
HAL Id: hal-01099200
https://hal.science/hal-01099200

Submitted on 6 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Semantic Overlay for Self- Peer-to-Peer
Publish/Subscribe

Emmanuelle Anceaume, Ajoy K.Datta, Maria Gradinariu, Gwendal Simon,
Antonino Virgillito

To cite this version:
Emmanuelle Anceaume, Ajoy K.Datta, Maria Gradinariu, Gwendal Simon, Antonino Virgillito. A
Semantic Overlay for Self- Peer-to-Peer Publish/Subscribe. Proceedings of the 26th International
Conference on Distributed Computing Systems (ICDCS), Jul 2006, Lisboa, Portugal. pp.22 - 22,
�10.1109/ICDCS.2006.12�. �hal-01099200�

https://hal.science/hal-01099200
https://hal.archives-ouvertes.fr

A Semantic Overlay for Self-∗ Peer-to-Peer Publish/Subscribe

E. Anceaume1, A. K. Datta2, M. Gradinariu1, G. Simon3, and A. Virgillito4∗

1IRISA, Rennes, France
2 School of Computer Science, University of Nevada Las Vegas, USA

3 France Telecom R&D, Issy les Moulineaux, France
4 Università di Roma “La Sapienza”, Italy

Abstract

Publish/Subscribe systems provide a useful platform for
delivering data (events) from publishers to subscribers in
an anonymous fashion in distributed networks. In this pa-
per, we promote a novel design principle for self-∗ dynamic
and reliable content-based publish/subscribe systems and
perform a comparative analysis of its probabilistic and de-
terministic implementations. More specifically, we present
a generic content-based publish/subscribe system, called
DPS (Dynamic Publish/Subscribe). DPS combines classi-
cal content-based filtering with self-∗ (self-organizing, self-
configuring, and self-healing) subscription-driven cluster-
ing of subscribers. DPS gracefully adapts to failures and
changes in the system while achieving scalable events deliv-
ery. DPS includes a variety of fault-tolerant deterministic
and probabilistic content-based publication/subscription
schemes. These schemes are targeted toward scalability,
and aim at reducing and distributing the number of mes-
sages exchanged. Reliability and scalability of our system
are shown through analytical and experimental evaluation.

1 Introduction

The publish/subscribe paradigm has emerged in the re-
cent years as an effective technique for building distributed
applications in which information has to be disseminated
from publishers (event producers) to subscribers (event
consumers). Users express their interests in receiving cer-
tain types of events by submitting a filter on the event con-
tents, called a subscription.
When a new event is generated and published, the pub-

lish/subscribe infrastructure is responsible for checking the
event against all current subscriptions and delivering it to
all users whose subscriptions match the event. Content-
based publish/subscribe systems allow complex filters on

∗Antonino Virgillito is partially supported by project MAIS, funded by
Italian MIUR. Work was done while author was at IRISA, Rennes.

the event content, enabling the use of constraints such as
ranges, prefixes, and suffixes. Combining expressiveness of
subscription language and scalability of the infrastructure
poses an interesting challenge that has inspired many re-
searchers to explore this topic further. However, actual de-
ployment of pub/sub architectures in real, large-scale sys-
tems is currently limited by their lack of self-∗ capabili-
ties. In this work, self-∗ capabilities [2, 3] include 1) self-
organization— the ability of the system to reduce the en-
tropy of the system, for example, by making nodes form
groups to improve or at least to maintain some global prop-
erties; 2) self-configuration— the ability of the nodes to set
up their structural relationships; and 3) self-healing— the
ability of the nodes to preserve their structural relationships
despite the dynamicity of the system (joins, departures, or
failures). Enhancing a pub/sub system with self-∗ capabili-
ties allows an easier deployment and a more flexible adap-
tation in a larger spectrum of applications. Typical imple-
mentations of publish/subscribe systems (such as Siena [9],
Gryphon [6] and, recently, Kyra [8]) rely on a network of
dedicated servers (usually called brokers) that are controlled
by administrators in charge of repairing and maintenance
interventions. However, in dynamic decentralized scenarios
such as peer-to-peer networks this architecture is not feasi-
ble, because the high dynamicity of the context requires the
topology of the network to be frequently rearranged to face
changes due to node joining, leaving and failing.
Scribe [10] and Bayeux [18] are two topic-based sys-

tems having self-∗ capabilities. They both make use of a
DHT (Distributed Hash Table). A single node is responsi-
ble for matching and delivering all notifications related to a
specific topic, which is the root of a dynamically-built diffu-
sion tree for events. Combining content-based expressive-
ness with self-organizing capabilities of DHT-based over-
lays is discussed in several papers[16, 13, 5]. Meghdoot
[13] and [5] work on top of a CAN and a Chord overlay,
respectively to store the system subscriptions. The main
difficulties in designing content-based pub/sub on top of
DHTs are: (i) mapping content-based subscriptions into a

single key space and (ii) ensuring the persistence of sub-
scriptions despite the dynamicity of the underlying overlay.
Methods to map content-based subscriptions to DHT ad-
dresses are described in [16, 5]. The mapping requires sub-
scriptions to be moved from the issuing node to a set of se-
lected “rendezvous” nodes. Mapping may impose some re-
striction on the constraints applicable in subscriptions with
respect to the general language supported by broker-based
systems. Typically, string constraints like prefixes and suf-
fixes cannot be easily mapped to a set of keys. Moreover,
subscriptions are usually replicated on several rendezvous
nodes, and large subscriptions (i.e., subscriptions that possi-
bly match a large number of events) may have many copies.
Replication is also used in order to maintain the persistence
of subscriptions [13]. This is required because a subscriber
can lose its subscriptions if a rendezvous node fails.

