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Abstract 
 

In this paper, we propose a benchmarking of supervised machine learning techniques (neural networks, Gaussian 

processes and support vector machines) in order to forecast the Global Horizontal solar Irradiance (GHI). We 

also include in this benchmark a simple linear autoregressive (AR) model as well as two naive models based on 

persistence of the GHI and persistence of the clear sky index (denoted herein scaled persistence model). The 

models are calibrated and validatedwith data from three French islands: Corsica (41.91°N; 8.73°E), Guadeloupe 

(16.26°N; 61.51°W) and Reunion (21.34°S ; 55.49°E). The main findings of this work are, that for hour ahead 

solar forecasting,the machine learning techniques slightly improve the performances exhibited by the linear AR 

and the scaled persistence model. However, the improvement appears to be more pronounced in case of unstable 

sky conditions.These nonlinear techniques start to outperform their simple counterparts for forecasting horizons 

greater than one hour. 
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1. Introduction 
 

 
Solar radiation forecasting is of great importance for an efficient integration of large shares of solar energy into 

the electricity grid. More precisely, in order to increase the integration of solar energy into electricity grids, 

accurate forecasts at various horizons are needed (Lorenz and Heinemann, 2012). This statement is reinforced in 

the case of insular grids(Diagne et al., 2014 ;Haurant et al., 2009; Voyant et al., 2009). Indeed, the intermittent 

character of solar energy together with the fact that the island’s electricity grid is not connected, may endanger 

the stability of the grid and consequently the supply-demand balance.  Solar forecasting may be very challenging 

in an insular context such as islands (like Reunion and Guadeloupe islands for instance) which usually 

experience a high spatial and temporal variability of the solar resource(Badosa et al., 2013; Calif et al., 2013; 

Praene et al., 2012). Due to this high variability, the insular grids can experience a drop of around 40-50% of the 

PV power output in minutes.  

As a consequence, since the end of 2010, the French government has limited by law the total power produced by 

the instantaneous integration of intermittent renewables (PV and wind) into the insular grids, to 30%. 

Since 2011, this limit has been reached for ReunionIsland and Corsica. In order to assure reliable grid operation 

and to balance the supply and demand of energy, utilities require accurate forecasts at different granularities and 

for different forecast horizons. For instance, short term forecasts are needed for operational planning, switching 

sources or re-scheduling of means of production, programming backup, planning for reserve usage, and peak 

load matching (Kostylev and Pavloski,  2011).Depending on the forecast horizon, different input data and 

forecasting models are appropriate. Statistical models with on-site measured irradiance are adequate for the very 

short-term time scale ranging from 5 minutes up to 6 hours (Lorenz and Heinemann, 2012). Forecasts based on 

cloud motion vectors from satellite images (Lorenz and Heinemann, 2012) show a good performance for a 

temporal range of 30 minutes to 6 hours. For forecast horizons from about 6 hours onwards, forecasts based on 

Numerical Weather Prediction (NWP) models are generally more accurate (Inness and Dorling, 2012; Maini and 

Agrawal, 2006; Muselli et al., 1998).  

In this work, we assess the performance of different models for intraday solar forecasting with a special focus on 

the hour ahead solar forecast, as it is the most-common operational forecast requested bythe French utility 

company when operating the insular grids. Consequently, in this work, light is shed on the use of statistical 

models. Indeed, the solar radiation sequence can be seen as a time series, and therefore one can build statistical 

models to capture the underlying random processes and predict the next values.Several statistical techniques can 
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be employed to forecast solar radiation time series. The spectrum of methods can range, for instance, from linear 

models like the autoregressive (AR) model to nonlinear models like artificial Neural Networks (NNs) or Support 

Vector Machines (SVMs).  Many papers report the successful application of NNs in the field of solar forecasting 

(Inman et al., 2013; Mellitet al., 2009; Paoli et al., 2010; Voyant et al., 2013). Indeed, the availability of 

historical data on meteorological utility databases and the fact that NNs are data driven approaches, capable of 

performing non-linear mapping between sets of input and output variables, make this modelling tool very 

attractive. However, the use of machine learning techniques like the Support Vector Machine is relatively new 

(Zeng and Qiao, 2013; Fonseca Junior et al., 2013; Wolff et al., 2013) and techniques like Gaussian Processes 

(GPs) have been applied for instance to stream flow forecasting (Sun et al., 2014) but, to our best knowledge, 

have never been applied in the realm of solar forecasting. As mentioned above, the solar radiation sequence can 

be seen as a time series and in this survey we only make use of historical data in order to build the statistical 

models. In other words, no exogenous data are used to possibly improve the performance of the models. Some 

works reported a clear improvement of NNs models by adding exogenous data issued mainly from NWP models 

(Marquez and Coimbra, 2011; Voyant et al., 2012). However, in this work, it must be stressed that we 

deliberately discarded this possibility, as our primary intention here is to evaluate the performance of different 

machine learning techniques through a simple numerical set-up (i.e. only past GHI values are taken into account 

in the modelling process). 

The performances of these techniques will be compared against a simple linear model and two naive persistence 

models. As a special emphasis is put on the case of insular grids, GHI data from three French overseas islands 

will serve to build and test the different models. 

The remainder of this paper is organised as follows. Section 2 discusses the datasets used to calibrate the models 

and to assess the models’ performance. Section 3 describes the clear sky model used to detrend the solar 

irradiance time series from its deterministic components. Section 4 defines the numerical experiments set-up 

while section 5 briefly introduces the machine learning techniques and depicts the structure of the different 

models. Section 6 presents the results of the benchmark. Finally, Section 7 gives some concluding remarks. 

 

 

2.Context of study and datasets 

 
 

Most of the techniques studied in this work are statistical learning methods that require past measured GHI 

values in order to build the different models. 
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Further, the machine learning techniques investigated in this work are supervised learning methods, which 

consist in learning input-output mappings from empirical data (the training dataset). Consequently, in order to 

build and to validate the different models, data have been divided in to training and test datasets. As for all 

experimental acquisitions, missing values are observed for the three considered sites (less than 2% of the data), a 

classical cleaning approach was operated in order to identify and remove this data. 

 

2.1. Case of Reunion Island 
 

Reunion Island exhibits a particular meteorological context dominated by a large diversity of 

microclimates(David, 2005). Two main regimes of cloudiness are superposed: the clouds driven by synoptic 

conditions over the Indian Ocean and the orographic cloud layer generated by the local reliefs (Badosa et al., 

2013).The data used to build the models are Global Horizontal Irradiances (GHI) measured at the meteorological 

station of Saint-Pierre (21°34’S ; 55°49’E, 75m a.s.l)located in the southern part of Reunion Island. 

