with the case where Q(X,Y ) = Y m. Up to change of variable of the form S by

S − fd−1(X)
d

we may assume without loss of generality that fd−1(X) = 0.
Let Rn,e,P denote the ring

Rn,e,P := Rn,e,P,Y m = k[X,Y, Z]/ 〈XnY − P (X,Y m −XeZ)〉 = k[x, y, z]

where P (X,S) = Sd + fd−2(X)Sd−2 + · · ·+ f1(X)S + f0(X), e ≥ 0, n ≥ 1, (n, e) 6= (1, 0), and d,m ≥ 2. Let
F = {Fi}i∈N be its unique LND-filtration.

As an immediate consequence of Corollary 4.7, we have the following Corollary that shows how the
computation of the algebraic k-automorphism group of Rn,e,P can be simplified by consider the following
chain of inclusions, realized by sending S to Y m −XeZ for the last one.

ML(Rn,e,P ) = k[x] →֒ AL(Rn,e,P ) = k[x, s] →֒ ALd(Rn,e,P ) = Bn,P →֒ Rn,e,P .

Corollary 4.9. Every algebraic k-automorphism of Rn,e,P restricts to:
(1) a k-automorphism of ALd(Rn,e,P ) = Bn,P (≃ Rn,0,P ).
(2) a k-automorphism of AL(Rn,e,P ) = k[x, s].
(3) a k-automorphism of ML(Rn,e,P ) = k[x].

Nevertheless, for those who are not familiar with the algebraic k-automorphism group of Bn,P , we present
a complete proof for the next Theorem 4.10 without implicitly using the previous Corollary 4.9. Let λ, µ ∈ k∗,

and a(x) ∈ k[x]. Denote s = ym − xez and W := P (λx,µs+xn+ea(x))−µdP (x,s)
λnxn .

Theorem 4.10. Every algebraic k-automorphism α of Rn,e,P has the form:

α(x, s, y, z) = (λx, µs+ xn+ea(x),
µd

λn
y +W,

µdm

λnm+e
z +

(µ
d

λn y +W )m − µdm

λnm y
m + xn+ea(x)

λexe
)

where λ, µ ∈ k∗ verify both: µdm−1

λnm = 1 and fd−i(λx) ≡ µifd−i(x) mod xn+e for every i ∈ {2, . . . , d}.

Proof. By Proposition 3.5, α preserve the unique LND-filtration of B, described in Theorem 4.5.
Thus we must have α(x) ∈ F0 = k[x], α(s) ∈ F1 = k[x]s + k[x], α(y) ∈ Fd = k[x]y + Fd−1 and

α(z) ∈ Fmd = k[x].z + Fmd−1. In addition, α restricts to an automorphism of F0 = k[x]. Therefore,
α(x) = λx+ c where λ ∈ k∗, and c ∈ k.

Since α is invertible we get α(s) = µs + b(x), α(y) = εy + h(x, s), and α(z) = ξz + g(x, s, y) for some
µ, ε, ξ ∈ k∗, b(x) ∈ k[x], h(x, s) ∈ k[x, s], and g(x, s, y) ∈ k[x, s, y].

By Corollary 4.6 (2) everyD ∈ LND(Rn,e,P ) has the formD = f(x)∂. In particular, ∂α := α−1∂α = f(x)∂
for some f(x) ∈ k[x]. Since α∂α = ∂α we have ∂(α(s)) = α(f(x)∂(s)) = f(α(x))α(xn+e) where (∂(s) =

xn+e). So we get ∂(µs+ b(x)) = f(α(x)) (λx+ c)n+e. Since ∂(µy + b(x)) = µxn+e, x divides (λx+ c)n+e in
k[x], and this is possible only if c = 0, so we finally get α(x) = λx.

Applying α to the relation xny = P (x, s) in Rn,e,P , we get λnxnα(y) = P (λx, µs + b(x)) = µdP (x, s) +
dµd−1sd−1b(x)+H(x, s) where degsH ≤ d− 2. Since xn divides both xny and P (x, s), and degsH ≤ m− 2,
we conclude that xn divides dµd−1sd−1b(x)+H(x, s) in k[x, s]. So xn divides b(x), that is α(s) = µs+xna(x).

