
HAL Id: hal-01099197
https://hal.science/hal-01099197v1

Preprint submitted on 1 Jan 2015 (v1), last revised 9 Feb 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sequential Kernel Herding: Frank-Wolfe Optimization
for Particle Filtering

Simon Lacoste-Julien, Fredrik Lindsten, Francis Bach

To cite this version:
Simon Lacoste-Julien, Fredrik Lindsten, Francis Bach. Sequential Kernel Herding: Frank-Wolfe Op-
timization for Particle Filtering. 2014. �hal-01099197v1�

https://hal.science/hal-01099197v1
https://hal.archives-ouvertes.fr

Sequential Kernel Herding:
Frank-Wolfe Optimization for Particle Filtering

Simon Lacoste-Julien Fredrik Lindsten Francis Bach
INRIA - Sierra Project-Team

École Normale Supérieure, Paris, France

Department of Engineering
University of Cambridge

INRIA - Sierra Project-Team

École Normale Supérieure, Paris, France

Abstract

Recently, the Frank-Wolfe optimization algo-
rithm was suggested as a procedure to ob-
tain adaptive quadrature rules for integrals
of functions in a reproducing kernel Hilbert
space (RKHS) with a potentially faster rate
of convergence than Monte Carlo integration
(and “kernel herding” was shown to be a spe-
cial case of this procedure). In this paper,
we propose to replace the random sampling
step in a particle filter by Frank-Wolfe op-
timization. By optimizing the position of
the particles, we can obtain better accuracy
than random or quasi-Monte Carlo sampling.
In applications where the evaluation of the
emission probabilities is expensive (such as in
robot localization), the additional computa-
tional cost to generate the particles through
optimization can be justified. Experiments
on standard synthetic examples as well as on
a robot localization task indicate indeed an
improvement of accuracy over random and
quasi-Monte Carlo sampling.

1 Introduction

In this paper, we explore a way to combine ideas from
optimization with sampling to get better approxima-
tions in probabilistic models. We will consider state-
space models (SSMs, also referred to as general state-
space hidden Markov models), as they constitute an
important class of models in engineering, economet-
rics and other areas that are commonly used in the
context of modelling time series and dynamical sys-
tems. A discrete-time, nonlinear SSM can be written
as

xt|xt−1 ∼ p(xt|xt−1); yt|xt ∼ p(yt|xt), (1)

where xt ∈ X denotes the latent state variable and
yt ∈ Y the observation at time t. Exact state infer-

ence in SSMs is possible, essentially, only when the
model is linear and Gaussian or when the state-space
X is a finite set. For solving the inference problem be-
yond these restricted model classes, sequential Monte
Carlo methods, i.e. particle filters (PFs), have emerged
as a key tool; see e.g., Doucet and Johansen (2011);
Cappé et al. (2005); Doucet et al. (2000). However,
since these methods are based on Monte Carlo integra-
tion they are inherently affected by sampling variance,
which can degrade the performance of the estimators.

Particular challenges arise in the case when the ob-
servation likelihood p(yt|xt)1 is computationally ex-
pensive to evaluate. For instance, this is common in
robotics applications where the observation model re-
lates the sensory input of the robot, which can com-
prise vision-based systems, laser rangefinders, syn-
thetic aperture radars, etc. For such systems, simply
evaluating the observation function for a fixed value
of xt can therefore involve computationally expensive
operations, such as image processing, point-set regis-
tration, and related tasks. This poses difficulties for
particle-filtering-based solutions for two reasons: (1)
the computational bottleneck arising from the like-
lihood evaluation implies that we cannot simply in-
crease the number of particles to improve the accuracy,
and (2) this type of “complicated” observation models
will typically not allow for adaptation of the proposal
distribution used within the filter, in the spirit of Pitt
and Shephard (1999), leaving us with the standard—
but inefficient—bootstrap proposal as the only viable
option. On the contrary, for these systems, the dy-
namical model p(xt|xt−1) is often comparatively sim-
ple, e.g. being a linear and Gaussian “nearly constant
acceleration” model (Ristic et al., 2004).

The method developed in this paper is geared toward
this class of filtering problems. The basic idea is that,

1We use the convenient graphical model convention
where p is a generic placeholder for probability density
functions and the notation used for the variable (xt vs.
yt for example) determines which probability or function
that we are referring to.

Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering

in scenarios when the likelihood evaluation is the com-
putational bottleneck, we can afford to spend addi-
tional computations to improve upon the sampling of
the particles. By doing so, we can avoid excessive vari-
ance arising from simple Monte Carlo sampling from
the bootstrap proposal.

Contributions. We build on the optimization view
from Bach et al. (2012) of kernel herding (Chen et al.,
2010) to approximate the integrals appearing in the
Bayesian filtering recursions. We make use of the
Frank-Wolfe (FW) quadrature to approximate, in par-
ticular, mixtures of Gaussians which often arise in a
particle filtering context as the mixture over past par-
ticles in the distribution over the next state. We use
this approach within a filtering framework and derive
basic theoretical convergence results for the resulting
method, denoted as Sequential Kernel Herding (SKH).
Our preliminary experiments show that SKH can give
better accuracy than a standard particle filter or a
quasi-Monte Carlo particle filter.

2 Adaptive quadrature rules with
Frank-Wolfe optimization

2.1 Approximating the mean element for
integration in a RKHS

We consider the problem of approximating integrals
of functions belonging to a reproducing kernel Hilbert
space (RKHS) H with respect to a fixed distribution
p2 over some set X . We can think of the elements
of H as being real-valued functions on X , with point-
wise evaluation given from the reproducing property
by f(x) = 〈f,Φ(x)〉, where Φ : X 7→ H is the fea-
ture map from the state-space X to the RKHS. Let
k : X 2 7→ R be the associated positive definite ker-
nel. We review here briefly the setup from Bach et al.
(2012), which generalized the one from Chen et al.
(2010). We want to approximate integrals Ep[f] for
f ∈ H using a set of n points x(1), . . . , x(n) ∈ X asso-
ciated with positive weights w(1), . . . , w(n) which sum
to 1:

Ep[f] ≈
n∑
i=1

w(i)f(x(i)) = Ep̂[f], (2)

where p̂ =

n∑
i=1

w(i)δx(i) . (3)

2For the simplicity of exposition, we will informally use
the notation p to denote density functions, distributions
or measures interchangeably. p will usually be a density
function with respect to the Lebesgue measure, while p̂
might be a discrete distribution, but the nature of these
quantities should be clear from the context. Integrals could
represent sums if the distribution is discrete.

p̂ is thus the associated empirical distribution defined
by these points and δx(·) is a point mass distribution
at x. If the points x(i) are independent samples from p,
then this Monte Carlo estimate (using weights of 1/n)
is unbiased with a variance of Vp[f]/n, where Vp[f] is
the variance of f with respect to p. By using the fact
that f belongs to the RKHS H, we can actually choose
a better set of points with lower error. It turns out that
the worst-case error of estimators of the form (2) can
be analyzed in term of their approximation distance to
the mean element µ(p) := Ep[Φ] (Smola et al., 2007;
Sriperumbudur et al., 2010). Namely, by basically us-
ing Cauchy-Schwartz inequality and the linearity of
the expectation operator, we can obtain:

sup
f∈H,‖f‖H≤1

|Ep[f]− Ep̂[f]| = ‖µ(p)− µ(p̂)‖H

=: MMD(p, p̂), (4)

and so by bounding ‖µ(p)− µ(p̂)‖H = MMD(p, p̂), we
can bound the error of approximating the expectation
for all f ∈ H, with ‖f‖H as a proportionality con-
stant. MMD(p, p̂) is thus a central quantity for devel-
oping good quadrature rules given by (2). MMD(p, q)
in the context of RKHSs can be called the maximum
mean discrepancy (Gretton et al., 2012) between the
distributions p and q, and acts a pseudo-metric on the
space of distributions on X . If k is a characteristic
kernel (such as the standard RBF kernel), then MMD
is in fact a metric, i.e. MMD(p, q) = 0 =⇒ p = q. We
refer the reader to Sriperumbudur et al. (2010) for the
regularity conditions needed for the existence of these
objects and for more details.