Measurements are available on an hourly basis and two years of data (2012 and 2013) are used respectively for 

the building and appraisal of the models. The station measures the GHI every six seconds and the 1-minute 

averages are recorded. The hourly used data correspond to the average of the previous 60 minutes of 

measurements. The solar irradiance is measured with a secondary standard pyranometer (CMP11 from 

Kipp&Zonen). The precision of the pyranometers is± 3.0% for the daily sum of GHI.Measurement quality is an 

essential asset in any solar resource forecastingstudy. The site of Saint-Pierre is well maintained and has 

followed the radiometric techniques regarding calibration, maintenance and quality control. Each data point has 

been processed with SERI-QC quality control software(Maxwell et al., 1993).  

 

2.2. Case of Corsica 
 

The data used to build the models are GHI measured at the meteorological station of Ajaccio (Corsica, France, 

41°91N, 8°73E, 4m asl). This station is equipped with pyranometers (CMP11 from Kipp&Zonen) and standard 

meteorological sensors (pressure, nebulosity, etc.). It is located near the Mediterranean Sea (100m) and nearby 

mountains (1000m altitude at 40km from the site). This specific geographical configuration makes nebulosity 

difficult to forecast. The Mediterranean climate is characterized by hot summers with abundant sunshine and 

mild, dry and clear winters. The data representing the global horizontal solar radiation were measured on an 

hourly basis from 1998 to 1999. The first yearhas been used to build our models and the last year to test them.  
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2.3. Case of Guadeloupe 

 
We used a two-year database(2012 and 2013) of GHI measured on an hourly basis at the meteorological station 

of Le Raizet (Météo France 16°26N, 61°51W; 11m a.s.l) located in the middle of the island. This site is notfree 

of influence from the sea and the mountains. The station is equipped with pyranometers (CM 22 from 

Kipp&Zonen) and standard meteorological sensors (air temperature, wind speed and direction, nebulosity, etc.).  

 

2.4. Sites analysis 

 

This section aims at analysing the sky conditions experienced by each site. Table 1 lists the sites’ characteristics 

and also gives (last line) a metric that characterizes the solar variability of the site. This metric proposed by 

(Hoff and Perez, 2012) is the standard deviation of the change in the clear sky index.A site withvariability above 

0.2 is considered as experiencing very unstable conditions (Hoff and Perez, 2012; David et al., 2013). As seen 

and contrary to sites of Corsica and Reunion, the variability of the site of Guadeloupe is above this threshold.  

Fig. 1 plots the distribution of the clear sky index (computed with the Bird model) for each site. Again, one can 

see that the site of Guadeloupe exhibits more variable cloud situations. Conversely, the sites of Saint-Pierre and 

Ajaccioshow more occurrences of clear skies (see Table 1). 

 

Site 
Saint-Pierre 
(REUNION) 

Le Raizet 
(GUADELOUPE) 

Ajaccio 
(CORSICA) 

Period of record 
01/01//2012 
31/12/2013 

01/01/2012 
31/12/2013 

01/01/1998 
31/12/1999 

Longitude 55.491°E 61.516°W 8.733°E 

Latitude 21.34°S 16.264°N 41.917°N 

Time zone (hours) +4 -4 +1 

Elevation (m) 75 11 4 

 Pressure (Pa) 100427 101193 101277 

Ozone (cm) 0.2655 0.2447 0.3328 

Water vapor (cm) 2.933 3.932 1.927 

AOD 500nm (cm) 0,072 0,149 0.170 

AOD 380nm (cm) 0.090 0.161 0,191 

 Ba (Bird, 1981) 0.84 0.84 0.84 

Nb. of clear sky hours 2651 637 2641 

Bird clear sky model 
accuracy (rRMSE) 

3.82% 4.44% 4.75% 

Site variability (Hoff&Perez, 
2012) 

0.1885 
0.2377 

0.1943 
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Table 1.Sites characteristics, input parameters for the BIRD model and performance of the Bird model 

 

 

Figure 1.Clear sky index distribution for the three sites. 

 

 

3. Data pre-processing  

 
A key feature in the identification of linear models like AR models is the data transformation that is often needed 

to make the time series stationary. Stationarity means that the statistical characteristics of the time series such as 

the mean and the autocorrelation structure are constant over time (Chatfield, 2004).  In this survey, as the 

original solar radiation series is not stationary (daily and annual seasonalities), we used clear sky models in an 

attempt to obtain a stationary hourly solar series. More precisely, we obtained a new deseasonalizedseries  𝑘∗ , 

the so-called clear sky index series, by applying the following data transformation (Eq.  (1)): 

𝑘∗ = 𝐼𝑔 𝐼𝑐𝑙𝑠𝑘           (1) 

where𝐼𝑔  is the measured global irradiance and 𝐼𝑐𝑙𝑠𝑘 is the output of the specific clear sky model. This 

transformation makes use of the fact that the global irradiance 𝐼𝑔can be decomposed into a deterministic clear 

sky component and a stochastic cloud cover component. With this methodology, the models designed in this 

work are dedicated to the stochastic part of the global radiation, leaving the deterministic part to be modelled by 

the clear sky model. One may notice however that this transformation is not optimal (i.e. the time series of clear 
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sky index may still exhibit some heteroscedasticity) and one has to apply some additional pre-processing 

techniques like differencing the clear sky index time series  𝑘∗  to remove the remaining trend and/or stabilize 

the variance. Another possibility is to make use of integrated ARMA (ARIMA) models (Chatfield, 2004) in 

order to treat non-stationary series or to apply the seasonal ARMA version (SARIMA) for seasonal time series. 

It must be noted that the same type of pre-processing will be applied to the machine learning methods assessed 

in this work.  Indeed, in practice, it is usually admitted that data normalisation (as it is the case here) facilitates 

the learning process of these methods. In this work, the Bird clear sky model (Bird and Huldstrom, 1981) is used 

to pre-process the data of the three sites. This clear sky model will also permit the derivation of a naive model 

based on the persistence of the clear sky index as described in section 5.1. 