In addition, xn divides every coefficient ofH as a polynomial in s, so xn divides −µdfd−i(x)+µ
d−ifd−i(λx)

because coefficients of H(s) are of the form q(x, s)b(x)− µdfd−i(x) + µd−ifd−i(λx). Since x
n divides b(x), it

divides also −µifd−i(x) + fd−i(λx) for every i.
Now α(x) and α(s) fully determine α(y):

α(y) =
µd

λn
y +

P (λx, µs+ xna(x)) − µdP (x, s)

λnxn
.

Apply α to xez = ym−s to get λexeα(z) = (µ
h

λn y+W )m−µs−xna(x) whereW = P (λx,µs+xna(x))−µnP (x,s)
λnxn ∈

k[x, s]. So we have λexeα(z) = [µ
nm

λnm y
m − µnm

λnm s] + (µ
nm

λnm − µ)s+m(µ
n

λn y)
m−1W + . . .+Wm − xna(x). Since

µnm

λnm y
m − µnm

λnm s =
µnm

λnm x
ez, we see that xe divides G := (µ

nm

λnm − µ)s+m(µ
n

λn y)
m−1W + . . .+Wm − xna(x) in

k[x, s, y] ⊂ Rn,e,P because degsG ≤ degs(z)− 1 = md− 1.

Note that W = dµd−1sd−1xna(x)+H(x,s)
λnxn , thus degsW < d. So by applying the map grF we get

G = m(
µn

λn
y)m−1W = m(

µn

λn
y)m−1 d

µd−1

λn
sd−1a(x).
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Since xe divides G, xe divides a(x). Thus xe divides every coefficients of G as a polynomial in y. So xe

divides W and µnm

λnm − µ = 0. This means that xn+e divides fd−i(λx) − µifd−i(x) for all i ∈ {2, . . . , d}, and

µnm

λnm = µ. Finally, by the relation s = ym − xez, we get α(z) = µnm

λnm+e z +
m(µn

λn y)m−1W+...+Wm+xna(x)

λexe , and
we are done. �

The next Corollary describes the algebraic k-automorphism group of Rn,e,P in terms of the algebraic k-
automorphism group of the AL-invariant. Denote by A1 the sub-group of Autk (AL(Rn,e,P )) = Autk (k[X,S])
of automorphisms which preserve the ideals 〈X〉 and I1 = 〈Xnm+e, Xn(m−1)+eP (X,S), F (X,S)〉. Also, de-
note by A2 the sub-group of Autk (AL(Rn,e,P )) of automorphisms which preserve the ideals 〈X〉 and I2 =
〈Xn, P (X,S)〉. Finally, denote by A3 the sub-group of Autk (Bn,P ) of automorphisms which preserve the
ideals 〈X〉 and I3 = 〈Xe, Q(X,Y )− S〉. Then,

Corollary 4.11. In the case e 6= 0, Autk(Rn,e,P ) ∼= A1 = A3. In the case n 6= 1, Autk (Bn,P ) ∼= A2. The
isomorphism of Autk(Rn,e,P ) to A1 = A3 is induced by restriction of any automorphism of Rn,e,P to the
AL-invariant.

Proof. Theorem 4.10 implies that every algebraic k-automorphism of Rn,e,P restricts to an algebraic k-
automorphism of AL(Rn,e,P ) = k[X,S] that preserves the ideals 〈X〉 and I1 (resp. every algebraic k-
automorphism of Bn,P restricts to an algebraic k-automorphism of AL(Rn,e,P ) = k[X,S] that preserves the
ideals 〈X〉 and I2). Finally, since Rn,e,P is the affine modification of the AL-invariant along Xnm+e with
center I1 (resp. Bn,P is the affine modification of the AL-invariant along Xn with center I2), see Proposition
4.2, every algebraic k-automorphism of AL(Rn,e,P ) that preserves the ideals 〈X〉 and I1 (resp. preserves the
ideals 〈X〉 and I2) extends in a unique way to an algebraic k-automorphism of the affine modification Rn,e,P