Contributions of the Paper In this paper, we promote
a novel design principle for reliable content-based pub-
lish/subscribe architectures with self-∗ capabilities. Our
system, namely DPS, is not based on a network of brokers.
Subscribers coordinate among themselves on a peer-to-peer
basis to construct optimized event diffusion paths without
any human intervention. More precisely, we propose a
subscription-driven semantic overlay in which subscribers
self-organize according to similarity relationships among
their subscriptions. In DPS, two subscribers are considered
similar when they share a common attribute of a subscrip-
tion. Similar subscribers are logically connected into the
same group. Groups of subscribers self-configure to form
tree structures such that only one tree is built per attribute.
No mapping of DHT-based overlay is needed. Virtually all
types of attributes and constraints can be directly supported.
Moreover, subscriptions are not replicated: a subscription
is maintained only at the corresponding subscriber. Differ-
ently from a previous solution for semantic-driven pub/sub
overlay [12], DPS does not assume the complete knowledge
of the network to compute the neighbors of a node. Thus,
each subscriber has to keep track of a limited number of its
neighbors regardless of the size of the system, and the ef-
fect of node failures is confined within a bounded number
of neighboring groups.
The general design principles of the DPS overlay can

be instantiated with different algorithms to i) traverse the
tree for propagating a subscription or a publication across
the groups and ii) realize the communication inside a group
and between groups. Tree traversal and communication ap-
proaches can be combined to design DPS implementations
that cater the needs of different deployment contexts. In par-
ticular, we propose two different techniques for tree traver-
sals (namely, root-based and generic) and two different ap-
proaches for communication (leader-based and epidemic).
The epidemic approach is based on gossiping of events that

obtains high probabilistic guarantees of delivery even in
presence of frequent failures. With respect to the gossip-
based algorithms for publish/subscribe described in [4], our
system supports expressive content-based addressing. Gos-
siping techniques for content-based publish/subscribe have
been exploited in [11], but without a self-organizing over-
lay.
DPS is evaluated through an extensive simulation and

analytical study in which it has been tested using different
types of workload that model realistic application scenarios,
and comparing the different implementation styles. Results
show that the DPS overlay allows to massively reduce the
number of visited nodes with respect to a broadcast (from
75% to 90% of the nodes less). Moreover, simulations show
the self-healing capabilities of DPS, even when subject to
severe failure conditions, and the overall scalability of the
approach, that can provide high degrees of reliability with-
out cluttering the network with control messages.
The rest of the paper is organized as follows. In Sec-

tion 2, we present the system model and the problem state-
ment. In Section 3, we define the logical backbone of DPS,
introducing the concept of similarity on which the logical
structure of the DPS overlay is based. Several algorithms
for subscriptions and publications, and for communicating
within the groups are presented in Section 4. Analytical and
experimental evaluations of DPS are studied in Section 5.
We make some closing statements on the proposed and fu-
ture work in Section 6. Finally, due to lack of space, the
pseudo-code of the algorithms, proof of correctness of DPS
and proof of its self-∗ properties are presented in a longer
version of this paper [1].

2 Framework

We assume a finite, yet unbounded dynamic set of nodes.
The set is dynamic in the sense that nodes can join or leave
at an arbitrary time. Each node is associated with a unique
identifier. In a publish/subscribe system, Nodes cooperate
to send (publish), relay, and receive (notify) special mes-
sages, namely events (or publications). The interest of a
node in a set of events is referred to as subscription, and is
expressed as a filter defined on the content of the events. In
order to inform the system about their subscriptions, nodes
invoke a Subscribe primitive. The invoking node is
called a subscriber. Additionally, nodes can publish events
by invoking a Publish primitive. We say that a node is
notified of an event when the system invokes a Notify
primitive on it.
We consider a content-based publish/subscribe data

model [13] where both subscriptions and events use as
building blocks a finite, yet unbounded universe of typed at-
tributes. A content-based subscription (filter) is a conjunc-
tion of predicates, i.e., F = AF1 ∧ . . .∧AFj , whereAFi is

2

s3

s2 s5 s9

s4

a=4

a>2

a<20

a<11

s6

b<7
s7

c=abc

c=ab*a b c
s0: a>2 ! b>0
s1: a>2 ! a<500
s2: a>5 ! b<2
s3: b>3 ! c=abc
s4: a<4 ! b>20
s5: a=4 ! c=abc
s6: a<3 ! b>3 ! b<7
s7: b>3 ! c=ab*
s8: a>2 ! a<20 ! c=a*
s9: a<11
s10: a>50 ! b<5
s11: a>3 ! b<50

s10

b<5 b>20

s1 s0

s8

a>5

s11

a>3

Figure 1. Logical Trees

defined as a tupleAFi = (namei Opi ci)where namei is the
name of the attribute,Opi is an operator, and ci is a constant
value. The operator Opi can be chosen from a set of basic
operators that depends on the attribute type. For example,
possible operators for numerical attributes are {=, <, >},
while string attributes can support prefix, suffix and sub-
string wildcards. Complex filters can be expressed as the
conjunction of two or more basic operators. For example,
a range filter for an attribute a of the form c1 < a < c2

can be obtained as the conjunction of the two predicates
AF1 = (a > c1) and AF2 = (a < c2). An event is a con-
junction of equalities over the attributes’ universe. More
precisely, an event is denoted as E = AV1 ∧ . . . ∧ AVk ,
where AVi = (namei = vi), where vi is the value of
the attribute. An event predicate AV matches a subscrip-
tion predicate AF (denoted as AV ∈ AF) if the attribute
names are the same in AV and AF and the attribute value
in AV is in the range defined by AF . An event matches a
subscription iff for all the predicates in the subscription, a
corresponding matching value appears in the event.
Finally, it is important to note that the number of at-

tributes for events and subscriptions is not fixed. That
is, each single subscription or event can include an arbi-
trary number of predicates and no prior coordination among
nodes is necessary to agree on the event space.