 

3.1. Bird model 

 
 

The Bird model (Bird and Huldstrom, 1981) is a well-known broadband model that generates clear sky 

irradiances with acceptable accuracy and with only few inputs (Badescu et al., 2013). For this study, the Aerosol 

Optical Depths (AODs) and the amount of the atmosphere components in a vertical column are set to their 

climatological means and they remain constant all along the years used in this work. These climatological 

averages were derived from the AERONET network (AERONET, 2013) for the AODs and the water vapor. The 

ozone atmospheric content is retrieved form the World Ozone Monitoring Mapping provided by the Canadian 

government (Ozone, 2014). The value of the parameters used for the threestudied sites are given in Table 1. 

The forecasting accuracy of the models proposed in this work depends on the accuracy of the clear sky method 

used to derive the clear sky index. In order to evaluate this error induced by the Bird model, only the clear sky 

periods are considered (Reno et al., 2012).  The clear sky hours were detected using the Ineichen method 

(Ineichen, 2006) applied to the two years of measured hourly global irradiance. The two last lines of Table 1 

give the number of clear sky hours detected and the relative Root Mean Square Error (rRMSE) of the 

corresponding clear sky irradiance produced by the Bird model. The performances of the Bird model are 

consistent with previous results and particularly in the case of La Reunion and Corsica (Cros et al. 2013). 

 

 

3.2 Filtering methodology 

 

 
Concerning the global radiation forecasting, it is a common practice to filter out the data in order to remove night 

hours and to objectively compare the studied predictors. This choice is justified because during these periods 
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there is obviously no significant solar radiation to generate electricity (i.e. low potential overnight). We chose to 

apply a filtering criterion based on the solar zenith angle (SZA): solar radiation data for which the solar zenith 

angle is greater than 80° have been removed. In addition, this filtering process allows to discard data with less 

precision as measurement uncertainties associated topyranometersare typically much higher than ± 3.0% for 

SZA > 80°. Notice also that for the sunrise and sunset, the prediction is also very difficult (mainly for 

mountainous areas) owing to the geographic shield. 

 

4. Numerical experiments set-up 

 
 

The goal of this paper is to evaluate some machine learning techniques in order to predict next values of solar 

irradiance from only past values of the irradiance i.e. no exogenous variables are used.  In other words, all 

forecasting methods described in this work seek to find a generic model Fof the form given by Eq.(2). 

𝑘 ∗ 𝑡 +  = 𝐹 𝑘∗ 𝑡 , 𝑘∗ 𝑡 − 1 , ⋯ , 𝑘∗ 𝑡 − 𝑝  for = 1,2, ⋯ ,6    (2) 

where the sign ^ is used to identify the forecast variable and the sequence  𝑘∗ 𝑡 , 𝑘∗ 𝑡 − 1 , ⋯ , 𝑘∗ 𝑡 − 𝑝   

represents the time series of ppast values of the clear sky index.  The forecast horizon denoted by the letter h 

usually ranges from 1 hour to 6 hours (intraday solar forecasting). In our case, as mentioned above, the variable 

of interest is the clear sky index 𝑘∗. Given forecasts of the clear sky index, GHI forecasts can be obtained by 

using Eq.(1). All the statistical methods described in this work are supervised learning methods or data-driven 

approaches.  As a consequence, the techniques rely on the information content embedded in the training data in 

order to produce forecasts on unseen data. More precisely, the models’ parametersare determined with the help 

of npairs of input and output examples contained in the training data.  Once the model is fitted, the model can be 

evaluated on a test dataset. In our context, 𝒟 =  𝐱i , 𝑦𝑖 i=1
n represents the training dataset. The vector 𝐱i contains 

the p past values of the clear sky index for training and 𝑦𝑖  refer to the corresponding value of the clear sky index 

for the horizon h of interest. The column vector inputs for all n training cases can be aggregated in the so-called 

𝑛 × 𝑝 design matrix 𝐗 and the corresponding model’s outputs (or targets) are collected in the vector𝐲 so we can 

write 𝒟 =  𝐗, 𝐲 . Similarly, considering𝑛∗ testcases, we have 𝒟∗ =  𝐗∗, 𝐲∗  for the test dataset. 

 

5. Brief description of the prediction techniques 

 
In this section, we present the three different kind of prediction methodologies evaluated in this study: naive 

models, linear models and non-linear models. 

 

5.1 Naivemodels 
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Two naive predictors are studied in this work. The first is the simple persistence model defined by Eq. (3). 

𝐼 𝑔 𝑡 +  = 𝐼𝑔 𝑡          (3) 

It simply states that future values of GHI are equal to GHI observed at time t (i.e. the atmospheric conditions 

remain unchanged between current time t and future time t+h). One way to improve this simple model is to take 

into account the course of the sun by using a clear sky model and to define persistence on the clear sky index i.e. 

𝑘∗  𝑡 +  = 𝑘∗ 𝑡 . The corresponding GHI forecast can be obtained through Eq. (4): 

𝐼 𝑔 𝑡 +  = 𝐼𝑔 𝑡 × 𝐼𝑐𝑙𝑠𝑘  𝑡+ 𝐼𝑐𝑙𝑠𝑘  𝑡          (4) 

In the rest of the paper, this persistence on the clear sky index will be called scaled persistence(SC-pers) model. 

 

5.2. Linear model: autoregressive process  

 

In an AR model (Chatfield, 2004), the future value of a variable namely 𝑘 ∗ 𝑡 +   is assumed to be a linear 

combination of several past observations as shown by Eq. (5): 

𝑘∗  𝑡 +  =𝜙0 +  𝜙𝑖+1𝑘
∗ 𝑡 − 𝑖 

𝑝
𝑖=0 + 𝜖𝑡        (5) 

 

where𝜖𝑡   is a white noise with variance 𝜎2.The model’s parameters are the  Φ𝑖 𝑖=0,1,⋯𝑝+1and pis called order (or 

autoregressive order) of the model. One key challenge in the building of AR models is to determine the 

appropriate model order. Methods based on the autocorrelation coefficients (ACF) and partial autocorrelation 

coefficients (PACF) analysis are proposed to select the best orders (Chatfield, 2004). However, these two 

techniques are based on linearity assumptions. In this study, the complexity of the model governed by the 

autoregressive order p is determined with the auto mutual information factor (see section 5.7 for details). 

