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Abstract 

Long audio alignment systems for Spanish and English are presented, within an automatic subtitling application. Language-specific 
phone decoders automatically recognize audio contents at phoneme level. At the same time, language-dependent 
grapheme-to-phoneme modules perform a transcription of the script for the audio. A dynamic programming algorithm (Hirschberg's 
algorithm) finds matches between the phonemes automatically recognized by the phone decoder and the phonemes in the script’s 
transcription. Alignment accuracy is evaluated when scoring alignment operations with a baseline binary matrix, and when scoring 
alignment operations with several continuous-score matrices, based on phoneme similarity as assessed through comparing multivalued 
phonological features. Alignment accuracy results are reported at phoneme, word and subtitle level. Alignment accuracy when using 
the continuous scoring matrices based on phonological similarity was clearly higher than when using the baseline binary matrix.  
 

Keywords: phoneme similarity matrices, long audio alignment, automatic subtitling 
 

1. Introduction 

Accessibility needs, and policies addressing them, are 

stimulating a large demand for subtitling in the broadcast 

industry. Manual subtitling being time and 

labour-intensive, automatic subtitling is an attractive 

option, as it saves time and resources.  

Our approach to automatic subtitling aligns the audio 

signal with a human transcript for the audio. Aligning 

long audio signals is challenging, given memory 

demands, processing time and error-proneness of 

algorithms when aligning long sequences.  

A successful system for long audio alignment is Bordel et 

al. (2012). They report alignment results for 3-hour long 

audios. Their alignment method is based on Hirschberg’s 

algorithm (1975), originally used for genetic sequence 

alignment. The scoring matrix for alignment operations in 

Bordel et al. is binary: insertions, deletions and 

substitutions bear a cost of 1, and matches bear a cost of 0.  

In this paper, we follow Bordel et al.’s long audio 

alignment approach, improving one aspect: We show that, 

as compared with results for a binary matrix, scoring 

alignment operations with a matrix based on 

phoneme-similarity improves alignment results at 

phoneme level, word level and subtitle level. We present 

results for the alignment of long audios in Spanish and 

English.  

Our similarity scores follow Kondrak’s metric (2002), 

based on multivalued phonological features weighted by 

salience. The metric has been successfully employed in 

cognate alignment and spoken document retrieval 

(Comas, 2012).  

Other phoneme similarity metrics based on phonetic or 

phonological criteria have been proposed for use in 

speech technology applications, e.g. Melnar and Liu 

(2006). We adopted Kondrak’s metric for our phone 

similarity scoring since previous successful applications 

have been documented, and given ease of 

implementation.  

 

The paper is structured as follows. Section 2 presents our 

long audio alignment system, and Section 3 describes the 

similarity matrices created. Section 4 discusses evaluation 

methods and results. Section 5 contains conclusions and 

suggestions for future work. 

2. Speech-text alignment system 

The speech-text alignment system aligns two sequences 

of phonemes obtained from different sources. Given the  

audio and the transcript of the content to be automatically 

subtitled, a language-dependent phone decoding is used to 

recognize phonemes and their time-codes from the audio. 

In addition, a grapheme-to-phoneme module translates 

the input transcript into the reference phoneme 

transcription. An alignment algorithm finds phoneme 

correspondences between the reference phoneme 

transcription and the phonemes recognized by the 

phone-decoder, which usually contain common 

recognition errors. Aligned phonemes are assigned the 

time-codes obtained by the phone-decoder. Phoneme 

alignment may present substitutions, deletions and 

insertion errors. However, the number of phone 

correspondences found generally provides enough 

time-codes to create subtitles with near-perfect alignment 

at word-level. 

2.1. Phone decoding module 

The phone decoding module was trained using HTK
1
, a 

hidden Markov model toolkit. The acoustic model was 

based on a monophone model, with three left-to-right 

emitting states using 32 Gaussian mixture components. 