(resp. Bn,P ), see [K-Z, Corollary 2.2]. �

4.5. Isomorphism class for the new family .

Again, we only deal with the case where Q(X,Y ) = Y m. First, in Proposition 4.12 we deal with the non-
trivial case of Rn,e,P where (e 6= 0). We deliberately exclude the trivial case e 6= 0, which correspond to
Danielewski k-domains of the form Bn,P (≃ Rn,0,P,m). Then, in Proposition 4.13 we compare the non-trivial
case of Rn,e,P (e 6= 0) with the trivial case Bn,P (≃ Rn,0,P,m). The reason for doing that is to elaborate the
importance of the non-trivial case Rn,e,P where (e 6= 0), that is, they are not isomorphic to any of Danielewski
k-domains.

4.5.1. The case Rn,e,P where (e 6= 0). Let Rn,e,P be the ring defined as

Rn,e,P := k[X,Y, Z]/ 〈XnY − P (X,Y m −XeZ)〉

where n, e ≥ 1, P (X,S) = Sd + fd−2(X)Sd−2 + · · ·+ f1(X)S + f0(X), and d,m > 1.
We give necessary and sufficient conditions for two rings, of the form Rn,e,P , to be isomorphic. Let

P1(X,S) = Sd1 + fd−2(X)Sd1−2 + · · · + f1(X)S + f0(X) and P2(X,S) = Sd2 + gd−2(X)Sd2−2 + · · · +
g1(X)S + g0(X). Then we have the following

Proposition 4.12. Rn1,e1,P1,m ≃ Rn2,e2,P2,m if an only if n = n1 = n2, e = e1 = e2, d = d1 = d2, and there

exist λ, µ ∈ k∗ such that fd−i(λX) ≡ µigd−i(X) mod Xn+e, and µdm

λnm = µ for every i ∈ {2, . . . , d}.

Proof. Let xi, si, yi, zi be the class of X, S = Y m − XeiZ, Y , and Z in Rni,ei,Pi,m for i ∈ {1, 2}. Let
Ψ : Rn1,e1,P1,m −→ Rn2,e2,P2,m be an isomorphism between the two semi-rigid rings. Then it induces ψ an
automorphism of Rn2,e2,P2,m, which restricts by Corollary 4.9 to an automorphism of

k[x2, s2, y2] = Bn2,P2
:= k[X,S, Y ]/ 〈Xn2Y − P2(X,S)〉 ⊂ Rn2,e2,P2,m.

Also, ψ restricts to an automorphism of k[x2, s2] (resp. k[x2]).
Proposition 3.5 shows that Ψ respects the semi-rigid structure, that is, Ψ (Fj) = Gj for every j, where

{Fj}j∈N (resp. {Gj}j∈N ) is the unique LND-filtration of Rn1,e1,P1,m (resp. Rn2,e2,P2,m ). Therefore, Ψ
restricts to an isomorphism between k[x1, s1, y1] = Bn1,P1

and k[x2, s2, y2] = Bn2,P2
Also, Ψ restricts to an

isomorphism between k[x1, s1] and k[x2, s2] (resp. k[x1] and k[x2]). So we conclude that Ψ(x1) = ψ(x2),
Ψ(s1) = ψ(s2), Ψ(y1) = ψ(y2), and Ψ(z1) = ψ(z2). This directly implies that n = n1 = n2, and d = d1 = d2.
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In addition, Theorem 4.10 fully describes ψ, so we get the following form of Ψ:




Ψ(x1) = ψ(x2) = λx2

Ψ(s1) = ψ(s2) = µs2 + xn+e2
2 a(x2)

Ψ(y1) = ψ(y2) =
µd

λn y2 +W

Ψ(z1) = ψ(z2) =
µdm

λnm+e2
z2 +

( µd

λn y2+W )m− µdm

λnm ym
2 +x

n+e2
2

a(x2)

λe2x
e2
2

for certain µ, λ ∈ k∗ such that µdm

λnm = µ and gd−i(λx2) ≡ µigd−i(x2) mod xn+e2
2 for every i ∈ {2, . . . , d2},

a(x2) ∈ k[x2], and W :=
P2(λx2,µs2+x

n+e2
2

a(x2))−µdP2(x2,s2)

λnxn
2

.

