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Introduction

Logical reasoning has been the main pillar on which science is constructed. In some times and some cases in history, logical reasoning was the only pillar. The ancient Greek scientists relied almost exclusively on logical reasoning in building their knowledge and formulating their theories, as other scientific methods were not yet technically developed to a satisfactory degree of maturity and reliability. This resulted in a large repertoire of theoretical science, some of which remains to be foundation for sciences and mathematics until today; other turned out to be false philosophical speculations.

The advent of the experimental paradigm of science and its integration with logical reasoning enabled the production of sound science and, to a great extend, clarified the distinction between science and philosophy. Today, computational methods have emerged as the new major paradigm for scientific research, resulting in the classification of the scientific endeavors into three main categories: theoretical, experimental, and computational science.

Regardless of the choice of methodology, logical reasoning and mathematical logic remain to be the cornershotnes for all the three main paradigms. After all, computation, at the bottom, is automated logical reasoning and mathematical models and techniques are tools for formulating and quantifying the reasoning process.

The above introduction signifies the importance of forming, producing, and validating logical propositions in science. The validation process involves the evaluation of the validity of sentences in propositional logic, which, in turn, involves the evaluation of the statement's truth function under all possible interpretations. For example, a proposition P is said to be valid, also called a tautology, if it is evaluated to be true under every possible interpretation of P . On the other hand, P is said to be contradictory if it is false under all possible interpretations. In between the two extremes, there are different degrees of validity leading to evaluating the sentence as satisfiable, consistent, etc. [START_REF] Mendelson | Introduction to Mathematical Logic[END_REF].

The validation process requires a complete analysis of all the possible truth-values under all possible interpretations of the proposition to construct the truth function for that proposition. This is typically performed by constructing truth tables, which list all the possible truth-values for the proposition currently under evaluation [START_REF] Manna | The Logical Basis for Computer Programming[END_REF]. The use of truth tables is an important outcome of the development of the theory of symbolic logic, which was initiated by George Boole [START_REF] Rouvray | Fuzzy Logic in Chemistry[END_REF], who formulated the logic of Aristotle as algebra of classes [4], [START_REF] Bool | The Mathematical Analysis of Logic[END_REF]. The integration of symbolic logic with the semantic theory of logic resulted in mathematical logic and propositional calculus, which have had significant effect on the development of science in general and the information and computation theories in particular. This section provided the necessary background for the current paper, signifying the necessity of a sound validation process for logical propositions, which are the building blocks of science and knowledge. The next section presents the particular problem of justifying the logical implication table, states a possible disadvantageous solution, and provides motivation for the need for new proofs. Section three includes the author's presentation of an unpublished proof by Dr. Stephen Leach of Florida State University based on the requirement specified by R. L. Goodstein [START_REF] Goodstein | Development of Mathematical Logic[END_REF]. In section four, the author introduces his new automatable proof based on incremental constructive reasoning. Section five, then, includes a comparison between the two proofs pointing out how the latter is advantageous over the other proofs. Section six discusses the linguistic, philosophical, and scientific implications and consequences of the table. Finally, section seven concludes the paper and provides pointers to possible future follow up research.

The Research Problem

The truth tables for many logical connectives used in constructing compound propositions seem justifiable and easy to accept, even without a mathematical proof. They simply go with the natural intuition and make sense in daily applications. Propositional connectives that fall into this category are the negation operator ( NOT connective, denoted as ¬ ), the conjunction operator ( AND connective, denoted as ∧ ), and the logical equivalence, also known as the biconditional, operator ( ⇔ ) -that is the if and only if --form ( iff 

P Q P Q ⇒ 1 1 1 1 0 0 0 1 1 0 0 1
It is important here to note that the current treatment of the if then form is only concerned with the truth function of the resulting compound proposition. A compound sentence is considered to be truth-functional, only if the truth-value of the sentence is a function of the truth-value of its constituent sentence variables [START_REF] Baker | The Elements of Logic[END_REF]. It is needless to say that the everyday use of the if then form is not limited to the truthfunctional applications. Even after we limit our discussion to the truth-functional if then statements, when we look at Table 1, we see that each cell in the third column could have been assigned any one of the two values, 0 or 1, i.e., false or true, respectively. With four rows representing all the possible combinations of the sentences P and Q , then S is true. This is not an obvious conclusion to many people. Both propositions include one true and one false statement. In 1 S , the antecedent is true and the consequence is false while 2 S is vice versa.

