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We consider a model (S) of a tree-shaped network of N elastic materials, constituting of strings and Euler-Bernoulli beams.

To start let us first introduce some notations for the tree under consideration (as introduced in [START_REF] Abdallah | Exponential stability of a general network of 1-d thermoelastic materials[END_REF] or in [START_REF] Mercier | Control of a network of Euler-Bernoulli beams[END_REF]). Let G be a finite tree embedded in R m , with N edges and p vertices. We denote E = {e 1 , ..., e N } the set of edges, V = {a 1 , ..., a p }, p = N + 1, the set of vertices of G and we suppose that a 1 is the root of G and that a 1 and a 2 are ends of e 1 . For a fixed vertex a k , let I(a k ) the set of indices of edges adjacent to a k . Denote V int the set of interior vertices and V ext the set of exterior vertices of G. Each edge e j of length j is a curve parametrized by π j : [0, j ] -→ e j , x j → π j (x j ), and sometimes identified with the interval (0, j ). The incidence matrix D = (d ij ) p×N is defined by

d ij =    1 if π j ( j ) = a j , -1 if π j (0) = a j , 0 otherwise,
and for a function u : G -→ C we set u j = u • π j its restriction to the edge e j and we will denote u j (x) = u j (π j (x)) for any x in (0, j ).

We denote by ., . and . the inner product and norm in L 2 -space, respectively. Suppose that the equilibrium position of the tree of elastic strings and beams coincides with G.

Our model is then described as follows: every string e j satisfies the following equation [START_REF] Abdallah | Exponential stability of a general network of 1-d thermoelastic materials[END_REF] u j tt -u j xx = 0 in (0, j ) × (0, ∞), and every beam e j satisfies the following equation [START_REF] Ammari | Asymptotic behavior of some elastic planar networks of Bernoulli-Euler beams[END_REF] u j tt + u j xxxx = 0 in (0, j ) × (0, ∞) where u j = u j (x, t) is the function describing the displacement of the string or beam e j . The initial conditions are [START_REF] Ammari | Feedback stabilization of a coupled string-beam system[END_REF] u j (x, 0) = u j 0 (x), u j t (x, 0) = u j 1 (x). Denote by I S (a k ) (resp. I B (a k )) the set of strings (resp. beams) adjacent to a k and V S ext (resp. V B ext ) the set of exterior strings (resp. exterior beams), then the transmission conditions at the inner nodes are (4)

             u j (a k , t) = u l (a k , t) j, l ∈ I(a k ), a k ∈ V int , u j xx (a k , t) = u l xx (a k , t) j, l ∈ I B (a k ), a k ∈ V int , j∈I B (a k ) d kj u j x (a k , t) = 0, a k ∈ V int , j∈I B (a k ) d kj u j xxx (0, t) - j∈I S (a k ) d kj u j x (0, t) = 0, a k ∈ V int ,
and the boundary conditions are (5)

u j k (a k , t) = 0, a k ∈ V ext , u j k xx (a k , t) = 0, a k ∈ V B ext
where j k is the index of the unique edge adjacent to a k ∈ V ext .

For a classical solution u of (S), the energy is defined as the sum of the energy of its components, that is,

E(t) = 1 2 N j=1 j 0 u j t (x, t) 2 dx + 1 2 j∈I S j 0 u j x (x, t) 2 dx + 1 2 j∈I B j 0 u j xx (x, t) 2 dx.
Differentiate formally the energy function with respect to time t, we get dE dt (t) = 0, and the system is conservative. Many researchers have devoted to stabilize such models of networks of strings or of beams, by applying a control at an external node or by forcing the damping conditions at inner nodes. In [START_REF] Ammari | Stabilization of star-shaped networks of strings[END_REF], the authors prove the polynomial stability of a star-shaped network of strings when a feedback is applied at the common node and in [START_REF] Ammari | Stabilization of generic trees of strings[END_REF] and [START_REF] Valein | Stabilization of the wave equation on 1-d networks[END_REF] the authors prove a similar result for a tree of strings when the feedback is applied at an external node. In [START_REF] Ammari | Asymptotic behavior of some elastic planar networks of Bernoulli-Euler beams[END_REF] we consider a network of beams. See also [START_REF] Wang | Riesz basis and stabilization for the flexible structure of a symmetric tree-shaped beam network[END_REF] for exponential stability of a star-shaped network of beams and [START_REF] Han | Riesz basis property and stability of planar networks of controlled strings[END_REF] for asymptotic stability of a star-shaped network of Timoshenko beams. In [START_REF] Shel | Exponential stability of a network of elastic and thermoelastic materials[END_REF] and [START_REF]Exponential stability of a network of beams[END_REF] we add thermoelastic edges to the network of elastic materials to obtain an exponential stability result.

For strings-beams networks see [START_REF] Ammari | Study of the nodal feedback stabilization of a string-beams network[END_REF] where the authors considered a star-shaped network of beams and a string, with controls applied at all the exterior nodes. They proved a result of exponential stability. Some results of polynomial stability have proved before, for coupled string-beam systems [START_REF] Ammari | Feedback stabilization of a coupled string-beam system[END_REF] (see [START_REF] Ammari | Stabilization of elastic systems by collocated feedback[END_REF] for general setting) and for chains of alternated beams and strings [START_REF] Ammari | Spectral analysis and stabilization of a chain of serially Euler-Bernoulli beams and strings[END_REF], when feedbacks are applied at inner nodes.