 

5.3. Neural network model 

 

 
A NN with d inputs, m hidden neurons and a single linear output unit defines a non-linear parameterized 

mapping from an input vector x to an output y given by the relationship (see Eq.(6)): 

𝑦 𝐱; 𝐰 =  𝑤𝑗
𝑚
𝑗 =1 𝑓  𝑤𝑗𝑖

𝑑
𝑖=1 𝑥𝑖 + 𝑏1 + 𝑏2       (6) 

 

Each of the m hidden units are related to the tangent hyperbolic function 𝑓 𝑥 =  𝑒𝑥 − 𝑒−𝑥  𝑒𝑥 + 𝑒−𝑥  .  The 

parameter vector 𝐰 =   𝑤𝑗  ,  𝑤𝑗𝑖  , 𝑏1, 𝑏2 ,which contains a set of weights  𝑤𝑗  ,  𝑤𝑗𝑖  and two biases 

𝑏1 , 𝑏2,governs the non-linear mapping and is estimated during a phase called the training or learning phase. 

During this phase, the NN is trained using the dataset 𝒟. The second phase, called the generalization phase, 
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consists of evaluating on the test dataset 𝒟∗, the ability of the NN to generalize, that is to say, to give correct 

outputs when it is confronted with examples that were not seen during the training phase. 

For our application, the relationship between the output𝑘 ∗ 𝑡 +  and the inputs  𝑘∗ 𝑡 , 𝑘∗ 𝑡 − 1 , ⋯ , 𝑘∗ 𝑡 − 𝑝   

has the form given by Eq. (7): 

𝑘 ∗ 𝑡 +  =  𝑤𝑗
𝑚
𝑗=1 𝑓  𝑤𝑗𝑖

𝑝
𝑖=0 𝑘∗ 𝑡 − 𝑖 + 𝑏1 + 𝑏2       (7) 

 

As shown by the preceding equation, the NN model is equivalent to a nonlinear autoregressive (AR) model for 

time series forecasting problems. In a similar manner as for the AR model, the number of past input values p is 

calculated with the auto mutual information factor (see section 5.7 for details). In this work, and as described by 

Eqs. (6) and (7), we used only one hidden layer as it is proved theoretically that only layer is sufficient to 

approximate any continuous function ( Hornik et al, 1989). As a rule of thumb, our experience in building NNs 

(Voyant et al., 2013) led us to choose as many hidden units as NN inputs. Careful attention must be put on the 

building of the model, as a too complex NN will easily fit the noise in the training set instead of modelling the 

underlying physical process that generates the data. In other words, the model will exhibit a low training error 

but will offer a poor generalization performance. This problem is called overfitting in the machine learning 

community (Bishop, 1995). The NN complexity is in relation with the number of hidden units or conversely the 

dimension of the vector w. Several techniques like pruning (Lauret et al., 2006) or Bayesian regularization 

(MacKay, 1992) can be employed to control the NN complexity. In the present study, the NN model has been 

computed with the Matlab© software and its Neural Network toolbox. The optimization process is based on the 

Levenberg-Marquardt learning algorithm with a max fail parameter set to 3. This procedure is, in fact, called 

early stopping in the NN community (Bishop, 1995) and make use of a validation set in order to control the NN 

complexity and therefore is a means to prevent overfitting.Note that a particular NN approach based on Bayesian 

inference (Lauret et al., 2008) was tested during the simulations. However, as no added value was brought out by 

the approach, we chose to not present this sophisticated methodology and the associated results. 

 

 

 

5.4. Gaussian Process model 

 

 
Gaussian Processes (GPs) are a relatively recent development in non-linear modelling (Rasmussen and 

Williams,2006). GPs are generally stated as a kernel-based method. Indeed, it can be shown (Rasmussen and 

Williams, 2006) that, given n training samples, the prediction for an input test vector x∗can be seen in terms of a 
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linear combination of n kernel functions; each one centered on a training point. Therefore, the forecasted clear 

sky index is given byEq. (8): 

𝑘 ∗ 𝑡 +  =  αi
n
i=1 𝑘𝑓 xi , x∗         (8) 

where𝑘𝑓   denotes the squared exponential covariance function 𝑘𝑓 𝑥𝑝 , 𝑥𝑞 = 𝜎𝑓
2𝑒𝑥𝑝  

− 𝑥𝑝−𝑥𝑞  
2

2𝑙2  and𝐱𝐢 is the 

ithinput training vector. 𝜎𝑓
2andl are called hyperparameters of the covariance function. They control the model 

complexity and can be learned (or optimized) from the training data at hand (Rasmussen and Williams, 

2006).More precisely, these hyperparameters are set through the maximization of a functioncalled the marginal 

likelihood or evidence (Rasmussen and Williams, 2006). The coefficients αi are obtained by a matrix 

multiplication between a covariance matrix (resulting from the application of the covariance function on all the 

training data points) and the vector of the n training output samples y. For all the details regarding the GP 

calculations, the interested reader is referred to (Rasmussen and Williams, 2006) or (Lauret et al., 2012). 

 

5.5. Support vector machine 

 

 
The support vector machine (SVM) is another kernel based machine learning technique used in classification 

tasks and regression problems (Vapnik, 1995). Support vector regression (SVR) is based on the application of 

support vector machines to regression problems (Smola and Schölkopf, 2004). This method has been 

successfully applied to time series forecasting tasks (Muller et al., 1997). In a similar manner as for the GPs, the 

prediction calculated by a SVR machine for an input test casex∗ is given by Eq. (9): 

𝑘 ∗ 𝑡 +  =  𝛼𝑖
𝑛
𝑖=1 𝑘𝑟𝑏𝑓  𝐱𝑖 , 𝐱∗ + 𝑏        (9) 

𝑘𝑟𝑏𝑓   denotesthe radial basis covariance function 𝑘𝑟𝑏𝑓  𝑥𝑝 , 𝑥𝑞 = 𝑒𝑥𝑝 −𝛾  𝑥𝑝 − 𝑥𝑞    with hyperparameter 𝛾The 

parameter b (or bias parameter) is derived from the preceding equation and some specific conditions (see Smola 

and Schölkopf, 2004 for details).  

In the case of SVR, the coefficients 𝛼𝑖  are related to the difference of two Lagrange multipliers, which are the 

solutions of a quadratic programming (QP) problem (Smola and Schölkopf, 2004). Unlike NNs, which are 

confronted with the problem of local minimum, here the problem is strictly convex and the QP problem has a 

unique solution. In addition, it must be stressed (unlike GPs) that not all the training patterns participate to the 

preceding relationship. Indeed, a convenient choice of a cost function i.e. Vapnik’s 𝜀 −insensitive function 

(Smola and Schölkopf, 2004) in the QP problem enables to obtain a sparse solution. The latter means that only 
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some of the coefficients 𝛼𝑖  will be nonzero. Theexamples that come with non-vanishing coefficients are called 

Support Vectors. 