Although the logical implication operator is the most controversial among logical connectives, it is arguably the most important in science and engineering applications. The additional importance of the conditional connective is attributed to two sources. Firstly, it is inherently the building block for scientific reasoning and the inference mechanisms necessary for constructing proofs and drawing conclusions. A comprehensive look at how the modern science developed at the dawn of the twentieth century reveals a development pattern where the outcome of experiments is used as the antecedent for an if then --i.e., a logical implication -statement. The consequence of the if then form comes then as a new theory, model, proposition, or even a postulate, or set of postulates, that would lead later to a new scientific discovery. This is how we established the fact that light waves are electromagnetic waves and the fact that electromagnetic waves travel in the void as a consequence of the outcome of Michelson-Morley experiment. It is also how the special theory of relativity based on the universality of the laws of physics and the speed of light evolved. Similarly was the rational for the development of quantum mechanics, the series of models for the atomic structure, the De Broglie's hypothesis, and many other discoveries that redefined the modern science. They all were compound propositions of the "if P then Q " form ( P Q ⇒ in symbolic notation) with different degrees of complexity. If we take P to be the outcome of the experiment of Hans Geiger and Ernest Marsden and Q to be the Rutherford model of the atom, we get one of the most famous examples of the dependence of science on the above reasoning process in the if then form [START_REF] Krane | Modern Physics[END_REF]. Secondly, among all the logical operators, the if then form is of exceptionally intensive and extensive use in system control theory and applications. Many control systems, regardless of the type of logic they utilize, rely on the automation of a set of if then rules for adaptive system control [START_REF] Klir | Fuzzy Sets and Fuzzy Logic: Theory and Applications[END_REF]. This discussion of the merits and criticality of the logical implication makes it clear that it is of fundamental necessity that the controversy about the if then sentence form be solved preferably through a solid mathematical proof, since obviously other tools are not adequate or sufficient. The necessity here is not for specialized logicians. The need is rather for students to understand, applied scientists to use, and automated reasoning practitioners to program. A rather naïve way to prove the correctness of Table 1 is to generate all the possible sixteen tables and systematically prove by contradiction the invalidity of each and every one of them, except the one represented by Table 1. This would be a tedious and very lengthy proof, which, consequently, would not contribute significantly to the realization of the linguistic and philosophical implications and the practical applications of Table 1. The next two sections present alternate proofs to this exhaustive search methodology. Both proofs assume that the tables for all other logical operators are correct and can be used. Table 2 represents the table for the logical conjunction operator since it will be particularly used in both proofs.

Table 2. Truth Table for Logical

Conjunction P Q P Q ∧ 1 1 1 1 0 0 0 1 0 0 0 0

A Proof by Incremental Constructive Reasoning

This proof was proposed by Dr. Stephen Leach at Florida State University in the late 1970's. The proof is unpublished and the current presentation and mathematical formulation of the proof are made by the author. Dr. Leach's proof is based on the criteria set by Goodstein [START_REF] Goodstein | Development of Mathematical Logic[END_REF], which states that a valid logical implication table must preserve two properties, that is, it must be transitive and non-commutative. Based on these criteria, Dr. Leach uses his own mathematical logical formula to incrementally construct the table, one row at a time, showing, in one phase, that Table 1 is the only table that can be constructed without having to visit all or any of the other fifteen tables.

The Proof

In order for the table to be transitive, we want the proposition Prop (1) below to be a tautology. 