In this paper we study a more general case of networks, in fact, it is the model (S) presented at the beginning, stabilized by applying feedbacks at all leaves (the root remains free). For this, let V S ext and V B ext respectively the set of external nodes of strings and those of beams, different from a 1 , V * = V -{a 1 }, V * ext = V ext -{a 1 } and let δ in {0, 1} with δ = 1 if e 1 is a string and δ = 0 if e 1 is a beam. Then instead of (5) we take

u 1 (a 1 , t) = 0, (1 -δ)u 1 xx (a 1 , t) = 0, u j k x (a k , t) = -d kj u j k t (a k , t), a k ∈ V S ext , u j k xxx (a k , t) = d kj u j k t (a k , t), u j k x (a k , t) = 0, a k ∈ V B ext . Formally, we have d dt E(t) = - a k ∈V * ext u j k t (a k , t) 2 ≤ 0.
So the system is dissipative. We prove different decay results of the energy of the system depending on the position of beams relative to strings. Precisely (S) is exponentially stable if and only if there is no beam following a string from the root to leaves. For example, if (S) is reduced to a coupled string-beam system, then it is exponentially stable if the control is applied on the string and non exponentially stable if the control is applied on the beam. Moreover the system is polynomially stable in the last case.

The method that we use to show exponential or polynomial stability is based on the resolvent approach. The paper is organized as follows: In section 2, we reformulate the system (S) as an evolution equation in a Hilbert space, and prove that it is associated with a C 0 -semigroup of contraction and in section 3, by using frequency domain method, we first prove, under some conditions, that the system (S) is exponentially stable, then we give a result of polynomial stability.

Abstract setting

First let I S and I B the respective sets of indices of strings and beams in the tree. Then for a function f on G we set f S = (f j ) j∈I S and f B = (f j ) j∈I B , and we rewrite

f as f = (f S , f B ).
The aim of this section is to rewrite the system (S) as an evolution equation in an appropriate Hilbert space. We then prove the existence and uniqueness of solutions of the problem using semigroup theory.

Let us consider

V =    f = (f S , f B ) ∈ j∈I S H 1 (0, j ) × j∈I B H 2 (0, j ) | f satisfies (6)    where (6) 
       f 1 (a 1 ) = 0, f j (a k ) = f l (a k ) j, l ∈ I(a k ), a k ∈ V int , ∂ x f j k (a k ) = 0 a k ∈ V B ext , j∈I B (a k ) d kj ∂ x f j (a k ) = 0 a k ∈ V int .
Note that we can rewrite the last two equations in one, as follows

j∈I B (a k ) d kj ∂ x f j (a k ) = 0 a k ∈ V * .
Define the energy space of (S) by

H = V × N j=1 L 2 (0, j )
endowed by the inner product

y 1 , y 2 H := j∈I S ∂ x f j 1 , ∂ x f j 2 + j∈I B ∂ 2 x f j 1 , ∂ 2 x f j 2 + N j=1 g j 1 , g j 2 where y k = (f k , g k ) , k = 1, 2.
Then H is a Hilbert space. Now define the operator A on H by

D(A) = y = (u, v) ∈ V × V | u S ∈ j∈I S H 2 (0, L j ), u B ∈ j∈I B H 4 (0, L j )
and y satisfies [START_REF] Ammari | Spectral analysis and stabilization of a chain of serially Euler-Bernoulli beams and strings[END_REF] where ( 7)

             ∂ x u j k (a k ) = -d kj v j k (a k ), a k ∈ V S ext , (1 -δ)∂ 2 x u 1 (a 1 ) = 0, ∂ 2 x u j (a k ) = ∂ 2 x u l (a k ), j, l = I B (a k ), a k ∈ V int , ∂ 3 x u j k (a k ) = d kj v j k (a k ), a k ∈ V B ext , j∈I S (a k ) d kj ∂ x u j (a k ) - j∈I B (a k ) d kj ∂ 3 x u j (a k ) = 0, a k ∈ V int and A     u S u B v S v B     =     v S v B ∂ 2 x u S -∂ 4 x u B     , (u S , u B , v S , v B ) ∈ D(A).
Then, putting y = (u, u t ), we write the system (S) into the following first order evolution equation ( 8)

dy dt = Ay, y(0) = y 0
on the energy space H, where y 0 = (u 0 , u 1 ).

We have the following result, Lemma 1. The operotor A is the infinitesimal generator of a C 0 -semigroup of contraction (T (t)) t≥0 .

Proof. First we have

Re( Ay, y H ) = - a k ∈V * ext v j k ( j k ) 2 ≤ 0.
We show now that every positive real number λ belongs to ρ(A).