The language model was a bigram phoneme model. The 

parametrization of the signal consisted of 18 

Mel-Frequency Cepstral Coefficients plus the energy and 

their delta and delta-delta coefficients, using 16-bit PCM 

audios sampled at 16 KHz.  

The Spanish phone-decoder was trained and tested with 

20 hours of audios from three databases; Albayzín (Díaz 

                                                           
1
 http://htk.eng.cam.ac.uk/ 
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et al., 1998), Multext (Campione and Véronis, 1998) and 

records of clean-speech broadcast news from the Spanish 

subset of the SAVAS
2
 corpus (Del Pozo et al., 2014). The 

contents were mixed and divided into training (70%) and 

test (30%) sets. Texts totaling 45 million words were 

crawled from a national newspaper to train the language 

model. The Spanish phone-decoder yielded a Phone Error 

Rate (PER) of 40.65%. 

The English phone-decoder was trained and tested on the 

TIMIT database (Garafolo et al., 1993), which consists of 

5 hours and 23 minutes. 70% of the database was used for 

training, leaving the rest for testing. Texts totaling 369 

million words, collected from digital newspapers, were 

used to train the language model. The English 

phone-decoder yielded a PER of 35.52%. 

2.2. Grapheme-to-phoneme transcriptors 

Grapheme-to-phoneme (G2P) transcriptors were 

developed for Spanish and English. The Spanish 

transcriptor was rule-based, inspired on an open-source 

tool
3

, and adapted to our phonelist. The English 

transcriptor was inferred from the Carnegie  

Mellon Pronouncing Dictionary
4

 (CMUdict) using 

Phonetisaurus
5
, a G2P framework based on weighted 

finite state transducers (WFST).  

The Spanish and English phonesets are available on our 

project’s website.
6
 

2.3. Algorithm for long sequence alignment 

We used Hirschberg’s (1975) algorithm, an optimization 

of Needleman and Wunsch’s (1970) algorithm to 

calculate the optimal alignment of two sequences of 

length n and m in n × m steps.  

Each alignment operation receives a score, and the 

alignment obtaining the best score is chosen. 

Substitutions are evaluated with a scoring matrix. Gaps 

(insertions and deletions) incur a penalty. When aligning 

with the binary scoring matrix, our gap penalty was 2. 

When using the phoneme-similarity based matrices, our 

gap penalty was 10, based on parameter Cskip from our 

similarity function (see Section 3).  

Needleman-Wunsch has been successfully applied to 

many problems, but it requires a large amount of space 

with long sequences; Θ(nm) for strings of length n and m. 

Hirschberg developed a space reduction method based on 

the Needleman-Wunsch algorithm, decreasing the 

required space from Θ(nm) to Θ(min{n,m}) while only 

doubling the worst-case processing time.  

Bordel et. al (2012) based their system on Hirschberg’s 

algorithm, showing its suitability. Nevertheless, they used 

a binary scoring matrix, while in the present study 

matrices based on phoneme similarity were developed. 

This improved alignment accuracy vs. a binary matrix.  

                                                           
2
 http://www.fp7-savas.eu/ 

3
 http://www.aucel.com/pln/ 

4
 http://svn.code.sf.net/p/cmusphinx/code/trunk/cmudict 

5
 http://code.google.com/p/phonetisaurus 

6 https://sites.google.com/site/similaritymatrices/ 

3. Phoneme similarity matrices 

Our similarity scores are based on the metric in Kondrak’s 

(2002) ALINE cognate alignment system.
7
 Phonemes are 

described with Ladefoged’s (1995) multivalued features. 

Features are weighted according to their salience: the 

feature’s impact for similarity. Features place and manner 

need to bear significantly higher salience than the rest. 

The phoneme and feature set, feature values and salience 

weights need to be adapted to each language. For each 

phone in our Spanish and English phonesets, we created 

feature specifications, available on our project’s website 

(see footnote 6). Samples are shown in Table 5. Salience 

weights are in Table 6. 