3 The DPS Overlay

In this section, we describe the construction and main
features of the overlay scheme dedicated to the DPS
pub/sub system. The DPS overlay is subscription driven:
subscribers locally self-organize according to their interests
and the resulting logical structure is a virtual forest of logi-
cal trees, where each tree is associated with an attribute and
only one tree is maintained per attribute. Each vertex of a
tree is labeled with a predicate (filter on the tree attribute).
In the following, we present the relationships that enable
subscribers to self-organize according to their subscription
similarity. The two relationships lead to the construction of
an overlay which is suitable for efficient event dissemina-
tion according to the following two principles: i) The more

likely a subscriber is to receive a matching event, the higher
it is placed in the tree; ii) All subscribers that are likely to
receive a common subscription are made neighbors of each
other. Efficient paths for events are thus created maintain-
ing only a node’s overlay neighbors: if a subscriber does
not match an event, all its successors in the tree will neither
and the event can be safely filtered out.
Two nodes are similar when they share at least one com-

mon predicate in at least one of their subscriptions.

Definition 1 (Similarity Relation !") Let p and s be two
nodes representing two subscription filters Fp and Fs, re-
spectively. Assume that Fp = ∧i∈IAF

Fp

i and Fs =
∧j∈JAFFs

j , where I and J are the sets of indices for pred-
icates in Fp and Fs, respectively, and AF

Fq
m is the predi-

cate AFm in the subscription filter Fq . p and s are similar
with respect to a predicate AF , denoted as p !"AF s iff
∃k ∈ I, k′ ∈ J :: AFF1

k = AFF2
k′ (= AF).

A semantic group (or simply group) is identified through
a group predicate which is the common predicate on which
the members of the groups are similar. For example, the
group labeled A > 3 refers to the group of all the sub-
scribers that include A > 3 in their subscription predicate:

Definition 2 (Semantic Group) LetGAF be a set of nodes
and AF a predicate. GAF is an AF group iff ∀p, s ∈
GAF :: p !"AF s.

The group predecessor relation imposes a hierarchical
ordering among the groups that is based on the predicate
inclusion relation. A predicate AF2 is included in a predi-
cate AF1 if all the events matching AF2 also match AF1.

Definition 3 (Predicate Inclusion) Let AF1 and AF2 be
two predicates and AV an event. AF2 ⊂ AF1iff ∀AV ∈
AF2, AV ∈ AF1.

Two groups are related through the group predecessor
relation when their respective group predicates are related
by the above defined predicate inclusion relation.

Definition 4 (Group Predecessor Relation pred→) Let
G1 and G2 be two labeled groups with respect to
the predicates (or labels) AF1 and AF2, respectively.
Then G1

pred→ G2 iffAF2 ⊂ AF1 and (∃G3 such that
G1

pred→ G3
pred→ G2.

Each attribute is “owned” by a unique subscriber. For
instance, in Figure 1.b, the owners of the trees labeled “a”,
“b”, and “c” are subscribers s0, s6, and s7, respectively.
Trees are connected among each other, for example by let-
ting all owners know each other or by keeping at each node
a cache of nodes belonging to other trees1.

1Connections between trees are not shown in figures for clarity

3

A subscriber joins the tree corresponding to only one of
the attributes of its subscription. This attribute can be arbi-
trarily chosen without affecting the correctness of the solu-
tion since each event is published in each logical tree that
matches every attribute of the event. We decided to decom-
pose a subscription into its attributes, rather than maintain-
ing a single tree (as done in [12]), because of the generality
of the content-based language that does not always allow to
determine a predecessor between two subscriptions (for ex-
ample, consider subscriptions S1 : (0 < a < 10) ∧ (b > 0)
and S2 : (1 < a < 12) ∧ (2 < b < 4)). The drawback of
this choice is that subscribers also receive events that match
only a part of their subscription (false positives). Moreover,
the number of false positives is likely to grow when more
attributes are present. Thus we deem our approach more
effective especially when few attributes are considered.
Finally, following only the above definitions, some types

of predicates like equality or substrings may be placed at
different places in the tree. For example, the group for pred-
icate a = 4 in the tree for attribute “a” may be placed below
the group for predicates a > 2, a > 3, a < 11, or a < 20.
These ambiguities may create problems while trying to lo-
cate a group upon subscription. To remove them, we im-
pose two additional constraints on the tree construction as
follows:
Constraint C1: All groups related to an ambiguous predi-
cate must be placed in the tree following a unique consistent
convention. For example, for numerical attributes, equality
predicates are placed as successors of either the greater-than
or the less-than groups.
Constraint C2: A group G related to an ambiguous pred-
icate is placed as successor of its immediate predecessor
Gm, s.t. there exist no groups that are predecessors of both
Gm andG.
As previously said, our logical overlay is constructed by

the self-organization of subscribers according to their sub-
scription similarity. Other approaches [15, 8] group similar
subscribers by applying a partitioning criteria over the event
space. All nodes having subscriptions that fall into a com-
mon partition are grouped. We chose the similarity over the
partitioning method because it does not require prior agree-
ment among the nodes, does not depend on the number of
nodes, and reduces the number of non-matching messages
received by nodes in a group.

4 DPS Algorithms

In this Section, we present algorithms for the construc-
tion of the DPS overlay and the publication and subscription
diffusion. These algorithms are organized into two classes:
tree traversal algorithms, that concern how to locate the po-
sition of a group when creating, joining or publishing into
a group, and communication algorithms, that regard how

to exchange publications and subscriptions between groups
and among nodes of a same group. The following data
structures are used in the DPS algorithms:
- groupview: list of pointers to nodes inside the group.
- predview, succview: two ordered lists of K pointers to
nodes in successor/predecessor groups. That is, they point
not only to nodes in the direct successor group but also to
successors/predecessors at upper/lower levels, in order to
handle multiple concurrent failures involving a whole group
at once. The lists are ordered according to the nodes pred-
icates. If there are F nodes in the list and a new node is
inserted, a node is removed from the bottom of the list.
In groups with multiple branches, a node must have one
succview list for each of its successor groups.