Finally, applying Ψ to the relation xe11 z1 = ym1 −s1 in Rn,e1,P1,m, we get λe1xe12 Ψ(z1) =
µmd

λmn [y
m
2 −s2]+b =

µmd

λmn [x
e2
2 z2] + b where b ∈ Gmd−1.

Comparing top homogeneous components, relative to the filtration {Gj}j∈N, for the last equation, we
obtain e = e1 = e2. And we are done. �

4.5.2. Comparison with Danielewski k-domains.
The next Proposition shows that rings of the new family Rn,e,P (e 6= 0) are not isomorphic to any of
Danielewski k-domains.

Proposition 4.13. The ring Rn1,e,P,Q = k[X,Y, Z]/ 〈Xn1Y − P (X,Q(X,Y )−XeZ)〉 is not isomorphic to
Bn2,F = k[X,S, Y ]/〈Xn2Y − F (X,S)〉 for any n1, n2, e > 0, and P (X,S), Q(X,S), F (X,S) ∈ k[X,S] such
that degS F, degS Q, degS P ≥ 2.

Proof. The case where n2 = 1 is obvious since ML(B1,P ) = k which yields by Proposition 3.2 that B1,P is
not semi-rigid, while Rn1,F,Q is for any n1 ≥ 1, see Corollary 4.6.

Suppose that n2 ≥ 2, then both Bn2,P and Rn1,e,F,Q are semi-rigid k-domains. Let x1, s1, y1, z be the
class of X , S = Q(X,Y )−XeZ, Y , and Z in Rn1,F,Q, and let x2, s2, y2 be the class of X, S, and Y in Bn2,P .
denote by {Fi}i∈N (resp. {Gi}i∈N ) the unique proper N-filtration of Rn1,e,F,Q (resp. Bn2,P ).

Let Ψ : Bn2,P −→ Rn1,e,F,Q be an isomorphism between the two rings, then Ψ must respect the semi-rigid
structure of the two rings, that is, Ψ (Gi) = Fi for every i, see 4.5. This immediately implies that Ψ restricts
to an isomorphism between AL-invariants k[x2, s2] ≃

Ψ
k[x1, s1].

On the other hand, we have y2 ∈ Gl, y1 ∈ Fd, z ∈ Fmd, where degS F = l, degS Q = m, degS P = d.
Assume that d � l, then there exists an element b ∈ k[x2, s2] such that Ψ(b) = y1, which means that
y1 ∈ k[x1, s1], a contradiction. In the same way we get a contradiction if we assumed that l � d. So the
only possibility is d = l, thus we conclude that k[x2, s2, y2] ≃

Ψ
k[x1, s1, y1]. Finally, let b ∈ Bn2,P such that

Ψ(b) = z. Since Ψ(b) ∈ k[x1, y1, s1], we get z ∈ k[x1, y1, s1], which is a contradiction (e ≥ 1). And we are
done. �

5. Cylinders over the new class

In this section we are interested in finding an algorithm to construct an explicit isomorphism between
cylinders over certain member of the new family rather than stating that such cylinder are isomorphic. The
latter is known to be true in the abstract due to the classic Danielewski argument.

We will create explicit isomorphisms between cylinders over rings of the form Rn,e defined by:

Rn,e := Rn,e,S2+1,Y 2 = k[X,Y, Z]/〈XnY − (Y 2 −XeZ)2 − 1〉

where e ≥ 0, n ≥ 1, and (n, e) 6= (1, 0).

5.1. Basic strategy .

Let Φ : k[N ] −→ k[N ] be an endomorphism of k[N ] = k[X1, . . . , XN ] and let F ∈ k[N ] be an irreducible
polynomial. Let G be an irreducible factor of Φ(F ) in k[N ], so we have Φ(F ) ∈ 〈G〉. Consider the induced
homomorphism of algebras Φ∗ : k[N ] −→ k[N ]/〈G〉 given by Φ∗ = πG ◦Φ where πG : k[N ] −→ k[N ]/〈G〉 is the
natural projection. Notice that Im(Φ∗) ≃ k[N ]/ ker(Φ∗).