Let z = (f, g) ∈ H, we look for y = (u, v) ∈ D(A) such that (λ -A)y = z i.e., λu j -v j = f j , j = 1, ..., N, (9) 
λv j -∂ 2 x u j = g j , j ∈ I S , (10) 
λv j + ∂ 4 x u j = g j , j ∈ I B . (11) 
Then

λ 2 u j -∂ 2 x u j = g j + λf j , j ∈ I S , (12) 
λ 2 u j + ∂ 4 x u j = g j + λf j , j ∈ I B . ( 13 
)
Let w in V. Multiplying the first equation by w S and the second equation by w B , we get respectively

λ 2 j 0 u j w j dx + j 0 ∂ x u j ∂ x w j dx -∂ x u j w j j 0 = j 0 (g j + λf j )w j dx for j in I S and λ 2 j 0 u j w j dx+ j 0 ∂ 2 x u j ∂ 2 x w j dx+ ∂ 3 x u j w j j 0 -∂ 2 x u j ∂ x w j j 0 = j 0 (g j +λf j )w j dx
for j in I B . Now summing the two obtained equations, the left hand side will be

λ 2 N j=1 j 0 u j w j dx + j∈I S j 0 ∂ x u j ∂ x w j dx + j∈I B j 0 ∂ 2 x u j ∂ 2 x w j dx + a k ∈Vint   - j∈I S (a k ) d kj w j (a k )∂ x u j (a k ) + j∈I B (a k ) d kj w j (a k )∂ 3 x u j (a k )   + a k ∈Vext v j k (a k )w j k (a k ) + a k ∈Vint j∈I B (a k ) d kj ∂ 2 x u j (a k )∂ x w j (a k ).
We find, by taking into account ( 6) and ( 7)

(14) a(u, w) = F (w)
where

a(u, w) = λ 2 N j=1 j 0 u j w j dx + j∈I S j 0 ∂ x u j ∂ x w j dx + j∈I B j 0 ∂ 2 x u j ∂ 2 x w j dx +λ a k ∈Vext u j k (a k )w j k (a k )
and

F (w) = N j=1 j 0 (g j + λf j )w j dx + λ a k ∈Vext f j k (a k )w j k (a k ).
a is a continuous sesquilinear form on V × V and F is a continuous anti-linear form on V. Moreover, there exists C > 0 such that, for every

w ∈ V |a(w, w)| ≥ C w 2 V
. By the Lax-Milgram's lemma, problem [START_REF] Han | Riesz basis property and stability of planar networks of controlled strings[END_REF] has a unique solution u in V. It is easy to verify that: u belongs to

j∈I S H 2 (0, L j ) × j∈I B H 4 (0, L j ), v = λu -f ∈ V,
u S and u B satifies respectively [START_REF] Batty | Optimal polynomial decay of functions and operator semigroups[END_REF] and [START_REF] Below | A characteristic equation associated to an eigenvalue problem on c 2 -networks[END_REF], and the conditions

             ∂ x u j k (a k ) = -d kj v j k (a k ), a k ∈ V S ext , (1 -δ)∂ 2 x u 1 ( 1 ) = 0, ∂ 2 x u j (a k ) = ∂ 2 x u l (a k ), j, l = I B (a k ), a k ∈ V int , ∂ 3 x u j k (a k ) = d kj v j k (a k ), a k ∈ V B ext , j∈I S (a k ) d kj ∂ x u j (a k ) - j∈I B (a k ) d kj ∂ 3 x u j (a k ) = 0, a k ∈ V int . Furthermore y 2 H ≤ c z 2 H , where c is a positive constant independent of y. In conclusion, y = (u, v) ∈ D(A) and (λ -A) -1 ∈ L(H), that is, λ ∈ ρ(A).
Corollary 2. For an initial datum y 0 ∈ H there exists a unique solution y ∈ C([0, +∞), H) of problem [START_REF] Ammari | Stabilization of elastic systems by collocated feedback[END_REF]. Moreover if

y 0 ∈ D(A), then y ∈ C([0, +∞), D(A))∩ C 1 ([0, +∞), H).
Remark 3. Note that, by the Sobolev embedding theorem, (I -A) -1 is a compact operator and then the spectrum of A consists of all isolated eigenvalues, i.e., σ(A) = σ p (A). 

Asymptotic behavior

The aim of this section is to show that the system (S) is asymptotically stable. Moreover, we will prove that the solution is exponentially stable if there is no beam following a string, from the root to the leaves, as in the first tree (Figure 1), and polynomially, non exponentially stable if at least a beam follows a string, as in the second tree (Figure 2).

We will use the following two results. The first gives us a necessary and sufficient condition for the exponential stability of a C 0 -semigroup of contraction, for the proof see [START_REF] Gearhart | Spectral theory for contraction semigroups on Hilbert space[END_REF], [START_REF] Huang | Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces[END_REF] or [START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF]. Theorem 4. A C 0 -semigroup of contraction e tL on a Hilbert space is exponentially stable if, and only if,

(15) iR ∩ σ(L) = ∅ and (16) lim |β|→∞ sup (iβ -L) -1 < ∞.
The second, due to [START_REF] Batty | Optimal polynomial decay of functions and operator semigroups[END_REF] (see also [START_REF] Batty | Non-uniform stability for bounded semigroups on banach spaces[END_REF] and [START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF]), characterizes the polynomial decay of a C 0 -semigroup of contraction. for some constant C > 0 and for α > 0 if, and only if, (15) holds and

(17) lim |β|→∞ sup 1 β α (iβ -L) -1 < ∞.
3.1. Asymptotic stability. In this section, we prove [START_REF] Huang | Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces[END_REF], that is, the system (S) is asymptotically stable.

Theorem 6. The semigroup (T (t)) t≥0 , generated by the operator A is asymptotically stable.