4.1 Tree Traversal

Prior to subscribing or publishing an event, a node
should traverse the tree in order to locate the position of
the group it has to belong to, in case of subscription, and
all the groups hosting subscribers for the event, in case of
publication.
Traversal starts by a contact point in the trees related to

the subscription or the publication. While subscribers only
need to contact one tree, a publisher has to traverse all the
trees corresponding to each attribute within the event. Being
the trees connected among each other, it is always possible
to locate a contact point in any of the trees, for example by
propagating a request message with random walks. If there
is no tree for an attribute (i.e., no contact point is found
at the end of the random walks), a new tree is created and
the first subscriber becomes its owner. It is possible that
multiple trees for a same attribute are created, when two
nodes subscribe concurrently. In order to further reduce the
probability of this already rare event, the node that creates
a tree starts periodically a new traversal, in order to detect
duplicate trees and merge them into one.
In the root-based approach, visit of the tree starts from

the root and proceeds only downwards, while in the generic
approach any node can be chosen as a starting point and
the visit goes in both directions. Root-based allows to ob-
tain lower latency but imposes high stress on the root node
and requires this node to always be known. In the generic
approach a visit requires in general more messages but the
load is more evenly balanced and the contact point can be
any node in a tree.
Subscription Scheme. The subscription process exploits
three primitives, namely FIND GROUP, SUBSCRIBE TO and
CREATE GROUP, respectively used for locating the group
of similar subscribers, joining to it or, if it does not exist,
creating a new one in the proper position in the tree. A sub-
scriber s issuing a new subscription has to traverse a tree in
order to find its position. Each step in the traversal consists
in a call to FIND GROUP on the next node.

4

Figure 2. Tree Traversal Example

Figure 2 shows an example of a new group creation. The
black line shows the path followed by the subscription a =
3 issued by subscriber s using the root-based approach. The
subscription is received by group a > 2. Since this group
is the smallest possible predecessor of group a = 3, it is
considered the designated predecessor for the subscription
(Constraint C2). As this group does not exist, it is created
below a > 2 and s is added to it. The paths followed by the
generic approach are represented by gray lines — solid and
broken lines for the contact points s9 and s5, respectively.
When an appropriate group for s is located, a

SUBSCRIBE TO message is sent back to s to join the group.
If no group matches s’s predicate, then a CREATE GROUP
message is sent back s. Each time a new group is created,
event propagation is blocked in the predecessor, by setting
a proper variable. The variable is reset when data structures
related to the new successor are updated. Allowing pub-
lications and subscriptions during group construction may
result in events not delivered to the new successor group, or
more seriously, creating incorrect groups in the trees in case
of concurrent group creations.
Publication Scheme. The visit of the trees in a publication
is invoked through the PUBLISH primitive from the contact
points in all the trees corresponding to the attributes in the
published event. An event received by a group is matched
against the group predicate. If the event matches the group
predicate, it is propagated inside the group (through the
PUBLISH GROUP primitive).
In the root-based approach downstream propagation

along the tree continues as long as the event matches the
group predicate; it stops otherwise. The successor rela-
tion between groups ensures that no matching subscribers
are present in any successor groups. So, the entire branch
of the tree can be safely excluded from the event propaga-
tion. Consider the right side of Figure 2. In the root-based
approach (the black line), the publication a = 4 is for-
warded downstream from the contact point to all the groups
with predicates matching the publication. Differently, in the
generic approach, if the event does not match the group
predicate, it still has to be forwarded upstream to the pre-

decessor. Otherwise, if the event has been received by j
from its predecessor, it is forwarded to j’s successor only
if it does match j group predicate. In Figure 2 when the
publication starts from the group a < 4, it is propagated up
through both branches (dashed gray lines) through all the
matching groups. Group a > 2 also needs to forward the
publication to its successor in order to reach group a = 4.

4.2 Communication within the DPS Sys-
tem

4.2.1 Leader-Based Communication

Each group in each logical tree contains a special node
which behaves as the leader of the group. Communica-
tion between different groups is realized via their respective
leaders. Kc additional leaders are maintained to deal with
the leader failure. A node becomes the leader of a group as
soon as it creates its own group or remains the only mem-
ber of a group. Co-leaders are selected as the firstKc nodes
that joined the group directly after the leader. Only leaders
and co-leaders maintain the predview and succview lists.
They also maintain the whole group in their groupview. A
regular member (i.e., neither a leader nor a co-leader) only
has leaders and co-leaders in their groupview.
Leader-based Subscription. The subscription process
is realized by implementing the CREATE GROUP and
SUBSCRIBE TO primitives. Both are invoked on the new
subscriber by the leader of the predecessor group. Upon
receipt of such primitives, the new subscriber updates its
variable group. If it becomes the leader or co-leader of a
new group, it updates succview.
Leader-based Publishing. The publication process is real-
ized by implementing the PUBLISH GROUP primitive. An
event received by a group through this primitive is always
redirected to the group leader. The leader propagates all the
events it receives to all the group subscribers. Each sub-
scriber upon receipt of an event notifies its application only
if the event matches one of its subscriptions.