Now, suppose that Φ∗ is surjective, then ker(Φ∗) = 〈F 〉. Indeed, if Φ∗ is surjective then Im(Φ∗) ≃
k[N ]/〈G〉 ≃ k[N ]/ ker(Φ∗) which implies in particular that the ideal ker(Φ∗) ⊂ k[N ] is principal. But since
Φ∗(F ) = 0, 〈F 〉 ⊂ kerΦ∗, and F is irreducible, we conclude that 〈F 〉 = kerΦ∗.
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The latter shows that an isomorphism between k[N ]/〈F 〉 and k[N ]/〈G〉 can be obtained if we find an
endomorphism of k[N ] that verify: first Φ(F ) ∈ 〈G〉 (or simply Φ(F ) = G), and second Φ∗ = πG ◦ Φ is
surjective.

5.2. The case e 6= 0.
First we will start with a simple case and then we proceed to the general case by induction. We should
mention that following results are known abstractly, however here we give an algorithm.

Lemma 5.1. R1,1 ⊗k k[T ] ≃ R1,2 ⊗k k[T ].

Proof. (Which is also an algorithm to construct isomorphisms)
Let Φ : k[5] −→ k[5] be the endomorphism of k[5] = k[X,S, Y, Z, T ] defined as follows:





Φ(X) = X

Φ(S) = S +H(X,T )

Φ(Y ) = Y + L(X,S, T )

Φ(Z) = XZ + F (X,S, Y, T )

Φ(T ) = T (X,S, Y, Z, T )

We choose H = H(X,T ) such that:
a) Φ(XY − S2 − 1) = XY − S2 − 1. This gives the following relation between H and L = L(X,S, T ):

XL = 2HS +H2

which implies that X divides H . So H = XH1, hence L = 2H1S +XH2
1 .

b) Φ(Y 2−XZ−S) = Y 2−X2Z−S. This gives the following relation between H , and F = F (X,S, Y, T ):

XF = 2Y (2H1S +XH2
1 ) + (2H1S +XH2

1 )
2 −XH1

which directly implies that X divides H1, and we obtain H = X2H2 for some H2 ∈ k[X,T ].
Note that if X3divides H , then we immediately notice that Φ(Z) is divisible by X which implies that Φ

does not induce an isomorphism. Therefore, The only choice for H is such that X2 divides H but X3 does
not.

Let for instance H(X,T ) = X2T (any other choice such that H2 ∈ k[T ] will do), then it reminds to
determine Φ(T ) to fully describe Φ.

Choose Φ(T ) to be such that the following holds

Φ(Y Z −XT ) = 4T (−XY ) + 4TS(Y 2 −X2Z)

which simply means that

Φ(Y Z −XT ) ≡ −4T mod 〈XY − S2 − 1, Y 2 −X2Z − S〉.

Note that such a choice of Φ(T ) is always possible even in a more complicated situation where P (X,S) can
be any polynomial in k[X,S].

An elementary computation can determine Φ(T ) to reach to the following form of Φ:
(1) Φ(X) = X
(2) Φ(S) = S +X2T
(3) Φ(Y ) = Y + 2XST +X3T 2

(4) Φ(Z) = XZ + 4SY T −XT + 2X2Y T 2 + 4XS2T 2 + 4X3ST 3 +X5T 4

(5) Φ(T ) = ZY + 6XSZT + 3Y T + 2XY 2T 2 + 12S2Y T 2 +X3ZT 2 −X3T 3 + 12X2SY T 3 + 8XS3T 3 +
3X4Y T 4 + 12X3S2T 4 + 6X5ST 5 +X7T 6

Now, define φ : k[4] −→ k[4] to be the endomorphism of k[4] = k[X,Y, Z, T ] given by: φ(X) = Φ(X),
φ(Y ) = Φ(Y ), φ(Z) = Φ(Z), φ(T ) = Φ(T ) where we substitute S by S = Y 2 − X2Z. Then we have
φ(Y 2 −XZ) = S +X2T , φ