 

𝜎𝑠𝑢𝑏(𝑝, 𝑞) = ( 𝐶𝑠𝑢𝑏 − 𝛿(𝑝, 𝑞) − 𝑉(𝑝) − 𝑉(𝑞) ) / 100 
 

where 
 

𝑉(𝑝) = {
0 if 𝑝 is a consonant

𝐶𝑣𝑤𝑙  otherwise
 

 

𝛿(𝑝, 𝑞) =  ∑ diff(𝑝, 𝑞, 𝑓) × salience(𝑓)𝑓∈𝑹   

 

 𝜎𝑠𝑘𝑖𝑝(𝑝) = |𝐶𝑠𝑘𝑖𝑝  / 100|  

Figure 1: Similarity function 

 

The scoring function is in Figure 1: σsub(p, q) returns the 

similarity score for segments p and q. Csub/100 is the 

maximum similarity score attainable. Cvwl determines the 

relative weight of consonants and vowels. Values for Csub 

and Cvwl are set heuristically. The function diff(p, q, f) 

outputs the difference between segments p and q for 

feature f. The set of features R is configurable. Finally, 

σskip(p) returns Cskip/100, which is used to define the 

penalty for insertions and deletions employed in the 

aligner (see Section 2.3).  

Kondrak’s original function contains an additional clause, 

not shown in Figure 1, to evaluate two-to-one phoneme 

alignments. We did not use that clause since 

many-to-many alignments are not implemented in our 

aligner. Another modification in our version of the 

similarity function, compared to Kondrak’s, is that we 

added a denominator of 100 to σsub and σskip. This allowed 

us to keep our similarity scores in the range reported by 

Kondrak, but deploying integer feature values instead of 

decimals, and so reducing memory use.  

We created different matrices, varying the settings for 

elements (1) through (3) below. Table 1 and Table 2 show 

a summary of the settings for each matrix. Table 3 and 

Table 4 show matrix samples.  

For all matrices, Csub was 3500, yielding a maximum 

possible similarity score of 35 (Csub/100). Cskip was −1000, 

yielding a gap penalty of 10 when aligning (|Cskip/100|). 

                                                           
7
 http://webdocs.cs.ualberta.ca/~kondrak/#Resources  

for Kondrak’s ALINE. A Python implementation (PyAline)  

by Huff (2010) is at http://sourceforge.net/projects/pyaline/ 
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(1) Cvwl: 0 vs. 1000. A desirable outcome of setting  

Cvwl > 0 is that substitutions between vowels and 

consonants are more clearly penalized by the matrix, 

getting lower scores than when Cvwl = 0. However, with 

Cvwl > 0, vowel matches get a lower similarity score than 

consonant matches, decreasing the weight of vowels in 

alignment. This is useful for cognate alignment (Kondrak, 

2002, p. 48). The question arises whether this is also 

beneficial when aligning decoded phonemes and a G2P 

output. We tested this by defining V(p) in the scoring 

function differently. 

 

(2) V(p): original vs. alternative definition. The 

alternative definition of V(p) in Figure 2 allows us to give 

equal scores to vowel matches and consonant matches, 

while still setting Cvwl > 0, and thus still obtaining the 

beneficial effect of penalizing consonant/vowel 

substitutions more than consonant/consonant ones. 
 

     With parameters 𝑝, 𝑞 from 𝜎𝑠𝑢𝑏(𝑝, 𝑞) 
 

       𝑉(𝑝) = {
0 if 𝑝 or 𝑞 is a consonant or 𝑝 =  𝑞 

𝐶𝑣𝑤𝑙  otherwise
 

Figure 2: Alternative definition for V(p) 

(3) Diphthongs: binary vs. continuous scores. This 

applies only to our English matrices. Our English 

phoneset treats diphthongs as single phones, but in 

Kondrak they are two-phoneme sequences. To score 

diphthong substitutions with Kondrak’s function, we 

assigned them features and values heuristically. For 

comparison, we created matrices where diphthong scores 

were binary (match vs. mismatch). 
 