4.2.2 Epidemic Communication

In epidemic communication [7, 14, 4], each member of a
group communicates with a subset of members of other
groups. In particular, each nodes stores its predview,
succview and groupview, that contain only a subset of the
group’s nodes. In contrast with the leader-based approach,
several copies of a message may traverse the group. This
guarantees a higher fault-tolerance at the price of message
duplication. Data structures are updated for every change in
the membership and maintained by periodic gossiping.
Epidemic Subscriptions. Similar to the leader-based ap-
proach, epidemic propagation of subscriptions is realized
through the CREATE GROUP and SUBSCRIBE TO primi-
tives. An additional primitive, GOSSIP SUB, is required

5

to update the views and propagate the update within the
group. Upon receipt of such primitives, the new subscriber
updates its variables groupview and succview. View up-
date messages are gossiped by each node to Fs other nodes
in the group. Fs is called the subscription fanout. When
a gossip message is received by a node, it is forwarded
with probability p, a parameter of the algorithm. To stop
the propagation, probability p is reduced proportionally to
the number of times the message is forwarded. Note that a
node issuing a new subscription can receive more than one
CREATE GROUP or SUBSCRIBE TO messages if the diffu-
sion started from more than one contact points. This does
not require any specific check in the algorithms.
Epidemic approach is prone to undesired behavior when

two similar subscriptions are issued concurrently. In partic-
ular, if two different nodes in a particular group receive the
subscription requests concurrently, two groups correspond-
ing to the same predicate are created. According to our sim-
ulation study, this behavior is very infrequent and does not
harm the correctness of the system. The system continues
behaving according to its specification, only suffering from
a non-optimal use of resources.
In order to limit these situations, a merge process is con-

sidered: nodes periodically send a view update message
to their successors in the succview, containing the whole
succview. Node receiving the update have the opportunity
of adding to their groupview some nodes in the group that
they do not know, leading to a merge of disjoint groups.
Epidemic Publishing. Publications are diffused within a
group with a simple gossiping. That is, each node for-
wards the message to k of its neighbors. As for subscrip-
tions, the probability of forwarding an event in the group
decreases proportionally to the number of times the event is
forwarded.

4.3 Self-healing of DPS Overlay

The DPS overlay is able to self-heal when nodes in the
overlay leave by voluntary departures (unsubscriptions) or
failures (crashes), that can provoke partitioning between
two groups in the tree or inside a same group. Nodes in
the predview and succview structure are periodicallymon-
itored for failures. If one node has failed, it is immedi-
ately replaced by pulling a view update from the other alive
nodes.
Self-healing in Leader-based approach When a group
leader abruptly crashes, one co-leader (for example, the one
with the lowest identifier) becomes the new leader. Its first
task consists in promoting a regular member as co-leader.
Then, it transmits to the whole group the new leader iden-
tity and the new co-leader. The new leader will be contacted
by leaders in the adjacent groups that also detect the leader
failures, that will be made aware of the new leader identity.

Self-healing in Epidemic Approach In epidemic-approach
it is not easy to determine when a group has completely
failed as nodes have in general divergent views about the
group, predecessors and successors. We tolerate temporary
situations in which the overlay is not consistent: for exam-
ple two distinct groups for the same predicate exists in the
tree and one of them does not point to any successor. How-
ever, this does not harm the connectivity of the tree, that is
preserved at any time by the self-healing process, as shown
by the simulation results in Section 5.2. The merge process
described above eventually restores the overlay consistency.

5 Evaluation of DPS

5.1 Complexity Analysis

We discuss the scalability of DPS with respect to the
message complexity. We also analyze the DPS reliability
focusing on the probability that a subscriber interested in a
particular filter receives events that match the filter. More-
over, we compare our different approaches (root-leader,
root-epidemic, generic-leader, and generic-epidemic) with
respect to these two complexity measures.
Reliability. We determine the probability that a new sub-
scriber interested in a filter receives a given concurrently
published event. Let us consider a publication e and a con-
current subscription s such that ematches s filter. Let Ts be
the number of steps needed by s to find its similarity group,
called the subscription turnaround time. Let Te be the num-
ber of steps e needs to reach the s group, called the publica-
tion turnaround time. Without compromising the generality,
we focus on a single attribute (one tree in the DPS logical
structure). Note that subscription smay not “see” event e if
the time needed for subscriber s to find its group is greater
than that by the publication s, i.e., Ts > Te.
In root-based DPS, Ts and Te are very close since both

s and e start at the root of the tree and subscriptions have a
higher priority over publications for being processed. Thus
subscriptions issued concurrently to events are aware of
these events if these events match the subscription filter.
In generic DPS, both Ts and Te depend on the chosen

contact point. Hence, it may happen that concurrent pub-
lications/subscriptions have different turnaround times. Let
pi be the probability to choose a contact point on the i level
of the tree and let sk be the probability that the similarity
group of subscription s is on the level k. Ts is greater than
Te if the number of steps between s contact point and s sim-
ilarity group is greater than the number of steps between e
contact point and s similarity group. More precisely, the
probability p that s does not see e is the probability that
s contact point is at level i, e contact point is at level j,
and s similarity group is at level k, with i < j < k. For-
mally, p =

∑
i<j<k pipksk. Among f events published

concurrently with a new subscription, such that all the f

6

events match the subscription filter, only a fraction f(1−p)
are received by the subscriber. Clearly, the root-based DPS
causes fewer lost events than the generic DPS scheme, and
thus, is more reliable.
Message complexity We study the number of messages
sent by the proposed algorithms. We focus only on one tree
in the logical structure. Let h be the depth of the tree, S i the
maximal size of a group at level i of the tree, k the number
of infected neighbors at each round of the epidemic algo-
rithm, and k′ the number of nodes contacted on the next
level during the epidemic propagation along the tree.
Let us first consider the leader-based communication. In

root-based scheme, the maximal number of messages cor-
responds to the traversal of a branch in the tree. Formally,
the number is equal to

∑
i=0,(h−1) Si + (h − 2). If S is

the maximal size of a group, then the maximal number of
messages is h(S + 1) − 2. In generic-based scheme as the
contact point may be any node in the tree, we need to con-
sider that an event may traverse, in the worst case, the cur-
rent branch up to the root and the other subtree from the root
down to the bottom. The maximal number of messages is
then 2h(S + 1) − 4.
Let us now consider the epidemic-based communication.