(
XY − (Y 2 −XZ)2 − 1

)
= XY − (Y 2 −X2Z)2 − 1, and φ(Y Z −XT ) = −4T

mod 〈XY − (Y 2 −X2Z)2 − 1〉.
As discussed before §5.1, to prove that φ induces an isomorphism between R1,1 ⊗k k[T ] and R1,2 ⊗k k[T ],

it is enough to show that φ∗ = πXY−(Y 2−X2Z)2−1 ◦ φ is surjective. For that, denote by x, s, y, z, t the class
of X,S, Y, Z, and T in R1,2 ⊗k k[T ], then (1) immediately shows that x ∈ Imφ∗. By construction t ∈ Imφ∗.
Therefore, (2) implies s ∈ Imφ∗, and (3) implies that y ∈ Imφ∗. So (4) provides xz ∈ Imφ∗, and (5) ensures
that yz ∈ Imφ∗. Since s = y2 − x2z, we get sz = y(yz)− (xz)2. This means that sz ∈ Imφ∗. Finally, since
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z = z(xy − s2) = x(yz) − s(sz) where all terms in the second part of the last equation belong to Imφ∗, we
deduce that z ∈ Imφ∗. In conclusion, φ∗ is surjective. �

The exact same algorithm, as in the proof of Lemma 5.1, can be applied to construct an isomorphism
between R1,e⊗k k[T ] and R1,e+1⊗k k[T ] for every e > 0. The only different step is that Φ(T ) must be chosen
to verify:

Φ(Y Z −XT ) = 4T (−XY ) + 4TS(Y 2 −Xe+1Z).

Also, the same algorithm can be used to establish an isomorphism between Rn,1 ⊗k k[T ] and Rn,2 ⊗k k[T ]
for every n > 0, where Φ(T ) is chosen to hold:

Φ(Y Z −XT ) = 4T (−XnY ) + 4TS(Y 2 −X2Z).

We put together the previous observation to obtain the following.

Lemma 5.2. R1,e ⊗k k[T ] ≃ R1,e+1 ⊗k k[T ], and Rn,1 ⊗k k[T ] ≃ Rn,2 ⊗k k[T ].

Finally, by induction we get:

Theorem 5.3. Rn,e1 ⊗k k[T ] ≃ Rn,e2 ⊗k k[T ] for every n, e1, e2 > 0.

In addition, if φe1+i,e1+i+1 is the endomorphisms, as determined in Lemma 5.1, of k[4] that induces an

isomorphism between Rn,e1+i[T ] and Rn,e1+i+1[T ], then the endomorphisms φe2−1,e2 ◦ · · · ◦ φe1,e1+1 of k[4]

induces an isomorphism between Rn,e1 [T ] and Rn,e2 [T ].

5.2.1. A counter-example of the cancellation problem.
Consider the following chains of inclusions, which is realized by sending Z to XZ in every step.

Rn0,1 →֒ Rn0,2 →֒ · · · →֒ Rn0,e

for every n0 ∈ {1, . . . , n}.
They are pairwise not isomorphic to each other by Proposition 4.12, whereas, Theorem 5.3 indicates

Rn0,1 ⊗k k[T ] ≃ Rn0,2 ⊗k k[T ] ≃ · · · ≃ Rn0,e ⊗k k[T ]

for every n0 ∈ {1, . . . , n}.

5.3. Cylinders over Danielewski k-domains, the case e = 0.
Here, we will show how to create an isomorphism between cylinders over k-domains of the form:

Bn,P = k[X,S, Y ]/〈XnY − P (X,S)〉

for every n ≥ 1. Where P (X,S) = Sd +XQ(X,S) + c, c ∈ k − {0}, and Q(X,S) ∈ k[X,S],
First, we illustrate how the algorithm, presented in the proof of Lemma 5.1, can be modified to establish

isomorphisms between the below mentioned rings and then we proceed to the general case.

Lemma 5.4. B1,P ⊗k k[T ] ≃ B2,P ⊗k k[T ], where P (X,S) = S4 +X2S2 + 1.

Proof. In a similar way as in the proof of Lemma 5.1, we will establish an isomorphism between B1,P [T ] and
B2,P [T ].