Matrix Name Cvwl 
Definition 

of V(p) 

Cv0_VpO 0 original 

Cv1K_VpO 1000 original 

Cv1K_VpA 1000 alternative 

Table 1: Spanish Similarity Matrices and their settings 

Matrix Name Cvwl 
Definition of 

V(p) 

Diphthong 

Scores 

Cv0_VpO_DB 0 original binary 

Cv0_VpO_DC 0 original continuous 

Cv1K_VpO_DB 1000 original binary 

Cv1K_VpA_DB 1000 alternative binary 

Cv1K_VpO_DC 1000 original continuous 

Cv1K_VpA_DC 1000 alternative continuous 

Table 2: English Similarity Matrices and their settings 

 

IPA a i n p r s j 

a 35 7 −50 −56 −30 −50 2 

i 7 35 −26 −32 −6 −26 10 

n −50 −26 35 9 −5 −5 −21 

p −56 −32 9 35 −11 9 −27 

r −30 −6 5 −11 35 −5 9 

s −50 −26 5 9 −5 35 −21 

j 2 10 −21 −27 9 −21 35 

Table 3: Sample from Spanish Matrix Cv1K_VpA 

 

IPA æ i: n p ɹ s aj 

æ 35 9 −46 −57 −16 −36 10 

i: 9 35 −26 −37 4 −16 −46 

n −46 −26 35 4 5 5 −46 

p −57 −37 4 35 −6 14 −46 

ɹ −16 4 5 −6 35 15 −46 

s −36 −16 5 14 15 35 −46 

aj 10 −46 −46 −46 −46 −46 35 

Table 4: Sample from English Matrix Cv1K_VpA_DC 

4. Evaluation and results 

We evaluated alignment at phoneme, word, and subtitle 

level, aligning long audios containing spontaneous 

speech, with disfluencies. The Spanish test-set was clean 

speech. The English test-set was non-clean speech, with 

music, noise and overlapping utterances. Accordingly, 

lower accuracy in English was expected and observed, at 

all evaluation levels. Another difficulty with English 

subtitles, which also led to lower accuracy, is that they 

represent a less literal transcription of the audio than the 

Spanish subtitles, due to a different subtitling approach in 

each language. 

The test-sets are different to the ones used to evaluate the 

phone-decoder, and consist of television audios, 

providing results that are more indicative of alignment 

quality in a real application scenario. 

The Spanish test-set contained 47,480 phonemes, 8,774 

words and 1,249 subtitles. The English test-set contained 

21,310 phonemes, 4,732 words and 471 subtitles. 

4.1 Evaluation at phoneme level 

The number of correctly aligned phonemes, based on the 

number of matches during the alignment process, 

increased when using the phoneme-similarity based 

matrices. Improvements were around 11 percentage 

points in Spanish, from 38.14% with the binary matrix to 

49.69% with the best-performing phoneme-similarity 

based matrix. Improvements in English were around 12 

percentage points (15.57% with the binary matrix vs. 

27.91% with the best phoneme-similarity based matrix).
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SPANISH 

IPA Vic Place1 Manner1 V Syl Voi Nas Lat Tri High1 Back1 Ro1 E.g. 