The root-based scheme produces in the worst case kS0 +
kk′ ∑

i=1,(h−1) Si+k′(h−2)messages. IfS is the maximal
size of a group, the maximal number of messages is then
kS(1 + k′(h − 1)) + k′(h − 2). Similarly, the Generic
based scheme produces 2(kS(1 + k ′(h− 1)) + k′(h− 2)).

5.2 Simulation of DPS

In this section, we present the results of an experimental
evaluation of our system performed using an event-based
simulator we developed. The aim of the simulation is three-
fold: i) supporting the basic motivation behind the DPS
overlay, i.e., efficient content-based filtering; ii) showing
the practical feasibility of our approach and iii) showing that
self-* properties can be achieved in a scalable manner with-
out introducing serious (e.g., exponentially growing) over-
heads on message delivery. Following this direction, we
compare all the combinations of the approaches presented
in the paper.
Simulation Context. The simulation is cycle based.
The workload is characterized by the number and ar-
rival/departure pattern of publishers and subscribers and by
the distribution of publications and subscription they is-
sue. Each experiment uses a different workload. Heartbeat-
based failure detection between neighbors and recovery
mechanism are implemented, with failure detection interval
varying randomly from 10 to 25 steps.
False Positives. First we concentrate on supporting our
claim about the beneficial effect of the DPS organization on
event dissemination. For each simulation run, we first is-
sued 10,000 subscriptions (one per node) to build the over-

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25

ra
tio

 o
f d

el
ive

re
d

ev
en

ts

probability of failure

leader root
leader generic
epidemic root

epidemic generic
epidemic root k = 2

epidemic generic k = 2

(a) Dependability

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 1000 2000 3000

ra
tio

 o
f d

el
ive

re
d

ev
en

ts

steps

epidemic generic k=2
epidemic generic

leader generic

(b) Recovering from failures (generic)

 0

 2.5

 5

 7.5

 10

 0 1000 2000 3000 4000 5000

nb
 o

f o
ut

go
in

g
m

es
sa

ge
s

pe
r e

ve
nt

 (m
ed

ia
n

no
de

)

steps

epidemic root
epidemic root k = 2

(c) Scalability: outgoing messages per event
(median)

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000

nb
 o

f o
ut

go
in

g
m

es
sa

ge
s

pe
r e

ve
nt

 (m
ax

)

steps

leader root
epidemic root

epidemic root k = 2

(d) Scalability: outgoing messages per event
(max)

7

 0

 300

 600

 900

 0 2 4 6 8

av
er

ag
e

nb
 o

f i
nc

om
in

g
m

es
sa

ge
s

pe
r e

ve
nt

 d
ur

in
g

10
0

st
ep

s

nb of subscriptions by node during a run

max leader
max epidemic
median leader

median epidemic

(e) Leader vs. Epidemic Ap-
proaches:Received Messages

 0

 300

 600

 900

 0 2 4 6 8

av
er

ag
e

nb
 o

f o
ut

go
in

g
m

es
sa

ge
s

du
rin

g
10

0
st

ep
s

nb of subscriptions by node during a run

max leader
max epidemic
median leader

median epidemic

(f) Leader vs. Epidemic Approaches:Sent
Messages

 0

 300

 600

 900

 0 2 4 6 8

av
er

ag
e

nb
 o

f m
es

sa
ge

s
du

rin
g

10
0

st
ep

s

nb of subscriptions by node during a run

max root in
max generic in
median root in

median generic in
max root out

max generic out

(g) Root-based vs. Generic Approach

Figure 3. Experimental Results

lay and then we issued 10,000 events2. The approach is
generic, leader-based (not influencing results). We compute
the number of visited nodes per event diffusion, evaluating
the number of false positives. The overall number of mes-
sages is not considered in this experiment, nor failures and
message losses. As the number of false-positives strongly
varies according to the workload used, we considered a va-
riety of synthetic workloads in order to cover a represen-
tative spectrum of different realistic situations. Synthetic
workloads are mostly used in pub/sub simulation studies
[9, 13], while a trace of real-world data is used at the best
of our knowledge only in [17]. Values for each attribute in
subscriptions and events are generated by varying the fol-
lowing parameters: type (integer or string), distribution of
values (uniform or zipf), average range size (for numeri-
cal subscriptions), percentage of equality predicates. Val-
ues for string attributes are chosen in a dictionary of 500
values. Details of the workloads are depicted in Table 1.
Workload 1 uses distributions that have been discovered in
[17] to model real-world pub/sub data of a stock exchange
application. Workload 2 models a multi-player game where
players subscribe to events occurring in zones of a bidimen-
sional game plane, whose size can be also very large thus
generating a large number of matches. Finally, Workload
3 models an alert monitoring application, where subscrip-
tions are concentrated on a restricted set of critical values
and the overall number of matches is very low. Table 1
shows for each workload the percentage of contacted nodes
and of matching nodes with respect to the total number of
nodes, on average over the number of events, when using all
the three workload types. The number of false positives is
shown as well. In overall, we observed that DPS allows to
cut the number of the visited nodes with respect to a broad-
cast by at least of the 45%, by a 70% on average, up to