The parameters related to the SVM optimization process are a parameter C that control the trade-off between 

overfitting and generalization ability of the algorithm, a parameter ν that controls the amount of support vectors 

used in the regression and the parameter 𝛾 of the covariance function that controls the smoothness of the 

covariance function (Fonseca Junior et al., 2013).These parameters have been optimized through the use of a k-

fold cross-validation procedure (Fonseca Junior et al., 2013). 

In the present study, regarding the implementation of the support vectorregression, we used the LibSVM library 

(Chang et al., 2011).  

Like in the NN case, other kinds of support vector methodologies were tested e.g. the multi-class SVMs (Zeng et 

al.,2012; Yang et al., 2013; Czibula et al., 2012). The corresponding results were systematically worse than those 

from SVR. Thereby, we prefer to notdescribe these other methodogies in order to make the paper more readable. 

 

5.6Some brief comments related to the optimization of the machine learning based models 
 

This section aims to highlight some points when one has to implement machine-learning techniques like NNs, 

SVMs or GPs. First, we would like to emphasize the automatic control of the model complexity brought by the 

SVM and GP methods. Let us recall that this control is a prerequisite for obtaining an optimized model that will 

not lead to overfitting. For these two methods, only a few parameters (also called hyperparemeters) control the 

model complexity. Further, the optimization of these control parameters can be done from the training data 

through the use of a principled framework (Rasmussenand Williams, 2006; Vapnik, 1995). 

Conversely, NNs suffer from the lack of such principled framework.  As a black-box approach, NNs are not so 

easy to apply in practice due to the many decisions, which needed to be made:what architecture, what learning 

rate, what regularization termetc. Generally, these knobs are set by rules of thumb, trial and error or the use of 

reserved data (validation set) to assess the generalization ability of the NN. In addition, for a particular NN, the 

search for a good set of weights for a given training set is more complicated because that there can be local 

optima in the optimization problem; this can cause significant difficulties in practice.Conversely, as mentioned 

above, SVMs and GPs are not plagued with the problem of local minima as NNs are.Actually, one has to be an 

expert in order to build a NN or one has to use sophisticated techniques like the Bayesian Regularization method 

(Lauret et al., 2008) in order to control the model complexity. 
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5.7 Determination of the number of lagged inputs 

 
 

One step common to all models is thenumber of endogenous inputs to consider. In this work, we used a novel 

technique based on the Mutual Information (MI) in order to determine the number of lagged inputs (Voyant et 

al., 2014).We chose to apply the same methodology for all numerical experiments by using the auto-information 

of the signal. This parameter measures the reduction of uncertainty in 𝑘∗ 𝑡  after observing 𝑘∗ 𝑡 − 𝑖  (𝑖 =

0,1, … , 𝑁; N number of observations). So MI can measure non-monotonic and other more complicated 

relationships. It can be expressed as a combination of marginal and conditional entropies (respectively 𝐻(𝑘∗(𝑡)) 

and𝐻 𝑘∗ 𝑡  𝑘∗ 𝑡 − 𝑖   ) as described in Eq.(10):       

𝑀𝐼(𝑘∗ 𝑡 , 𝑘∗(𝑡 − 𝑖)) = 𝐻(𝑘∗(𝑡)) − 𝐻(  𝑘∗ 𝑡  𝑘∗(𝑡 − 𝑖))     (10) 

This quantity should be understood as the amount of randomness of the random variable 𝑘∗ 𝑡  given that you 

know the value of 𝑘∗ 𝑡 − 𝑖 . For details regarding the MI formalism, the interested reader is referred to (Voyant 

et al., 2014).The maximum of lagged inputs to consider (i.e. number of inputs of the NN, SVM and GP) 

corresponds to the first minimum of the automutual information (Parviz et al., 2008). Forexample, if the first 

minimum corresponds to the 10th time lag, the NN will be constructed with 10 inputs.  

 

6. Results  

 

 
Several attempts have been made in order to define the state-of-the art validation metrics (Hoff et al., 2012; 

Coimbra et al., 2013; David et al., 2012). In the realm of the solar forecasting community, the commonly used 

error metrics are: the Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Bias Error 

(MBE). The reader is referred to Appendix A for the definition of these error metrics.However, their relative 

counterparts (rRMSE, rMBE and rMAE) obtained by dividing the absolute error measures by the average of the 

daytime values of the GHI, are usually preferred as the utility industry desires to understand error in relative 

terms rather than absolute terms(Hoff et al., 2012).In this work, in order to characterize the quality of the 

forecasts, we providethe standard set of relative error metrics. We also include a new metric: the forecast skill 

parameter s. The latter proposed by (Coimbra et al., 2013) is given by 𝑠(%) =  1 −
𝑅𝑀𝑆𝐸𝑚𝑒𝑡 𝑜𝑑

𝑅𝑀𝑆𝐸𝑆𝐶 −𝑝𝑒𝑟𝑠
 × 100 where 

𝑅𝑀𝑆𝐸𝑚𝑒𝑡 𝑜𝑑  stands for the RMSE of each forecasting method and 𝑅𝑀𝑆𝐸𝑆𝐶−𝑝𝑒𝑟𝑠  is the RMSE of the scaled 

persistence model. With this definition, the scaled persistence model has a forecast skill s=0%. A value of 

s=100% denotes a perfect forecast (𝑅𝑀𝑆𝐸𝑚𝑒𝑡 𝑜𝑑 = 0 𝑊. 𝑚−2).Negative values of s indicate that the forecasting 
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model fails to outperform the scaled persistence model while positive values of s means that the forecasting 

method improves on scaled persistence (Coimbra et al., 2013).Further, the higher the s-skill score, the better the 

improvement. 

 
6.1. Hour ahead GHI forecasts 
 

 
In this section, we present the results of the benchmarking study for the three insular sites (Corsica, Reunion and 

Guadeloupe). As previously mentioned in section 3, the Bird clear sky model is used to pre-process the original 

GHI time series of the three locations. The training of the models was operated with one year of data and the 

validation period (or test period) covers also one year. Table 2 lists the accuracy (on the one year validation 

period) of the different methods in the case of hour ahead forecasts. In addition to the annual performance of 

each model (annual rRMSE) and in order to exhibit an eventual seasonal dependency, Table 2 also reports their 

performance for each quarter of the year and Fig. 2 better highlights the annual performance of the different 

methods. 