Proof. It suffices to show that (15) holds, otherwise, by taking into account Remark 3, there is a real number β, such that λ := iβ is an eigenvalue of A. Let y = (u, v) the corresponding eigenvector. We have ( 18)

   v j = λu j for j in {1, ..., N }, ∂ 2 
x u j = λv j for j in I S , -∂ 4 x u j = λv j for j in I B . If λ = 0, multiplying the second and the third equations of ( 18) by u j and summing, we obtain, using ( 6) and ( 7),

j∈I S ∂ x u j 2 + j∈I B ∂ 2
x u j 2 = 0 which implies that u = 0 and hence v = 0. Then, in the sequal, we suppose that λ = 0.

Taking the real part of the inner product of λy -Ay = 0 with y in H, we obtain

Re( Ay, y H ) = - a k ∈V * ext v j k (a k ) 2 = 0. Thus v j k (a k ) = 0 for a k ∈ V * ext and then u j k (a k ) = 0 for a k ∈ V * ext , which holds for k = 1; ∂ 3 x u j k (a k ) = 0 for a k ∈ V B ext and ∂ x u j k (a k ) = 0 for a k ∈ V S ext .
Then, u is zero on every maximal subgraph of strings not followed by beams. Now let G a maximal subgraph of beams not followed by strings. We want prove that u is zero on G .

First case: G = G. For each j in {1, ..., N }, substituting the first equation of (18) into the third, we obtain, (

∂ 4

x u j + λ 2 u j = 0. For the sequel, we use a matrix method [START_REF] Below | A characteristic equation associated to an eigenvalue problem on c 2 -networks[END_REF]. Firt of all we shall introduce some definitions and notations used in [START_REF] Below | A characteristic equation associated to an eigenvalue problem on c 2 -networks[END_REF] (see also [START_REF] Abdallah | Exponential stability of a general network of 1-d thermoelastic materials[END_REF]).

The adjacency matrix E = (e jk ) p×p of G is defined by in particular, if r(x) = x q then, we write A (q) instead of r(A). Furthermore, the matrix L = ( jk ) p×p is defined as follows jk = s(j,k) if e jk = 1, 0 otherwise, where s(j, k) is the indice of the edge connecting a j to a k .

e jk = 1 
To a function f on G is associated the matrix function F defined by

F : [0, 1] -→ C p×p , x -→ F (x) = (f jk (x)) p×p , with f jk (x) = e jk f s(j,k) s(j,k) 1 + d js(j,k) 2 -xd js(j,k) .
The system [START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF] is then rewritten as ( 20)

L (-4) * U + λU = 0.
Integrate equation [START_REF] Shel | Exponential stability of a network of elastic and thermoelastic materials[END_REF] we obtain

(21) U (x) = A 1 * cos( βLx)+A 2 * sin( βLx)+B 1 * cosh( βx)+B 2 * sinh( βLx),
where without loss of generality we have supposed that β > 0 and with

A 1 , A 2 , B 1 , B 2 ∈ C p×p . Then L (-1) * U = β -A 1 * sin( βLx) + A 2 * cos( βLx) +B 1 * sinh( βx) + B 2 * cosh( βLx) , (22) 
L (-2) * U = β -A 1 * cos( βLx) -A 2 * sin( βLx) +B 1 * cosh( βx) + B 2 * sinh( βLx) , (23) 
L (-3) * U = β 3/2 A 1 * sin( βLx) -A 2 * cos( βLx) +B 1 * sinh( βx) + B 2 * cosh( βLx) . ( 24 
)
The function U satisfies also, ( 25)

U (1 -x) = U (x) T .
The boundary and transmission conditions can be expressed as follows:

For the continuity condition of u at the inner nodes, there exists ϕ =

   ϕ 1 . . . ϕ p    ∈ C p such that (26) U (0) = (ϕe T ) * E, where e =    1 . . . 1    ∈ R p .
Since u is zero at all external nodes then ϕ j = 0 when a j is an external node. The continuity condition of ∂ 2 x u at the interior nodes and the fact that ∂ 2 x u is zero at the root can be expressed in this manner,

there exists ψ =    ψ 1 . . . ψ p    ∈ C p such that ψ 1 = 0, and (27) 
L (-2) * U (0) = (ψe T ) * E.
The forth condition of ( 6) and the fifth of ( 7) applied to u are expressed respectively as follows 21) and ( 23) and using (25) we get, by combining the two obtained equations

A 1 = 1 2 (U (0) -L (-2) * U (0)) = 1 2 ((ϕ -ψ)e T ) * E, (30) 
B 1 = 1 2 (U (0) + L (-2) * U (0)) = 1 2 ((ϕ + ψ)e T ) * E, (31) 
(34) sinh (-1) ( βL) * (B T 1 -B 1 cosh( βL)) = B 2 .
Multiplying, in the Hadamard product, the above equation by E * , we get, using (33)

(35) sinh (-1) ( βL) * (B T 1 -B 1 cosh( βL)) * E * e = 0,
We recall the following elementary rules for a matrix M ∈ C p×p (see [START_REF] Dekoninck | The eigenvalue problem for networks of beams[END_REF]), (36) (M * B T 1 )e = M (ϕ + ψ), (M * B)e = diag(M e)(ϕ + ψ). Then, (35) implies J(ϕ + ψ) = 0, where

J = sinh (-1) ( βL) * E * -diag sinh (-1) ( βL) * cosh( βL) * E * e .
The matrix, obtained from J * E * T * E * by removing rows and colums that are zero, is a strictly diagonally dominant matrix. Since ϕ 1 = ψ 1 = 0, this implies that the vector ϕ + ψ, and hence the matrix B 1 , is zero. Return to (34) we deduce that B 2 = 0.