2The number of events and subscription does not influence the results
and is chosen as a sufficiently large sample

the 87% in more realistic situations. The number of false
positives falls below an acceptable value of 30%, almost
reaching 10% for the realistic workload. In the following
sets of simulations, only workload 2 is used, in order to test
only conditions which are less favorable for our system (i.e.,
more false positives). Again, we point out that with work-
loads based on a larger number of attributes, false positives
are more likely to occur.
Dependability. In these experiments, we test the ability
of the system in delivering messages despite node failures.
We built two different scenarios, where the system initially
contains 1,000 nodes and the execution is 3,000 steps long.
All nodes subscribe to three distinct subscriptions (differ-
ent for each node)3. In the first scenario, node failures are
uniformly distributed in time, with a frequency of 1/p, with
p varying between 0.01 and 0.25 resulting, at the end of
the simulation, in a number of nodes in the system which
is, on an average, 97% to 25% of the initial nodes. This
scenario tests a realistic situation where nodes disappear in-
dependently and in an unpredictable manner. A new event
is published every 10 steps. In the second scenario, execu-
tion is divided into three phases. Nodes do not fail until step
1,000. Then one node fails every two steps between steps
1,000 and 2,000. From that point onwards, the system exe-
cutes normally without failures all the way to the end of the
execution. This scenario tests the recovery capabilities of
the system after a large number of concurrent node failures.
In both cases, we measure the ratio of correctly delivered
events, i.e., the percentage of published events that reaches
a node with a matching subscription.
Figure 3(a) shows the results of the first scenario. In

all the approaches the system can reach a number of deliv-
ered events which is at least 80%, also when most of the
nodes have failed. This is obtained with the leader-based

3Increasing the number of subscriptions per node does not change the
nature of the results in this experiment

8

Attr. Ev. Distr. Sub. Distr. Range Size Eq. Perc. Matching Contacted False Positives
Workload 1 num unif zipf 10% 50% 2.37% 13.56% 11.19%

string unif zipf 50%
Workload 2 2 × num unif unif 50% 0% 25.13% 54.74% 29.61%
Workload 3 3 × num zipf zipf 20% 20% 0.42% 17.15% 16.73%

Table 1. False Positives Experiment: Workload details and Results

approach, which is as expected the least ‘robust’. Increas-
ing the number of co-leaders may offer a way to further
increase this figure. The epidemic scheme confirms the ex-
pected higher number of delivered events than the leader-
based approach. In particular, with epidemic, k=2, the ra-
tio is greater than 0.97 even with a significant probability
of failures. Results of the second scenario are exhibited in
Figures 3(b), where the ratio of delivered messages is still
high as events are delivered in more than 95% of cases. This
curve also show that the system is able to self-recover as the
ratio quickly grows back to 1 after step 2,000 in all cases.
Scalability. We tested the ability of the system to scale by
measuring the load managed by nodes when propagating
events and subscriptions as the size of the system grows.
In this scenario, the system initially contains 1,000 nodes.
A new node enters the system every two steps and immedi-
ately emits a new subscription. Publications are produced at
a regular rate along system execution (10 new events every
100 steps). Figures 3(c) and 3(d) provide the results for this
scenario in leader-based and epidemic configurations using
root-based traversal4. The two plots report the time vs. the
number of messages sent by a node per each event.
Figures 3(c) refers to the median node, defined as the

node that sends less messages than half of the nodes and
moremessages than the other half. Figures 3(d) refers to the
most overloaded node. The two plots show that in general
the number of messages per event does not increase with
the number of nodes, confirming the overall scalability of
our approach. The only exception is the most overloaded
node in the leader-based approachwhich has to handle more
messages as system grows, because the size of the groups
increases accordingly.

5.2.1 Leader vs. Epidemic

In the following experiments, we compare the behavior of
the different approaches for implementing DPS while in-
creasing the load at each node. Experiments are conducted
in the following scenario: the number of nodes is 1,000,
and each node emits regularly a new subscription and a new
publication. Publications are produced at a rate of 10 new
events every 100 steps, while a new subscription is pro-
duced regularly every 300 steps. Hence, the number of sub-
scriptions per node ranges from 0 to 10 (maximum 10,000

4Experiments performed using generic approach returned almost over-
lapping curves, that are not reported for the sake of readability

in total). We measure the number of incoming and outcom-
ing messages on the most loaded and median nodes, respec-
tively, sampled during a period of 100 steps. Messages in-
clude the ones due to publication (10 events), subscription,
and management of the overlay. Results were produced
with a root-based approach for tree traversal and are pre-
sented in Figures 3(e) and 3(f).

Incoming Traffic. As expected, in epidemic communica-
tion the overall number of processed messages is in gen-
eral higher than in leader-based because while in leader-
based approach, all events are received by the correspond-
ing recipients only once, in the epidemic approach, some
redundant messages are received. The difference remains
constant when the number of subscriptions increases as it
is only due to event delivery. The overall increase is due
to the fact that groups become more populated. The me-
dian node in the leader-based scheme is only a receiver of
the events. So, the received messages practically remain
constant, growing only slightly because each node receives
more matching events. On the contrary, in the epidemic ap-
proach, each node in the group is involved in overlay man-
agement. Besides processing the events, it also receives re-
quests from the predecessor groups that grow as subscrip-
tions grow. However, the increase in the number messages
is much slower wrt the increase in the subscriptions. Again,
the message redundancymotivates the higher number of re-
ceived messages in the epidemic-based approach.

Outgoing Traffic. The drawback of the leader-based ap-
proach is evident when considering the outcoming traffic
per node. The number of messages sent by the leader highly
increases with subscriptions, following the increasing size
of the groups and the higher number of recipients per event.
Moreover, the load is highly unbalanced, with the median
node showing no sending activity. As expected, the load is
more balanced in the epidemic approach, because neighbors
are distributed among the nodes in a group. However, we
still experience a difference between the most overloaded
node and the median, because the first nodes to join a group
are more likely to be the contact nodes of numerous prede-
cessors and successors. However, the most overloaded node
in the epidemic approach handles less than half of the mes-
sages in the leader-based, although the overall number of
processed messages is higher in the epidemic, confirming
better load-balancing.