Prop ( 1) [( ) ( )] ( ) P Q Q R P R ⇒ ∧ ⇒ ⇒ ⇒
P Q P Q ⇒ 0 0 0 If we substitute Q for R in Prop (1) we get Prop ( 2) {[( ) ( )] ( )} 1 P Q Q Q P Q ⇒ ∧ ⇒ ⇒ ⇒ = * ( ) 0 P Q ⇒ = Q by the contradictory assumption, † {[0 0] 0} 0 ∴ ∧ ⇒ = by substituting 0 for each direct implication in Prop (2)
{0 0} 0 ∴ ⇒ = by substituting from the fourth row of Table 2, but this contradicts with Prop (2) = 1and the requirement that Prop (1) is a tautology. Then, the contradictory assumption is incorrect and the fourth row of Table 1 

is correct. 0 0 1 ∴ ⇒ = (1) Now, (0 0) 1 ⇒ = Q and since Prop (1) is a tautology, {[(0 0) (0 0)] (0 0)} 1 ∴ ⇒ ∧ ⇒ ⇒ ⇒ = {[1 1] 1} 1 ∴ ∧ ⇒ = by substituting from (1)
{1 1} 1 ∴ ⇒ = by substituting from the first row of Table 2. This proves the first row of Table 1.

1 1 1 ∴ ⇒ = (2) Now,

by the second property of the table as required by

Goodstein to be non-commutative, (1 0) ⇒ and (0 1) ⇒ , which are the second and third rows of the table, cannot have the same truth-values. Then, from the second and third row of Table 2 for the logical conjunction we get,

Prop ( 3) {(1 0) (0 1)} 0 ⇒ ∧ ⇒ = Since Prop (1)
is a tautology, it should be true regardless of the truth-values assigned to P , Q , and R . Then we are justified when we pick any combination of truth-value assignments. Hence, we consider the case when

1 P = , 0 Q = , and 1 R = . {[(1 0) (0 1)] (1 1)} 1 ∴ ⇒ ∧ ⇒ ⇒ ⇒ = since Prop (1) is a tautology. {0 (1 1)} 1 ∴ ⇒ ⇒ = from Prop (3)
{0 1} 1 ∴ ⇒ = by application of (2), and this proves the third row of Table 1.

0 1 1 ∴ ⇒ = (3)
Now, by the non-commutability property, rows two and three of Table 1 must have different truth-values. 1), ( 2), (3), and (4), Table 1 is justified and complete.

1 0 0 ∴ ⇒ = (4) By (

Alternate Automatable Proof

In this section, the author proposes a different proof, which is still based on incremental constructive reasoning. Although the above proof indeed inspired the new one, but the author developed the new proof in an attempt to achieve three additional advantages: 1-Increased simplicity. The fundamental idea of both proofs is to build on some natural criteria to which we want the logical implication table to conform. However, the simpler the criterion form and structure, the easier it is to understand the table and its applications. After all, the logical implication is not meant to be used only by mathematical logicians. 2-Better systematic autonomy. Although relying on selected natural criteria for justification has the advantage of providing support and acceptability for applications in reasoning processes of any field, but we hope the proof itself is systematically automatable. This would have the advantage of the proof being programmable into autonomous reasoning and inference systems. 3-Self-evolution and self-evidence. Although the previous proof followed incremental constructive reasoning to justify the table one row at a time, it started by assuming the existence of the table. This does not invalidate the proof itself. However, it poses a big obstacle to achieving full autonomy of the proving mechanism, since it does not answer the question of how we generated the table to start with. It seems to be subjectively selected from the sixteen possible ones. A proof that generates the table from scratch in a selfevolutionary self-evident manner would definitely be a big plus from the points of credibility, simplicity, and automatability.

The Proof

The logical implication table, to be correct, is expected to satisfy the following two conditions:

1-For any two sentence variables P and Q , we want the following proposition Prop (4) to be a tautology [START_REF] Mendelson | Introduction to Mathematical Logic[END_REF].

Prop ( 4)

( ) P Q P ∧ ⇒ 2-As required by Goodstein, the table is non-commutative,
that is P Q ⇒ and Q P ⇒ cannot have the same truth- value for all P and Q [6].

The first condition is necessary to maintain the compatibility with the logical conjunction table, Table 2. The second is to distinguish the logical implication from the logical equivalence, as explained in the previous proof. Then, the reasoning process proceeds as follows:

Since proposition Prop (4) is a tautology, ( ) P Q P ∧ ⇒ is true, regardless of the truth-values of P Q ∧ and P . Then we consider all the possible cases for P Q ∧ . We have two cases: Case 1:

1 P Q ∧ = and Case 2: 0 P Q ∧ = .
Case 1:

1 1and 1 P Q iff P Q ∧ = = = from Table 2.
[(1 1) 1] 1 ∴ ∧ ⇒ = since the proposition is a tautology.