For j = 1, ..., N, the expression of u j is then u j (x) = a j 1 cos( βx) + a j 2 sin( βx), (a j 1 , a j 2 ∈ C) which easily implies, using the transmissions conditions and the fact that u and ∂ x u vanish at the leaves, that u = 0.

Second case: G = G. Let a be the nearest node of G to a 1 . Then a is an end of at least one string.

For simplicity of notations we will suppose, in this part, that a = a 1 and G = G but with boundary conditions at a 1 :

   u j (a 1 ) = u l (a 1 ) j, l ∈ I(a 1 ), ∂ 2 x u j (a 1 ) = ∂ 2 x u l (a 1 ), j∈I B (a1) d 1j ∂ x u j (a 1 ) = 0 .
As for the first case, there is ψ =

   ψ 1 . . . ψ p    in C p with ϕ j = 0 when a j ∈ V * ext , such that U (0) = (ϕe T ) * E and L (-2) * U (0) = (ψe T ) * E.
The third and forth conditions of ( 6) and the fifth of ( 7) applied to u are expressed as follow :

(L (-1) * U (0) * E)e = 0 and (L (-3) * U (0) * E * )e = 0. As in the first case we obtain (30), ( 31), ( 32), ( 33) and (34). Moreover, (ϕ k + ψ k ) k=2,...,p will be the trivial solution of a homogeneous linear system whose matrix is invertible. Then B 1 * E * and B 2 * E * T * E * are zero.

For j ∈ {1, ..., N } -I(a 1 ) the expression of u j is then u j (x) = a j 1 cos( βx) + a j 2 sin( βx), (a j 1 , a j 2 ∈ C), which easily implies, by using the transmissions conditions and the fact that u and ∂ x u vanish at the leaves, u j = 0. Then we can suppose that G is a start of beams e j , j ∈ I(a 1 ). Without loss of generality, we identify e j with (0, j ) by taking π j (0) = a 1 . In such case we have the following system :

         u j ( j ) = 0, j ∈ I(a 1 ), ∂ x u j ( j ) = 0 and ∂ 3 x u j ( j ) = 0, j ∈ I(a 1 ), u j (0) = u l (0) and ∂ 2 x u j (0) = ∂ 2 x u l (0), j, l ∈ I(a 1 ), j ∂ x u j (0) = 0. Which implies                a j 1 cos( √ β j ) + a j 2 sin( √ β j ) + b j 1 cosh( √ β j ) + b j 2 sinh( √ β j ) = 0, j ∈ I(a 1 ), -a j 1 sin( √ β j ) + a j 2 cos( √ β j ) = 0, j ∈ I(a 1 ), b j 1 sinh( √ β j ) + b j 2 cosh( √ β j ) = 0, j ∈ I(a 1 ), b j 1 = b l 1 , j, l ∈ I(a 1 ), j a j 2 + b j 2 = 0.
The discriminant of the above system is

∆ = j   k =j cosh( β k )(sin( β j ) + sinh( β j ))  
which is different from zero. We conclude that u j = 0, j ∈ I(a 1 ). That is, u is null on G . By iteration, and using transmission conditions we conclude that u is zero on G. The above discussion is sufficient to conclude that y = 0, which contradict the fact that y = 0.

3.2. Exponential stability. In this section we suppose that there are no beam following a string (Figure 1), and we prove that the solution of the whole system (S) is exponentially stable. Theorem 7. If there are no beam following a string ( from the root to leaves) then, the system (S) is exponentially stable.

Proof. It suffices to prove that ( 16) holds. Suppose the conclusion is false. Then there exists a sequense (β n ) of real numbers, without loss of generality, with β n -→ +∞, and a sequence of vectors (

y n ) = (u n , v n ) in D(A) with y n H = 1, such that (iβ n I -A)y n H -→ 0 which is equivalent to iβ n u j n -v j n = f j n -→ 0, in H 1 (0, j ), j in I S , (37) 
iβ n u j n -v j n = f j n -→ 0, in H 2 (0, j ), j in I B , (38) 
iβ n v j n -∂ 2 x u j n = g j n -→ 0, in L 2 (0, j ), j in I S , (39) 
iβ n v j n + ∂ 4 x u j n = g j n -→ 0, in L 2 (0, j ), j in I B . (40) Then -β 2 n u j n -∂ 2 x u j n = g j n + iβ n f j n , j in I S , (41) 
-β 2 n u j n + ∂ 4 x u j n = g j n + iβ n f j n , j in I B (42) and v j n 2 -β 2 n u j n 2 -→ 0, j = 1, ..., N.