 

   
Quarters (rRMSE) 

Locations Types Models 
Annual 

(rRMSE)  1st  2nd 3rd 4th 

Corsica 
(Ajaccio) 

Naive 
Pers 31.94 36.53 30.14 27.13 36.69 

SC-pers 21.00 26.19 19.22 16.21 25.51 

Non-linear 

SVR 19.92 24.78 18.55 15.39 23.64 

GP 19.71 24.60 18.28 15.26 23.37 

NN 19.65 24.43 18.25 15.15 23.47 

Linear AR 20.43 25.08 18.88 15.81 24.96 

 Gain in rRMSE  +1.35% +1.76% +0.97% +1.06% +2.14% 

Reunion 
(Saint-
Pierre) 

Naive 
Pers 34.21 36.23 35.32 30.28 34.78 

SC-pers 21.47 25.84 21.05 15.03 22.37 

Non-linear 

SVR 21.22 24.68 20.03 16.39 22.50 

GP 21.07 24.56 20.02 15.79 22.53 

NN 21.14 24.65 19.85 15.96 22.65 

Linear AR 21.36 25.23 20.40 15.20 22.94 

 Gain in rRMSE   +0.4% +1.28%  +1.2%  -0.17%  -0.13% 

Guadeloupe 
(Le Raizet) 

Naive 
Pers 38.08 36.75 36.29 39.40 39.60 

SC-pers 27.88 26.81 24.40 30.28 29.55 

Non-linear 

SVR 25.69 24.28 23.09 28.08 26.83 

GP 25.95 24.88 23.31 28.25 26.88 

NN 25.99 24.73 23.29 28.48 26.92 
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Linear AR 26.74 25.03 24.10 29.32 27.96 

 Gain in rRMSE  +2.19% +2.53% +1.31% +2.20% +2.72% 

 

Table 2.rRMSE (% ) of hour ahead forecasts for Corsica, Reunion and Guadeloupe (in bold, the best 

results). The line Gain in rRMSE  is the difference between  the scaled-persistence (SC-pers) rRMSE  and 

the best annual rRMSE 

 
 

As shown by Table 2, in all the cases, the naive persistence is the model that gives the worst results. 

Consequently, this model can be definitively discarded in future assessments.From Table 2, the best annual 

predictors are: NN for Corsica-Ajaccio (rRMSE of 19.65%), GP for Reunion-Saint Pierre (rRMSE of 21.07%) 

and SVR for Guadeloupe-Le Raizet (rRMSE of 25.69%). The annual performance varies from site to site. As an 

example, there is almost6% difference between the best predictors of Corsica and Guadeloupe. This discrepancy 

is certainly due to the cloud formation processes, which are very different in these two islands. Indeed, as shown 

by the sites analysis made in section 2.4, the two sites experience different sky conditions during the year. 

 

Figure 2. Annual rRMSE (%) values for the three sites 

 

Actually,if one makes a step further in the analysis of the results, a dichotomy in the results is observed between 

sites experiencing different sky conditions. More precisely, based on the prior sites analysis, two comments can 

be made:  
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First, for sites like Corsica and Reunion that exhibit stable sky conditions (mainly clear sky conditions), all the 

methods (except the naive persistence) are practically equivalent (around or less than 1% rRMSEdifference 

between the new methods and scaled persistence).  In the case of La Reunion (which is the site that experiences 

less variability and longer sequence of clear hours– see Table 1), the annual gain in rRMSE(which is the 

difference between the rRMSE of the scaled persistence and the best performer) is only of +0.4%. 

Second, for a site that exhibits variable cloud situations like Guadeloupe, the machine learning techniques 

perform better than the scaled-persistence.  The SVR method leads to a gain in rRMSE of+2.19%  

Regarding the seasonal rRMSE, the best result appears in summer in Ajaccio (3
rd

 quarter; rRMSE=15.15%) 

when the occurrence of clear sky is the most important. The worst performance is in Guadeloupe (3
rd

 quarter; 

rRMSE=28.08%) during the rainy season when the sky cover is highly variable. In the case of La Reunion, for 

the time period under study, the scaled persistence is the best performer for the 3
rd

 and 4
th

 quarters. This period 

of the year corresponds to the end of the dry season when the sky is clear very often.As seen, in the case of Le 

Raizet (Guadeloupe), the performance of the SVR method is quite consistent all along the four quarters. 

The analysis of the seasonal results confirms the previous statements we made about the dichotomy of the results 

that depends on the sky conditions. For instance, when a quarter exhibits a rather good scaled-persistence 

performance (i.e. rRMSEless than or around 20%), it is difficult for the nonlinear methods to beat by more than 

1%-1.5% the scaled persistence (see for instance 2
nd

 and 3
rd

 quarter of Ajaccio). It may happen also that in some 

cases the scaled persistence slightly beat the nonlinear methods. 

Conversely, when a quarter exhibits rather unstable conditions (scaled persistence with rRMSE>=24%), the 

nonlinear methods perform better than the scaled persistence (2%-2.5% better in average). See for instance the 

4th quarter of Ajaccio as well as the quarters related to Guadeloupe. 

In an attempt to get an overall picture of the ranking of the six predictors for all the three studied sites, we chose 

to use a simple method of mono criterion analysis based on the rRMSE values (Voyant et al., 2012). More 

precisely, a total of 21 points per site are distributed among the six methods. The method that exhibits the best 

annual rRMSE wins 6 points, the second 5 points and so on until the worst that wins only one point. Table 3lists 

the overall ranking of the predictors. 

Types Points Ranking 

GP 16 1 

NN 15 2 

SVR 14 3 

AR 9 4 

SC-pers 6 5 

Pers 3 6 
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Table 3.Overall ranking of the different predictors for hour ahead forecasts (monocriterion analysis based 

on the annual rRMSE value)  

 

The GP model led most of the time to the best results (16 points). Conversely, the persistence model gave the 

worst results.  It is certainly not significant but from Table 3 we can consider that the non-linear models are the 

more suitable for hour ahead solar forecasting, followed by the linear method and naive estimations. Actually, 

section 6.2 will confirm this previous statement for forecast horizons ranging from 2 to 6 hours. Based on this 

survey, the difference between the three best performing predictors i.e. SVR, NN and GP methods is not enough 

significant to propose a conclusive ranking. With other locations or different period of data, maybe the ranking 

would be different between SVR, NN and GP. But, globally, these three predictors should be considered 

equivalent for hour ahead forecasting until new studies will demonstrate the contrary.  