(1 1) 1 ∴ ⇒ = from the first row of Table 2. This is the case of row number one of Table 1 and we encode it into a new table, Table 3. To follow the evolution of the table, we encode one phase of the table at a time with the table number as Table 3 -i, where i represents the number of rows filled to the current phase. 

P Q P Q ⇒ 1 1 1
Case 2: 

0 P Q ∧ = . According to
P Q = = .
[(1 0) 1] 1 ∴ ∧ ⇒ = since the statement is a tautology.

[0 1] 1 ∴ ⇒ = from the second row of Table 2. This is the case for row number three of Table 1. Then we have the first and third rows thus far as in Table 3 -2.

Table 3 -2. Logical implication table with two rows

P Q P Q ⇒ 1 1 1 0 1 1
Case 2.2: when 0 and

1 P Q = = .
[(0 1) 0] 1 ∴ ∧ ⇒ = since the statement is a tautology.

[0 0] 1 ∴ ⇒ = from the third row of Table 2. This is the case for row number four of Table 1. Then we have rows number 1, 3, and 4 thus far as in Table 3 -3. 

P Q = = .
[(0 0) 0] 1 ∴ ∧ ⇒ = since the statement is a tautology.

[0 0] 1 ∴ ⇒ = from the fourth row of Table 2. However, this does not produce any new result but the redundant outcome asserts the case of row 4 in Table 3. Now, by the non-commutability

) P Q Q P ⇒ ⇒ property, ( ) and ( 
cannot have the same truthvalue for all P and Q . Since P and Q have the same truth-value in rows number 1 and 4, then row number 2 must be different from row number 3.

(

1) 1 ⇒ = Q in row number 3, ( 0 
0) 0 ∴ ⇒ = is the only choice for row number 2 and this completes Table 3.

Table 3 -4. The Logical implication table complete

P Q P Q ⇒ 1 1 1 1 0 0 0 1 1 0 0 1
Now, Table 3 is complete and perfectly matches Table 1.

Comparison and Assessment

As stated above, the author attempted devising the latter proof hoping to achieve three objectives, which would be three points of improvement over the first proof. The first objective was to aim at increased simplicity. This was implemented in the second proof by building on a simpler tautology than the ones used by Goodstein or Leach. Proposition Prop (4) is obviously simpler than Prop (1) and involves smaller number of variables -two rather than three.

The second objective of the author's proof was to attempt to achieve better systematic autonomy. This means to minimize the subjective involvement in the justification process. In the first proof, in order to prove the third row in (3), we subjectively selected one case out of 3 2 8 = cases, that was the case when 1 P = , 0 Q = , and 1 R = . The alternative to this subjective interference in the proving process was to consider all the possible cases, eight of them. The outcome would still have been the same, but the proof would have been much longer and the results would have been too redundant. Hence, we had to choose between extreme redundancy and subjective interference. On the other hand, in the second proof, there was no need for subjective intervention at all, and we still had only one redundant evaluation, which served to assert the fourth row of the table without producing new results. Unlike carrying on seven redundant evaluations, this is obviously an acceptable computational cost for autonomy implementation. Finally, Dr. Leach's proof pre-assumed the existence of the logical implication table, Table 1. The task then was to prove the correctness of the table by contradiction if the fourth row was set differently. However, while this does not disqualify the proof, it does not indicate how Table 1 was selected among sixteen possible tables either. In contrast, the author's proof did not pre-assume the existence of any table. Rather, it systematically generated the table from scratch. This leads to not only full objective autonomy eliminating any subjective intervention, but also a self-evolutionary and self-evident table. This was the last objective of the author to produce a simpler, more credible, and fully authomatable proof.