First, Since

Re(

(iβ n -A)y n , y n H ) = a k ∈V * ext v j k (a k ) 2 ,
we obtain

v j k n (a k ) -→ 0, for j ∈ V * ext . Then β n u j k n (a k ) -→ 0 for a k ∈ V * ext , ∂ 3 x u j k n (a k ) -→ 0 for a k ∈ V B ext and ∂ x u j k n (a k ) -→ 0 for a k ∈ V S ext , and recall that ∂ x u j k n (a k ) = 0 for j ∈ V B ext . Let a k ∈ V S ext and q a function in C 1 ([0, j k ], C).
The real part of the inner product of (41) with q∂ x u j k n gives

1 2 β 2 n u j k n (x) 2 q(x) j k 0 + 1 2 ∂ x u j k n (x) 2 q(x) j k 0 - 1 2 j k 0 ∂ x u j k n (x) 2 + β 2 n u j k n (x) 2 q x (x)dx + Re iβ n f j k n (x)q(x)u j k n (x) j k 0 -→ 0. ( 43 
)
With q(x) = x or q(x) = j k -x we can deduce easily that (44) -1 2

j k 0 ∂ x u j k n (x) 2 + β 2 n u j k n (x) 2 dx -→ 0,
and as in [START_REF] Shel | Exponential stability of a network of elastic and thermoelastic materials[END_REF] it follows that, (45)

β n u j k n (a s ) -→ 0, ∂ x u j k n (a s ) -→ 0, and Re iβ n f j k n (a s )u j k n (a s ) -→ 0
where a s is the end of e j k different from a k . By iteration we conclude that for every j ∈ I S -{1}, the properties (44) and (45) hold.

If there is no beam in the tree, then the fifth condition in ( 7) with (45) imply that ∂ x u 1 n (a 2 ) -→ 0. Then as for j in V S ext , with using (45) again and the continuity condition of u at internal nodes, we obtain

- 1 2 1 0 ∂ x u 1 n (x) 2 + β 2 n u 1 n (x) 2 dx -→ 0.
Then, we conclude that y n → 0 which contradict the fact that y n = 1 and the proof is then complete. Now suppose that there is at least one beam. Without loss of generality, we suppose that there is no string in G.

Let j in {1, ..., N } and q a function in C 2 ([0, j ], C) such that ∂ 2 x q = 0. We want to calculate the real part of the inner product of (42) by q∂ x u j n .

Straight-forward calculations gives

Re -β 2 n u j n , q∂ x u j n

+ Re ∂ 4 x u j n , q∂ x u j n = - 1 2 β 2 n u j n (x) 2 q(x) j 0 + 1 2 j 0 β 2 n u j n 2 ∂ x qdx + Re ∂ 3 x u j n (x)q(x)∂ x u j n (x) j 0 - 1 2 ∂ 2 x u j n (x) 2 q(x) j 0 + 3 2 j 0 ∂ 2 x u j n 2 ∂ x qdx -Re ∂ 2 x u j n (x)∂ x u j n ∂ x q(x) j 0 , and 
Re g j n + iβ n f j n , q∂ x u j n = Re j 0 g j n ∂ x u j n qdx -Re iβ n j 0 ∂ x (qf j n )u j n dx + Re iβ n f j n (x)q(x)u j n (x) j 0 .
Since g j n , f j n and ∂ x (qf j n ) converge to 0 and iβ n u j n and ∂ x u j n are bounded, the first and the second terms of the right member of the above equality converge to 0. It follows

- 1 2 β 2 n u j n (x) 2 q(x) j 0 + Re ∂ 3 x u j n (x)q(x)∂ x u j n (x) j 0 - 1 2 ∂ 2 x u j n (x) 2 q(x) j 0 -Re ∂ 2 x u j n (x)∂ x u j n ∂ x q(x) j 0 -Re iβ n f j n (x)q(x)u j n (x) j 0 + 1 2 j 0 β 2 n u j n 2 ∂ x qdx + 3 2 j 0 ∂ 2 x u j n 2 ∂ x qdx -→ 0. ( 46 
)
In particular if a k is in V B ext then with j = j k and q(x) = x or q(x) = j k -x (46) becomes

- j k 2 ∂ 2 x u j k n (a k ) 2 + Re d kj k ∂ 2 x u j k n (a s )∂ x u j k n (a s ) + 1 2 j k 0 β 2 n u j k n 2 dx+ (47) 3 2 j k 0 ∂ 2 x u j k n 2 dx → 0
where a s is the end of e j k different from a k . Multiplying (42) by 1

β 1/2 n e -β 1/2 n ( j k -x) or by 1 β 1/2 n
e -β 1/2 n x , then, as in [START_REF]Exponential stability of a network of beams[END_REF], after noting that ∂ 3

x u j k n (a k ) and β n u j k n (a k ) tend to 0, we obtain

(48) ∂ 2 x u j k n (a k ) -→ 0.
Hence, (47) can be rewritten as (49)

Re d kj k ∂ 2 x u j k n (a s )∂ x u j k n (a s ) + 1 2 j k 0 β 2 n u j k n 2 dx + 3 2 j k 0 ∂ 2 x u j k n 2 dx -→ 0.
Now let q ≡ 1 (46) can be rewritten, for j k , as

- 1 2 β 2 n u j k n (a s ) 2 + Re ∂ 3 x u j k n (a s )∂ x u j k n (a s ) - 1 2 ∂ 2 x u j k n (a s ) 2 - Re iβ n f j k n (a s )u j k n (a s ) → 0.
For j in I(a s ), multiplying (42) by 1

β 1/2 n e -β 1/2 n x or by 1 β 1/2 n e -β 1/2 n ( j -x) , we get, 1 β 1/2 n d sj ∂ 3 x u j n (a s ) + ε∂ 2 x u j n (a s ) + β 1/2 n d sj ∂ x u j n (a s ) + εβ n u j n (a s ) -→ 0.
with ε ∈ {-1, 1}. Summing over j ∈ I(a s ), by taking into account the continuity condition of u n and ∂ 2 x u n , the damping conditions, four in [START_REF] Ammari | Study of the nodal feedback stabilization of a string-beams network[END_REF] and fifth in [START_REF] Ammari | Spectral analysis and stabilization of a chain of serially Euler-Bernoulli beams and strings[END_REF], and boundary condition at a 1 if j = 1, we deduce