In the next section, we make a step further by assessing the accuracy of the different methods for forecasting 

horizons ranging from 2 to 6 hours. 

 

6.2. Intra-day solar forecasting 
 

This section evaluates the accuracy of the different methods for forecast horizonup to 6 hour ahead. Tables 4-6 

give(on the one year validation period) the rMBE, rRMSE and rMAE values of the different methodsfor each 

forecasting time horizon.  Mean GHI is given for each site from which one can infer the absolute values from the 

relative values. 

For forecasting time horizons greater than one hour, Tables 5-6 show that the nonlinear methodsperform better 

thanthe scaled-persistence and the linear modelin terms of rRMSE and rMAE. As shown by Tables 5-6, the gain 

increases with the forecasting horizon and is more important for the site of Le Raizet (Guadeloupe).  

Except the linear AR model, all the methods do rather well in terms of rMBE (see Table 4) and a slight increase 

of the rMBE is also observed withthe forecasting horizon. 

 

Site Model 
1 

hourahea
d 

2 
hourahea

d 

3 
hourahea

d 

4 
hourahea

d 

5 
hourahea

d 

6 
hourahea

d 

Corsica 
(Ajaccio) 

 
mean 

GHI=428.53 
W.m

-2 

 

Pers -0.01 -0.03 -0.05 -0.07 -0.08 -0.09 

SC-pers -0.76 -1.29 -1.62 -1.73 -1.61 -1.31 

SVR 
0.20 

 
0.43 0.56 0.31 0.97 1.57 

GP 
-0.11 

 
-0.61 -0.85 -0.97 -0.74 -0.87 
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NN 
-0.22 

 
-0.52 -1.00 -1.12 -1.04 -0.84 

AR -2.43 -4.12 -5.30 -6.24 -6.99 -7.60 

Reunion 
(Saint-Pierre) 

 
mean 

GHI=535.06 
W. m

-2
 

Pers 
0.01 0.02 0.04 0.07 0.10 0.11 

SC-pers 0.22 -0.19 -1.05 -2.11 -3.08 -3.74 

SVR -2.75 -2.61 -2.65 -2.70 -2.45 -2.39 

GP -1.84 -2.80 -3.62 -3.77 -3.81 -3.59 

NN -1.73 -2.77 -3.50 -4.22 -3.57 -3.43 

AR -1.73 -3.43 -5.14 -6.60 -7.61 -8.28 

Guadeloupe 
(Le Raizet) 

 
mean 

GHI=480.06 
W. m

-2
 

Pers -0.01 -0.01 -0.02 -0.03 -0.05 -0.07 

SC-pers 2.04 2.63 2.24 1.07 -0.56 -2.24 

SVR -1.24 -1.58 -2.04 -2.67 -2.83 -2.63 

GP -0.21 -1.25 -2.83 -3.64 -3.87 -4.08 

NN -0.32 -1.55 -2.64 -3.40 -3.84 -3.92 

AR -0.61 -2.30 -4.21 -6.16 -8.17 -10.26 

 

Table 4.rMBE values  for the three sites. The corresponding MBE values can be obtained from the mean 

GHI of each site.  

Site Model 
1 

hourahea
d 

2 
hourahea

d 

3 
hourahea

d 

4 
hourahea

d 

5 
hourahea

d 

6 
hourahea

d 

Corsica 
(Ajaccio) 

 
mean 

GHI=428.53 
W.m

-2 

 

Pers 31.94 52.82 68.87 80.18 86.59 88.13 

SC-pers 21.00 28.67 33.93 37.90 40.57 42.10 

SVR 19.92 25.63 28.63 30.57 31.68 32.41 

GP 19.71 25.34 29.40 30.76 31.97 33.79 

NN 19.65 25.49 28.69 31.06 32.10 32.76 

AR 20.43 27.19 31.61 34.92 37.20 38.76 

Reunion 
(Saint-Pierre) 

 
mean 

GHI=535.06 
W. m

-2
 

Pers 
34.21 56.85 74.16 85.87 91.58 91.27 

SC-pers 21.47 28.92 33.92 38.23 41.43 43.29 

SVR 21.22 26.88 29.59 31.13 31.58 31.71 

GP 21.07 26.70 29.31 30.89 31.57 31.68 

NN 21.14 26.74 29.39 31.03 31.51 31.68 

AR 21.36 27.89 31.91 35.00 37.20 38.51 

Guadeloupe 
(Le Raizet) 

 
mean 

GHI=480.06 
W. m

-2
 

Pers 38.08 59.85 76.16 87.58 93.30 93.34 

SC-pers 27.88 36.92 42.63 47.11 49.47 50.29 

SVR 25.69 31.36 33.67 34.72 35.02 35.16 

GP 25.95 31.54 33.88 34.73 35.42 35.36 

NN 25.99 31.54 33.78 34.77 35.09 35.41 
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AR 26.74 33.78 37.78 40.74 42.64 43.39 

 

 
Table 5.rRMSE values  for the three sites. The corresponding RMSE values can be obtained from the 

mean GHI of each site. 

 

Site Model 
1 

hourahea
d 

2 
hourahea

d 

3 
hourahea

d 

4 
hourahea

d 

5 
hourahea

d 

6 
hourahea

d 

Corsica 
(Ajaccio) 

 
mean 

GHI=428.53 
W.m

-2 

 

Pers 26.15 44.39 57.31 66.94 71.12 72.03 

SC-pers 12.50 17.92 21.73 24.62 26.42 27.60 

SVR 12.36 17.47 20.13 22.05 23.14 23.75 

GP 12.56 17.35 20.64 22.06 23.09 24.67 

NN 12.65 17.36 20.32 22.31 23.40 24.15 

AR 13.02 18.27 21.64 24.00 25.71 26.95 

Reunion 
(Saint-Pierre) 

 
mean 

GHI=535.06 
W. m

-2
 

Pers 
28.34 48.40 63.20 73.48 78.44 77.32 

SC-pers 13.31 18.93 22.87 25.95 27.81 28.84 

SVR 15.91 20.54 22.73 23.91 24.05 24.15 

GP 15.49 20.35 22.61 23.77 24.10 24.01 

NN 15.61 20.34 22.60 23.90 23.96 24.04 

AR 14.57 19.94 23.03 24.89 25.86 26.40 

Guadeloupe 
(Le Raizet) 

 
mean 

GHI=480.06 
W. m

-2
 

Pers 31.22 50.57 64.52 73.84 78.04 78.01 

SC-pers 19.90 26.63 30.95 34.10 35.89 36.58 

SVR 19.35 24.02 26.18 27.07 27.38 27.29 

GP 19.69 24.25 26.47 27.23 27.66 27.57 

NN 19.71 24.28 26.38 27.21 27.51 27.62 

AR 19.59 25.00 28.16 30.25 31.60 32.12 

 

 
Table 6.rMAE values  for the three sites. The corresponding MAE values can be obtained from the mean 

GHI of each site. 