Usage, Applications, and Further Justification

Although the proofs above justify the truth table for the logical implication connective, some background in mathematical logic, admittedly at a certain level, is required not only to generate the proofs but also to understand them. Understanding the logical, linguistic, and philosophical applications of other logical operators may not necessarily require such a background. Let us take the table for the logical AND , Table 2 above, for example. According to this table the statement ( ) P Q ∧ can be true only when both P and Q are true. This is why ( ) 1 P Q ∧ = , i.e., true, in the first row and is false, 0, otherwise. In words, this is not difficult to understand or explain even to audience without mathematical background. It simply states that if P and Q stand for simple sentences, then the compound statement " P and Q " would be true only when both " P " and " Q " are true. For instance, if " P " = "today is sunny", and " Q " = "today is a holiday", then the statement ( ) P Q ∧ would be true only if today is both sunny and a holiday. The truth of one of the two is not sufficient to make the statement true, and the falsity of just one of them is sufficient to make the statement false. Explaining the disjunction, OR , table can be done similarly without the use of mathematics, after the type of the disjunction is selected, that is exclusive or inclusive OR . But what about the if then table, can we explain it in words in a similar manner without using mathematical logic?

The author contends that the answer is: yes, we can, but we have to admit that it would not be as easy as it is in the cases of AND , OR , and NOT . A minimum level of sophistication is needed to understand the linguistic interpretation of the logical implication table. Here is a proposed way of explaining and applying it, first to the general audience and then to the scientific community.

Let us take the case " P " = "the sun rises in the east", and " Q " = "the Giza pyramids are in Egypt". According to Table 1, since P is true and Q is true, the " P Q ⇒ " = "if the sun rises in the east then the Giza pyramids are in Egypt" is true, which is obvious; a true condition leading to a true conclusion makes a true statement, even when the condition and conclusion seem unrelated, after all we are analyzing the truth functional statement. Now, let us take row 2 and make Q false by replacing it with Q ¬ . Then row 2 states that the statement " P Q ⇒ " = "if the sun rises in the east then the Giza pyramids are not in Egypt" is false. This should be obvious too because we have a true condition that leads to a false conclusion, which would be against our knowledge of the current world where we live. As for rows 3 and 4, let us make " P " false by replacing it with its negation " P ¬ ".