∂ 2 x u j n (a s ) + β n u j n (a s ) -→ 0, which leads to 1 β 1/2 n ∂ 3 x u j n (a s ) + β 1/2 n ∂ x u j n (a s ) = α j n -→ 0.
Hence, for any positive real number a we have

Re ∂ 3 x u j n (a s )∂ x u j n (a s ) = Re ∂ 3 x u j n (as) β 1/2 n β 1/2 n ∂ x u j n (a s ) = Re (α j n -β 1/2 n ∂ x u j n (a s ))β 1/2 n ∂ x u j n (a s ) ≤ -β n ∂ x u j n (a s ) 2 + a 2 β n ∂ x u j n (a s ) 2 + 1 2a α j n 2 .
Moreover, for any real positive number b we have

-Re iβ n f j n (a s )u j n (a s ) ≤ b 2 β 2 n u j n (a s ) 2 + 1 2b f j n (a s ) 2 .
Thus, we obtain the following framing for j k ,

- 1 2 β 2 n u j k n (a s ) 2 + Re ∂ 3 x u j k n (a s )∂ x u j k n (a s ) - 1 2 ∂ 2 x u j k n (a s ) 2 -Re iβ n f j k n (a s )u j k n (a s ) - 1 2b f j k n (a s ) 2 ≤ (- 1 2 + b 2 )β 2 n u j k n (a s ) 2 - 1 2 ∂ 2 x u j k n (a s ) 2 + (-1 + a 2 )β n ∂ x u j k n (a s ) 2 ≤ 0 with a = b = 1 2 . Which implies that β 2 n u j k n (a s ) 2 , ∂ 2 x u j k n (a s ) 2 , β n ∂ x u j k n (a s ) 2 , 1 β n ∂ 3 x u j k n (a s ) 2 -→ 0
and then all the expressions

Re ∂ 3 x u j k n (a s )∂ x u j k n (a s ) , Re ∂ 2 x u j k n (a s )∂ x u j k n (a s ) and Re iβ n f j k n (a s )u j k n (a s )
tend to 0 as n goes to infinity. Then (49) leads to 1 2

j k 0 β 2 n u j k n 2 dx + 3 2 j k 0 ∂ 2 x u j k n 2 dx -→ 0.
We iterate such procedure to obtain that for j = 1,

1 2 j 0 β 2 n u j n 2 dx + 3 2 j 0 ∂ 2 x u j n 2 dx -→ 0 and for j ∈ I(a 2 ) -{1}, β 2 n u j n (a 2 ) 2 , ∂ 2 x u j n (a 2 ) 2 , Re ∂ 3 x u j n (a 2 )∂ x u j n (a 2 ) , Re ∂ 2 x u j n (a 2 )∂ x u j n (a 2 ) → 0.
Finally let j = 1. Using continuity conditions of u n and ∂ 2 x u n , and damping conditions, four in [START_REF] Ammari | Study of the nodal feedback stabilization of a string-beams network[END_REF] and fifth in [START_REF] Ammari | Spectral analysis and stabilization of a chain of serially Euler-Bernoulli beams and strings[END_REF], (46) leads to 1 2

1 0 β 2 n u 1 n 2 dx + 3 2 1 0 ∂ 2 x u 1 n 2 dx -→ 0.
In conclusion y n converge to 0, which contradict the hypothesis that y n = 1.

3.3. Polynomial stability. In this section we suppose that there is at least a beam following a string (Figure 2). We will prove that the solution of the whole system (S) is polynomially stable and not exponentially stable.

Theorem 8. If at least one beam follows a string then, the C 0 -semigroup (T (t) t≥0 is polynomially stable. More precisely: if all the sets of beams following strings are singletons then there is C > 0 such that e tA y 0 ≤ C t y 0 D(A)

for every y 0 ∈ D(A).

If there is a string followed by at least two beams then there is C > 0 such that e tA y 0 ≤ C t 2/3 y 0 D(A) for every y 0 ∈ D(A). We want prove that β 

√ n ) = π √ n + o( 1 √ n ), cos( β n π) = cos( π √ n ) = 1 + o( 1 √ n ), tan(β n π) = tan( π n ) = π n + o( 1 n √ n ), cosh( β n π) = cosh((n + 1 √ n )π) =

5 Figure 2 .

 52 Figure 1. first tree

Theorem 5 .

 5 A C 0 -semigroup of contraction e tL on a Hilbert space H satisfies e tL y 0 ≤ C t 1 α y 0 D(L)

  if a j and a k are adjacent, 0 otherwise. The Hadamard product of two matrices A = (a jk ) p×p and B = (b jk ) p×p is the matrix A * B = (a jk b jk ) p×p and for a function r : R → R, we define the matrix r(A) = (r jk ) p×p by r jk = r(a jk ) if e jk = 1, 0 otherwise,
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 3 * U (0) * E * )e = 0where E * is obtained from E by annulling the first line.Substitute (26-27) in[START_REF] Valein | Stabilization of the wave equation on 1-d networks[END_REF][START_REF] Wang | Riesz basis and stabilization for the flexible structure of a symmetric tree-shaped beam network[END_REF](24), and (28-29) in[START_REF]Exponential stability of a network of beams[END_REF][START_REF] Valein | Stabilization of the wave equation on 1-d networks[END_REF][START_REF] Wang | Riesz basis and stabilization for the flexible structure of a symmetric tree-shaped beam network[END_REF] leads to

and (A 2 *

 2 E * )e = 0, (32) (B 2 * E * )e = 0. (33) By taking x = 1 in (

and β 3 2 .
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3 / 2 n d 1 is equivalent to √ n π 2 2 2 √ n + 1 n then √ β n = n + 1 √n = n( 1 + o( 1 √

 3222111 as n goes to infinity. Since β n = n 2 + n )) and sin( β n π) = sin( π
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Proof. In the sequel α is equal to 1 or 3/2.