a a velar 60 low vowel 0 1 100 100 0   low 0 front 100 0 va 

i i palatal 70 high vowel 40 1 100 100 0     high 100 front 100 0 di 

n n alveolar 85 stop 100 0 0 100 100 0 0           no 

p p bilabial 100 stop 100 0 0 0 0 0 0           pan 

r R alveolar 85 approximant 60 0 0 100 0 0 100           perro 

s s alveolar 85 fricative 80 0 0 0 0 0 0           son 

j j palatal 70 high vowel 40 1 0 100 0 0 0 high 100 front 100 0 hoy 

ENGLISH 

IPA Vic Place1 Manner1 V Syl Voi Nas Lat Asp High1 Back1 Ro1 Lo1 

æ ae palatal 70 low vowel 0 1 100 100 0   low 0 front 100 0 0 

i: iy palatal 70 high vowel 40 1 100 100 0     high 100 front 100 0 100 

n n alveolar 85 stop 100 0 0 100 100 0 0           
 

p p bilabial 100 stop 100 0 0 0 0 0 100           
 

ɹ r alveolar 85 approximant 60 0 0 100 0 0 0           
 

s s alveolar 85 fricative 80 0 0 0 0 0 0           
 

aj ay palatal 70 
low vowel+ 

high vowel 
16 1 100 100 0     

low+ 

high 
40 

central+ 

front 
70 0 100 

 

1To compare with each other phonemes where V=1, Place and Manner are replaced with High, Back, Round, and, if available, 

Long. 

 

 Shaded cells indicate features that are not used to define similarity for the segment in the language  

Abbreviations 

 

V: Vowel, Syl: Syllabic, Voi: Voice, Nas: Nasal, Lat: Lateral, Asp: Aspirated, Tri: Trill Ro: Round, Lo: 

Long,  

Vic: ASCII-based phone code 

 

Table 5: Samples from the Phoneset, Features and Feature Values for Spanish and English 

 

Place 40 Nasal 10 High 5 

Manner 50 Lateral 10 Back 5 

Syllabic 5 Aspirated 5 Round 5 

Voice 10 Trill 10 Long 1 

Table 6: Salience Weights for each feature 

4.2 Evaluation at word level 

We adopted Moreno et al.’s (1998) measure of word-level 

alignment, also used by Bordel et al. As Table 7 and Table 

8 show, we record the cumulative percentage of correctly 

aligned words within a given deviation range: Column 0 

shows the percentage of perfectly aligned words, column 

≤0.1 means words whose misalignment goes up to 0.1sec, 

and so on. In the tables, we highlighted the best and worst 

results at 0, ≤0.1, ≤0.5 and ≤2 seconds. 

Improvements with the phoneme-similarity based 

matrices were observed. In Spanish, exactly aligned 

words increased by ca. 9 percentage points, while 

improvement at a ≤0.5 deviation range was  

20.85 percentage points. In English, improvements 

between ca. 20 and 30 percentage points were observed 

for each deviation range. 

4.3 Evaluation at subtitle level 

This is the most important evaluation, since it is indicative 

of the system’s alignment quality in its application 

scenario: automatic subtitling. Reference subtitles were 

created manually by subtitling professionals.  

For subtitle-level evaluation, we measured the deviation, 

compared to the reference, of the beginning of the 

subtitle’s first word and of the end of the subtitle’s last 

word. Cumulative percentages are given in Table 9 and 

Table 10. 

In Spanish, when using the best-performing phoneme 

similarity based matrix, exactly aligned subtitles 

increased by 7.44 percentage points compared to results 

with the binary matrix. At the ≤0.5 deviation range, gains 

were 14.57 percentage points. In English, alignment 

improved at each deviation range, e.g. gains of 4.03 

percentage points at ≤0.1 seconds and  

8.92 percentage points at ≤0.5 seconds. 
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sec 0 ≤0.1 ≤0.3 ≤0.5 ≤1.0 ≤1.5 ≤2.0 

Binary 14.17 57.71 70.09 72.65 76.21 78.04 79.02 

Cv0_VpO 23.17 81.08 90.27 92.17 93.96 95.01 95.64 

Cv1K_VpO 22.77 80.78 90.65 92.41 94.43 95.23 95.89 

Cv1K_VpA 23.01 82.21 91.83 93.50 95.50 96.21 96.83 

Table 7: Spanish word alignment accuracy.  