Then rows 3 and 4 say that " P Q ¬ ⇒ " = "if the sun does not rise in the east then the Giza pyramids are in Egypt" is a true statement, and that " P Q ¬ ⇒ ¬ " = "if the sun does not rise in the east then the Giza pyramids are not in Egypt" is also a true statement. This simply is saying that if the sun does not rise in the east then any conclusion can be considered true. This is because if the sun does not rise in the east, then we would be in a different world where we do not know if the Giza pyramids are in Egypt or not. In fact, in that case, would not even know if the pyramids or Egypt would exist at all. Then it is safe to assume that any conclusion is true in that case. In the example above, the falsity of the antecedent of the conditional statement led to a completely different world where we would not know the correct conclusion and assumed that by default any conclusion could lead to a true statement. However, the antecedent of a conditional statement does not always have to be so fundamental to our world like the sun rising in the east, which renders its negation as such unrealistic philosophical hypothesis. Sometimes the falsity of the antecedent is the result of wrong, or lack of, information. Furthermore, the truth and falsity of the antecedent, or the consequence, may change over time, but this still would not change the validity of the logical implication table . For example, at one point in time, our assumption of the existence of the ether was solely based on logical reasoning in the if then form in the absence of any experimental or observational evidence in support or denial of the proposition. If light is electromagnetic waves, then the ether must exists. This was based on another assumption that waves must travel in a medium. However, since Michelson and Morley discovered the non-existence of the ether, we flipped the antecedent and the consequence in the conditional statement to state that "if there is no ether, then electromagnetic waves can travel in the void". However, the author contends that the argument in the previous paragraph still holds because a change in our knowledge of the world is equivalent to a change in the world itself. If what we knew turns out to be incorrect, then this is equivalent to knowing a different world. In both cases we reasoned about a hypothesis that never existed. The only difference between the two cases is that when we reasoned about the sun not rising in the east, we reasoned about an unrealistic assumption if it occurs in the future, while with the case of the ether we reasoned about an unrealistic assumption that we mistakenly thought was realistic in the past. To demonstrate this idea, let us take the same proposition we ended up with in the above example: "if there is no ether, then electromagnetic waves can travel in the void". Now we know that this statement is true because both the antecedent and the consequence of the conditional statement are both true. But what if we discover one day that the ether actually exists, would the truth of the same whole compound statement be reversed then? In that case, the antecedent, i.e., "there is no ether" becomes false, which according to Table 1 makes the whole statement still true regardless of the truth-value of the consequence. This is in perfect agreement with the argument above about a different world where the sun does not rise in the east. In both cases the statement was made about a different world that has not been known in the first example, and was thought incorrectly to be known in the latter. Now, one serious argument can be raised against the interpretation above, that is, on rows 3 and 4, if the falsity of the condition means that we simply do not know the conclusion, why is it the case that we assume both to be true? Why not assume both to be false instead? The author's answer to that question is that the default choice of the truth of the proposition is consistent with the assumption that when the antecedent is false then we do not know the consequence and hence all consequences are possible. If one consequence makes the statement false, this would be as if we are stating the impossibility of that consequence. This would be against the natural conclusion that all the consequences are possible when the condition is false, which means that we are dealing with a different, or unknown, world. Normally in science, we assume all outcomes are possible unless we have evidence or reason to believe that some consequence is impossible. Therefore, the default setting of the proposition to be true, rather than false, when the antecedent is false is supported by some natural criteria. For a concrete example of this approach, let us consider reasoning process about String Theory. We all know today that although string theorists have some mathematical evidence and basis for the theory, the skeptics argue that we have no way today, or in the foreseen future, to test the string theory. Hence, string theorists are building arguments on unverifiable science, which renders all consequences possible. Thus far, this deduction is in agreement with the above interpretation of the logical implication. Nevertheless, without taking sides on the string theory, the author wants to use a reasoning process about the theory to prove the point of the above interpretation of Table 1. Therefore, we consider the case when " P " = "the string theory is confirmed", which both the advocates and the skeptics agree is a false statement, taking into account the fact that 'confirmed' means tested methodically and found to be verifiable and applicable. Now, let us take the case of " Q " = "the quantum theory is correct", which we all agree is a true statement according to our knowledge today. Then let us consider the two propositions ( ) P Q ⇒ and ( ) P Q ⇒ ¬ . The first proposition states that " if the string theory is confirmed then the quantum theory is correct", while the second proposition states that " if the string theory is confirmed then the quantum theory is incorrect". The author argued above that it is safe and natural to assume both these propositions to be true, which is in accordance with the fact that all conclusions are possible since P is false. Indeed, setting either, or both, of the above two propositions to be false, implies that we have knowledge or evidence of the impossibility of some consequence of the confirmation of string theory. This surely contradicts with the assumption that P is false. Otherwise, the implied knowledge or evidence could be taken as a confirmation of the theory, which would make P a true statement.

The above linguistic interpretation is also asserted by the fact that logical implication P Q ⇒ is logically equivalent to the logical disjunction P Q ¬ ∨ . Both statement forms have the same truth table. This implies that one can be taken as a way of looking at the other. The logical equivalence between the two implies that for the " if P then Q " to be true, P must be false, or Q must be true. When P is false, the statement will be true regardless of the truth-value of Q . When Q is true, the statement will be true regardless of the truth-value of P . This goes in perfect agreement with the preceding linguistic interpretation.

Conclusion and Future Vision

It is possible to justify the logical implication table of propositional calculus without having to perform exhaustive search of all possible sixteen tables. This paper presented two methods of proof by incremental constructive reasoning: one is an unpublished proof by Dr. Stephen Leach of Florida State University, and one made by the author. In each proof, one row of the table is either proved -as in the first proofor generated -as in the second. Once a row is proven or generated, it can be used to generate another, which in turn is used again until the entire table is constructed in one phase as a single solution with no alternatives. The author devised the second proof to achieve three objectives: develop a simpler proof, implement full autonomy, and build a selfevolutionary, self-evident table.

The logical implication is of great importance in all types of logic because of its use in scientific reasoning and developing inference and control systems. Hence, a systematic method of justification based on defined natural criteria is essential to the understanding, functionality, and utilization of the table. The development of the second proof contributes to the understanding of the linguistic interpretation of the table. In addition, the resulting automatable proof is necessary for designing logical systems and computing with words.

Finally, the author proposes the use of the methods above to inspire possible similar proofs in many-valued and fuzzy logics, which is currently under investigation.
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