It suffices to prove that [START_REF] Liu | Semigroups associated with dissipative systems[END_REF] holds. Suppose the conclusion is false. Then there exists a sequence (β n ) of real numbers, without loss of generality, with β n -→ +∞, and a sequence of vectors (y n ) = (u n , v n ) in D(A) with y n H = 1, such that β α n (iβ n I -A)y n H -→ 0 which is equivalent to

Then

n (a k ) -→ 0, and recall that ∂ x u j k n (a k ) = 0 for a k ∈ V B ext . As in the proof of the previous theorem, if e j is a string followed by no beam then

and if a k is an end of such edge then (57) β

n ∂ x u j n (a k ) -→ 0. Now we can suppose without loss of generality that all edges are beams, except that related to the root wich is a string.

Again, as in the previous proof, we have that for every beam e j which not adjacent to the string, (58) β

and all the expressions

tend to zero as n goes to infinity.

Let j ∈ I(a 2 ) -{1} (equivalently, e j is a beam attached to a 2 ), then the real part of the inner product of (55) by q∂ x u j n , with q = x or q = j -x gives

Summing over j in I(a 2 ) -{1}, one can deduce easily that

and in particular, for every beam e j

Now we want prove that, for j in I(a 2 ) -{1}, β n u j n (a 2 ) and ∂ 3 x u j n (a 2 ) converge to 0.

First case: In this case there is one and only one beam e j attached to e 1 and α = 1.

The real part of the inner product of (55) by q∂ x u j n , with q = 1 gives

2 and β n ∂ 2 x u j n (a 2 ) converge to zero as n goes to infinite. Multiplying (55) by 1 βn e -β 1/2 n x or by 1 βn e -β 1/2 n ( j -x) , we obtain, using the results below ∂ 3 x u j n (a 2 ) -→ 0. We deduce, using the fifth condition in [START_REF] Ammari | Spectral analysis and stabilization of a chain of serially Euler-Bernoulli beams and strings[END_REF], that ∂ x u 1 n (a 1 ) -→ 0. Second case: In this case there is a string followed by at least two beams and α = 3/2. First, (55) implies

Second, we need the following lemma (due to Gagliardo and Nirenberg [START_REF] Liu | Semigroups associated with dissipative systems[END_REF]):

Lemma 9.

(1) There are two positive constants C 1 and C 2 such that for any w in H 1 (0, j ), (63)

(2) There are two positive constants C 3 and C 4 such that for any w in H 2 (0, j ), (64)

The remainder of the proof. Applying the previous lemma several times, one can deduce easily that (65) ∂ 3 x u j n (a 1 ) -→ 0. Return back to the fifth condition in [START_REF] Ammari | Spectral analysis and stabilization of a chain of serially Euler-Bernoulli beams and strings[END_REF] with using (65), we get ∂ x u 1 n (a 1 ) -→ 0. Now multiplying (54), when u j = u 1 , with q(x) = 1 -x or q(x) = x, then as for ( 43) and (44), with using (65) again and the continuity condition of u at a 2 , it follows

Then we conclude that y n → 0 which contradict the fact that y n = 1 and the proof is then complete. Now we prove the lack of the exponential stability.

Theorem 10. If at least one beam follows a string then the system is not exponential stable in the energy space H.

To simplify the proof we consider the reduced system composed of one string e 1 and one beam e 2 with 1 = 2 = π. Precisely the system (S) is

Proof. We prove that the corresponding semigroup (T (t)) t≥0 is not exponentially stable.

For n ∈ N, such that √ n is integer and even let β n = n 2 + 2 √ n + 1 n and f n = (0, 0, -sin β n x, 0), then β n → +∞ and f n is in H and is bounded. Let

We will prove that y n → +∞.

We have

n and u 2 n are of the form

The transmission and boundary conditions are rewritten as follows

and

Now suppose that ∂ x u 1 n is bounded. The real part of the inner product of (66) with (π -x)∂ x u j n gives

By taking into account (69-70) and (77), u

In conclusion y n is not bounded.

Remark 11. Let ε > 0. By taking β n = n 2 + 2n 1-α + 1 n 2α with 0 < α < ε and such that n 1-α is integer and even and y n is such that f n = (β 1 2 -ε n (A -iβ n ))y n , then we can prove that y n is not bounded and then the polynomial stability of (S) can't be butter than 1 t 2 .

Comment

If we replace the boundary conditions by the followings u 1 (a 1 , t) = 0, (1 -δ)u 1 xx (a 1 , t) = 0, u j k x (a k , t) = -u j k t (a k , t), a k ∈ V S ext , u j k xx (a k , t) = -u j k tx (a k , t), u j k (a k , t) = 0, a k ∈ V B ext , then we obtain the same results.