 

 
Table 7 lists the s-skill scores of the different forecasting techniques for each forecasting time horizon. As shown 

by Table 7, the s-skill scores of the methods increase with the forecasting time horizon.  All the models (linear 

and non linear) exhibit positive scores and therefore perform better than the scaled-persistence. Nonetheless, 

higher values of s-skill score are obtained with the nonlinear methods. In addition, it appears that s-skill scores 

are more important for a site that exhibits variable cloud situations like Le Raizet (Guadeloupe). 

Site Model 
1 

hourahea
2 

hourahea
3 

hourahea
4 

hourahea
5 

hourahea
6 

hourahea
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d d d d d d 

Corsica 
(Ajaccio) 

 
 

SC-pers 0 0 0 0 0 0 

SVR 5.14 10.60 15.64 19.33 21.91 23.02 

GP 6.14 11.62 13.35 18.82 21.21 19.73 

NN 6.43 11.08 15.45 18.04 20.87 22.19 

AR 2.71 5.17 6.85 7.85 8.32 7.94 

Reunion 
(Saint-Pierre) 

 
 

SC-pers 0 0 0 0 0 0 

SVR 1.17 7.06 12.76 18.57 23.78 26.76 

GP 1.87 7.66 13.60 19.19 23.80 26.83 

NN 1.54 7.54 13.35 18.83 23.96 26.83 

AR 0.51 3.55 5.92 8.43 10.22 11.05 

Guadeloupe 
(Le Raizet) 

 
 

SC-pers 0 0 0 0 0 0 

SVR 7.86 15.05 21.02 26.31 29.22 30.08 

GP 6.92 14.57 20.53 26.28 28.40 29.69 

NN 6.78 14.58 20.78 26.19 29.08 29.60 

AR 4.09 8.51 11.40 13.54 13.80 13.73 

 

Table 7.s-skill scores for the three sites 

 

Fig. 3 shows, for the case of Reunion Island (but the results are similar for the other sites) the forecasting 

accuracy of the different methods for forecasting time horizons up to 6 hours. In addition to the scaled 

persistence model, Fig. 3 also plots the performance of another reference model. The latter, referred to 

asclimatological mean, is independent of the forecast horizon (Lorenzand Heinemann,2012).  More precisely, 

this model performs a constantforecast of the clear sky index that corresponds toits mean historical value. In our 

case, we used the average clear sky index of the year 2012 in order toforecast the clear sky index of the year 

2013.  

Fig. 3 clearly demonstrates the better performance of the nonlinear methods over the linear AR model and the 

scaled persistence model when the forecast horizon increases. One may notice also that the performances of the 

machine learning techniques tend towards that of theclimatological mean. This behavior is consistent, as these 

nonlinear methods tend to asymptotically model the mean of the data. As seen, it is not the case for the linear 

autoregressive model whose error increases with increasing forecast horizon. It should also be noted that the 

performance of the three nonlinear methods are practically the same. The choice of the method will depend on 

the skill and experience of the modeler. Nonetheless, according to our experience and as mentioned above, 
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careful attention must be put in to the building of the NN model. Conversely, again according to our experience 

the construction of the GP and SVR models appear to be part of a more principled framework than the NN 

methodology. 

 

Figure 3. Accuracy of intraday solar forecasting (case of Reunion Island) 

 

 

 

7. Conclusion  
 

 

This work proposed a benchmarking of machine learning techniques for intraday solar forecasting. Popular 

nonlinear techniques such as neural networks,and some rather new methods such as Gaussian Processes and 

support vector machines were evaluated against simple methods like the autoregressivelinear model and 

reference models like scaled persistence. A choice was made to assess the performances of the different models 

on historical GHI data, measured on three French islands. This choice was supported by the challenging solar 

forecasting context, due to the specific insular feature. The main conclusion that can be drawn from this survey 

isthat the machine learning techniques start to outperform their simple counterparts for forecasting horizons 

greater than one hour.  For hour ahead solar forecasting, the picture is less clear and seems to depend on the sky 

conditions. For stable clear sky conditions (clear skies for instance), the nonlinear methods slightly improve the 

scaled-persistence. For unstable sky conditions, the discrepancy between the machine learning methods and the 

simple models is more pronounced with a 2% rRMSEdifference in average. However, this finding must be 

confirmed by further studies. 
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In this study, the building of the forecasting models was made solely by using past GHI measurements. The 

future operational availability in these islands of exogenous inputs  (such as those provided by NWP models or 

Satellite data) will obviously improve the accuracy of the solar forecasts. 
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Appendix A. Definition of the error metrics  

The following metrics RMSE (Root Mean Square Error), MAE (Mean Absolute Error) and MBE (Mean Bias 

Error) are used to benchmark the different solar forecasting models: 
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whereN is the number of points in the dataset for the considered period. Relative values of these metrics 

(rRMSE, rMAE and rMBE) are obtained by normalization to the mean ground measured irradiance of the 

considered period. 
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Table 1. Sites characteristics, input parameters for the BIRD model and performance of the Bird model 

Table 2.rRMSE (% ) of hour ahead forecasts for Corsica, Reunion and Guadeloupe (in bold, the best 

results). The line Gain in rRMSE is the difference between the scaled-persistence (SC-pers) rRMSE  and the best 

annual rRMSE 

Table 3. Overall ranking of the different predictors for hour ahead forecasts (monocriterion analysis 

based on the annual rRMSE value)  

Table 4.rMBE values  (in %) for the three sites. The corresponding MBE values can be obtained from 

the mean GHI of each site. 

Table 5.rRMSE values (in %) for the three sites. The corresponding RMSE values can be obtained from 

the mean GHI of each site. 

Table 6.rMAE values (in %)  for the three sites. The corresponding MAE values can be obtained from 

the mean GHI of each site. 
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Table 7.s-skill scores for the three sites 

 

Figure 1.Clear sky index distribution for the three sites. 

Figure 2. Annual rRMSE (%) values for the three sites 

Figure 3. Accuracy of intraday solar forecasting (case of Reunion Island) 

 