Percentage of words aligned  

within each deviation range from reference 

 

sec 0 ≤0.1 ≤0.3 ≤0.5 ≤1.0 ≤1.5 ≤2.0 

Binary 10.57 45.08 61.97 73.26 95.12 99.76 100 

Cv0_VpO 18.33 65.73 82.23 87.35 98.56 100 100 

Cv1K_VpO 17.93 65.57 82.95 87.43 98.56 99.84 100 

Cv1K_VpA 18.01 66.45 82.71 87.83 98.80 99.84 100 

Table 9: Spanish subtitle alignment accuracy. 

Percentage of subtitles aligned  

within each deviation range from reference 

sec 0 ≤0.1 ≤0.3 ≤0.5 ≤1.0 ≤1.5 ≤2.0 

Binary 0.28 4.81 12.73 19.04 29.69 37.38 43.24 

Cv0_VpO_DB 1.59 19.57 34.94 45.00 58.22 65.46 70.31 

Cv0_VpO_DC 1.59 19.86 34.33 42.78 56.61 63.64 68.72 

Cv1K_VpO_DB 1.67 20.31 36.26 45.55 58.79 66.14 70.84 

Cv1K_VpO_DC 1.67 20.03 33.91 42.23 54.76 61.10 64.85 

Cv1K_VpA_DB 1.80 22.87 39.50 48.73 61.56 68.64 73.08 

Cv1K_VpA_DC 1.93 23.76 40.03 48.90 61.58 68.34 72.72 

Table 8: English word alignment accuracy.  

Percentage of words aligned  

within each deviation range from reference 

sec 0 ≤0.1 ≤0.3 ≤0.5 ≤1.0 ≤1.5 ≤2.0 

Binary 0.21 4.25 18.26 37.15 84.29 98.73 100 

Cv0_VpO_DB 0.42 7.64 25.05 43.1 86.41 98.30 100 

Cv0_VpO_DC 0.42 7.43 25.48 42.46 87.47 98.73 100 

Cv1K_VpO_DB 0.42 8.92 26.54 40.55 87.47 98.51 100 

Cv1K_VpO_DC 0.42 9.13 27.18 42.25 87.05 98.51 100 

Cv1K_VpA_DB 0.42 11.04 30.79 45.86 87.47 98.94 100 

Cv1K_VpA_DC 0.42 8.28 26.96 46.07 86.84 99.58 100 

Table 10: English subtitle alignment accuracy.  

Percentage of subtitles aligned  

within each deviation range from reference 

 

 

5. Conclusions and future work 

This study shows that long audio alignment using 

Hirschberg’s algorithm can be improved by using, instead 

of a binary scoring matrix, a scoring matrix based on 

phoneme similarity defined via phonological features. 

Improvements were observed at phoneme, word and 

subtitle level, when aligning both clean speech (Spanish 

tests) and non-clean speech (English tests).  

As expectable, improvements at word level were higher 

than at subtitle level. At subtitle level, we only assess the 

position of the first and last word of each subtitle. This 

restricts the set of word-alignments that can contribute to 

a subtitle-level improvement.  

Regarding the different matrices tested, we obtained 

slightly better results with the matrices created using a 

modified scoring function, that gives equal weight to 

consonant matches and vowel matches. 

As future work, several approaches to improve alignment 

could be tested. First, our phoneme decoding applied 

MFCC coefficients, based on a perceptually motivated 

Mel frequency scale. However, our phoneme-similarity 

metric relied on phonological features that follow 

articulatory criteria. Using MFCC parametrization 

together with matrices based on perceptual similarity 

could be tested. The converse approach is also possible: 

Keeping a similarity metric based on articulatory criteria, 

but using an acoustic parametrization that provides a good 

description of the speech articulators, e.g. linear 

predictive coding (LPC). Finally, since alignment quality 

depends on phone-decoder accuracy, similarity matrices 

based on phone-decoding confusion matrices could be 

tested. 
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