9

5.2.2 Root vs. Generic

The results of the comparison between root-based and
generic approach, presented in Figure 3(g), were obtained
in the same scenario as the preceding experiment5.
Incoming Traffic. The most overloaded node in the root-
based approach is obviously the owner of the attribute. As
the number of subscriptions increases, the number of mes-
sages it should deal with also increases. The generic ap-
proach effectively manages to distribute the incoming load
among nodes, maintaining an almost constant number of
messages at higher load. Note that the subscriptions influ-
ence the incoming traffic more than the outcoming traffic.
This indicates the positive effect of the generic approach on
the subscription process.
Outgoing Traffic. These experiments reveal few differ-
ences between the two approaches. This can be explained
by considering that the outgoing messages in the leader-
based approach are mainly due to the events. The most
overloaded node in both cases corresponds to the leader of
the bigger group. As the number of subscriptions increases,
the size of the group and, subsequently, the leader outgoing
traffic increase as well. Using the leader-based approach, in
both cases, the median node does not send any messages.

6 Conclusion and Discussion
We have presented DPS, a distributed reliable and scal-

able content-based publish/subscribe system that exhibits
self-∗ characteristics. We have proposed different methods
of diffusion of subscriptions and publications that can be
combined to obtain four different implementations of the
system. Based on the simulation results, we can conclude
that the leader-based approach is more suitable for a rel-
atively small set of nodes that are less prone to failures.
On the other hand, the epidemic-approach provides higher
dependability, better scalability, and load balancing at the
cost of higher message complexity. As for the tree traver-
sal strategies, the generic approach is more suitable for the
subscription process as it better distributes the load. On
the contrary, the publication process benefits from the root-
based approach that obviously provides lower latency. The
possibility of choosing different implementationsmakes the
proposed system very versatile, so it can be deployed in
many applications (e.g., virtual worlds, virtual games, e-
market, etc.). As a future research direction, we intend to
explore the evaluation of DPS in other specific contexts,
such as sensor networks.

References

[1] E. Anceaume, A. K. Datta, M. Gradinariu, G. Simon, and
A. Virgillito. DPS: Self* dynamic reliable content-based pub-
5Due to space limitations, only results for leader-based approach were

presented, as epidemic follows the same trend

lish/subscribe system. Technical Report 1665, IRISA, 2004.
[2] E. Anceaume, X. Defago, M. Gradinariu, and M. Roy. To-

wards a theory of self-organization. In Proc. of OPODIS 2005.
[3] O. Babaoglu, H. Meling, and M. A. Anthill: A framework for

the developments of agent-based peer-to-peer systems. Proc.
of ICDCS 2002, 2002.

[4] S. Baehni, P. Eugster, and R. Guerraoui. Data-Aware Multi-
cast. In Proc. of DSN ’04, 2004.

[5] R. Baldoni, C. Marchetti, A. Virgillito, and R. Vitenberg.
Content-based publish-subscribe over structured overlay net-
works. In Proc. of ICDCS 2005, 2005.

[6] S. Bhola, R. Strom, S. Bagchi, Y. Zhao, and J. Auerbach.
Exactly-once Delivery in a Content-based Publish-Subscribe
System. In Proc. of DSN 2002, 2002.

[7] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and
Y. Minsky. Bimodal multicast. ACM Transactions on Com-
puter Systems (TOCS), 17(2):41–88, 1999.

[8] F. Cao and J. P. Singh. Efficient Event Routing in Content-
based Publish-Subscribe Service Networks. In Proceedings
of the 23rd Conference on Computer Communications (IEEE
INFOCOM 2004), 2004.

[9] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and Evalu-
ation of a Wide-Area Notification Service. ACM Transactions
on Computer Systems, 3(19):332–383, Aug 2001.

[10] M. Castro, P. Druschel, A. M. Kermarrec, and A. Rowston.
Scribe: A large-scale and decentralized application-level mul-
ticast infrastructure. IEEE Journal on Selected Areas in Com-
munications, 20(8), October 2002.

[11] P. Costa, M. Migliavacca, G. Picco, and G. Cugola. Epi-
demic algorithms for reliable content-based publish/subscribe:
An evaluation. In Proc. of ICDCS 2004, 2004.

[12] P. Felber and R. Chand. Semantic peer-to-peer overlays for
publish/subscribe networks. In Proc. of EUROPAR 2005.

[13] A. Gupta, O. Sahin, D. Agrawal, and A. E. Abbadi. Megh-
doot: Content-based publish:subscribe over p2p networks. In
Proceedings of Middleware ’04, 2004.

[14] A.-M. Kermarrec, L. Massouli, and A. Ganesh. Probabilistic
Reliable Dissemination in Large-Scale Systems. IEEE Trans-
actions on Parallel and Distributed Systems, 14(3), 2003.

[15] A. Riabov, Z. Liu, J. Wolf, P. Yu, and L. Zhang. New algo-
rithms for content-based publication-subscription systems. In
Proc. of ICDCS’03, pages 678–686, 2003.

[16] P. Triantafillou and I. Aekaterinidis. Content-based Pub-
lish/Subscribe over Structured P2P Networks. In Proceedings
of DEBS 2004, 2004.

[17] Y. Wang, L. Qiu, D. Achlioptas, G. Das, P. Larson, and H. J.
Wang. Subscription Partitioning and Routing in Content-based
Publish/Subscribe Networks. In Proc. of DISC ’02, 2002.

[18] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. Katz, and J. Ku-
biatowicz. Bayeux: An architecture for scalable and fault-
tolerant wide-area data dissemination. In Proc. of the Int.
Workshop on Network and OS Support for Digital Audio and
Video, 2001.

10