Let Φ : k[4] −→ k[4] be the endomorphism of k[4] defined as follows:




Φ(X) = X

Φ(S) = S +H(X,T )

Φ(Y ) = XY + L(X,S, T )

Φ(T ) = T (X,S, Y, T )

We choose H = H(X,T ) such that Φ(XY − S4 −X2S2 −Xf(X)− 1) = X2Y − S4 −X2S2 −Xf(X)− 1.
This gives the following relation between H and L = L(X,S, T ) :

XL = H4 + 4H3S + 6H2S2 + 4HS3 +H2X2 + 2HSX2

which directly implies that H is divisible by X . Note that if X2divides H , then we immediately obtain Φ(Y )
is divisible by X which implies that Φ will never induces an isomorphism. Therefore, The only choice for H
is such that X divides H but X2 does not. So let H(X,T ) = XT , then a simple computation leads to

L(X,S, T ) = X3T 4 + 4X2T 3S + 6XT 2S2 + 4TS3 + T 2X3 + 2TSX2.
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Choose Φ(T ) such that

Φ(Y S −XT ) = 4T (−X2Y + S4 +X2S2 +Xf(X)),

which can be done by virtue of the condition (X divides every coefficient of P (X,S)− S4 − 1). Notice that
this choice is made to get

Φ(Y S −XT ) ≡ −4T mod (X2Y − S4 −X2S2 −Xf(X)− 1),

which simply implies that T + 〈X2Y −P 〉 ∈ ImπX2Y −P ◦Φ. An elementary computation can determine Φ(T )
to reach to the following form of Φ:

(1) Φ(X) = X
(2) Φ(S) = S +XT
(3) Φ(Y ) = XY +X3T 4 + 4X2T 3S + 6XT 2S2 + 4TS3 + T 2X3 + 2TSX2

(4) Φ(T ) = SY +5XY T − 4f(X)T − 2S2TX+3ST 2X2+10S3T 2+T 3X3+10S2T 3X+5ST 4X2+T 5X3

Now, as we discussed before §5.1, to prove that Φ induces an isomorphism between B1,P and B2,P , it
is enough to show that Φ∗ = πX2Y−P ◦ Φ is surjective. For that, denote by x, s, y, t the class of X,S, Y ,
and T in R2,0,P , then immediately we see that x ∈ ImΦ∗. By construction t ∈ ImΦ∗, therefore (2) implies
s ∈ ImΦ∗. Thus (3) provides xy ∈ ImΦ∗, again using (4) we see that sy ∈ ImΦ∗. Finally, since y = y.1 =
y(x2y − s4 − s2x2 − xf(x)) = (xy)2 − (ys)s3 − (ys)sx2 − (xy)f(x) where all terms in the second part of the
last equation belong to ImΦ∗, we deduce that y ∈ ImΦ∗. Since x, s, y, t are generators of B2,P , we conclude
that Φ∗ is surjective. �

The exact same method, as in the proof of Lemma 5.4, can be used to create an isomorphism between
k-domains presented in the following Proposition. Where we imposed conditions, X divides every coefficient
of P (X,S)− Sd − c as a polynomial in S, and c 6= 0, which are essential to enable us to proceed.

Lemma 5.5. Bn,P ⊗k k[T ] ≃ Bn+1,P ⊗k k[T ].
where n ≥ 1, d ≥ 2, c ∈ k \ {0}, P (X,S) = Sd +XQ(X,S)+ c, and Q(X,S) ∈ k[X,S] with no restriction

on the degree of Q(0, S).

Finally, by induction we have the following.

Theorem 5.6. Bn,P ⊗k k[T ] ≃ Bm,P ⊗k k[T ].
where n,m ≥ 1, d ≥ 2, c ∈ k \ {0}, P (X,S) = Sd +XQ(X,S) + c, and Q(X,S) ∈ k[X,S].
In addition, if Φi,i+1 is the endomorphisms, as determined in Lemma 5.4, of k[4] that induces an iso-

morphism between Bi,P [T ] and Bi+1,P [T ], then the endomorphisms Φm−1,m ◦ · · · ◦Φn,n+1 of k[4] induces an
isomorphism between Bn,P [T ] and Bm,P [T ].
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