2.2 Frank-Wolfe optimization for adaptive
quadrature

For getting a good quadrature rule p̂, our goal is thus
to minimize ‖µ(p̂)−µ(p)‖H. We note that µ(p) lies in
the marginal polytope M ⊂ H, defined as the closure
of the convex-hull of Φ(X). We suppose that Φ(x)
is uniformly bounded in the feature space, that is,
there is a finite R such that ‖Φ(x)‖H ≤ R ∀x ∈ X .
This means thatM is a closed bounded convex subset
of H, and we could in theory optimize over it. This
insight was used by Bach et al. (2012) who consid-
ered using the Frank-Wolfe optimization algorithm to
optimize the convex function J(g) := 1

2‖g − µ(p)‖2H
over M to obtain adaptive quadrature rules. The
Frank-Wolfe algorithm (also called conditional gradi-
ent) (Frank and Wolfe, 1956) is a simple first-order
iterative constrained optimization algorithm to opti-
mize smooth functions over closed bounded convex sets
like M (see Dunn (1980) for its convergence analysis
on general infinite dimensional Banach spaces). At ev-
ery iteration, the algorithm finds a good feasible search

Simon Lacoste-Julien, Fredrik Lindsten, Francis Bach

vertex ofM by minimizing the linearization of J at the
current iterate gk: ḡk+1 = arg ming∈M〈J ′(gk), g〉. The
next iterate is then obtained by a suitable convex com-
bination of the search vertex ḡk+1 and the previous it-
erate gk: gk+1 = (1−γk)gk+γkḡk+1 for a suitable step-
size γk from a fixed schedule (e.g. 1/(k+1)) or by using
line-search. A crucial property of this algorithm is that
the iterate gk is thus a convex combination of the ver-
tices ofM visited so far. This provides a sparse expan-
sion for the iterate, and makes the algorithm suitable
to high-dimensional optimization (or even infinite) –
this explains in part the regain of interest in machine
learning in the last decade for this old optimization al-
gorithm (see Jaggi (2013) for a recent survey). In our
setup whereM is the convex hull of Φ(X), the vertices
of M are thus of the form ḡk+1 = Φ(x(k+1)) for some
x(k+1) ∈ X . Running Frank-Wolfe on M thus yields

gk =
∑k
i=1 w

(i)
k Φ(x(i)) = Ep̂[Φ] for some weighted set

of points {w(i)
k , x(i)}ki=1. The iterate gk thus corre-

sponds to a quadrature rule p̂ of the form of (2) and
gk = Ep̂[Φ], and this is the relationship that was ex-
plored in Bach et al. (2012). Running Frank-Wolfe op-
timization with the step-size of γk = 1/(k+ 1) reduces
to the kernel herding algorithm proposed by Chen
et al. (2010).

Algorithm 1 presents the Frank-Wolfe optimization al-
gorithm to solve ming∈M J(g) in the context of get-
ting quadrature rules (we also introduce the short-
hand notation µp := µ(p)). We note that to evalu-
ate the quality MMD(p̂, p) of this adaptive quadra-
ture rule, we need to be able to evaluate µp(x) =∫
x′∈X p(x

′)k(x′, x)dx′ efficiently. This is true only for
specific pairs of kernels and distributions, but fortu-
nately this is the case when p is a mixture of Gaus-
sians and k is a Gaussian kernel. This insight is cen-
tral to this paper, and we will explore this case more
specifically in Section 2.3. To find the next quadrature
point, we also need to approximately optimize µp(x)
over X (step 3 of Algorithm 1, called the FW vertex
search). In general, this will yield a non-convex op-
timization problem, and thus cannot be solved with
guarantees, even with gradient descent. In our cur-
rent implementation, we approach step 3 by doing an
exhaustive search over M random samples from p pre-
computed when FW-Quad is called. We thus follow
the idea from the kernel herding paper (Chen et al.,
2010) to choose the best N “super-samples” out of
a large set of samples M . Thanks to the fact that
convergence guarantees for Frank-Wolfe optimization
can still be given when using an approximate FW ver-
tex search, we show in Appendix A of the Supplement
that this procedure either adds a O(1/M1/4) term or
a O(1/

√
M) term to the worst-case MMD(p̂, p) error.

We have stated Algorithm 1 with a preset number N

of particles to find, but we could also give a termi-
nating criterion test of ‖gk − µ(p)‖H ≤ ε which can
be explicitly computed during the algorithm and pro-
vides the MMD error bound on the returned quadra-
ture rule. Option (2) on line 5 chooses the step-size
γk by analytic line-search (hereafter referred as the
FW-LS version) while option (1) chooses the kernel
herding step-size γk = 1/(k + 1) (herafter referred as
the FW version) which always yields uniform weights:

w
(i)
k = 1/k for all i ≤ k. A third alternative is

to re-optimize J(g) over the convex hull of the pre-
viously visited vertices; this is called the fully cor-
rective version (Jaggi, 2013) of the Frank-Wolfe al-
gorithm (hereafter referred as FCFW). In this case:

(w
(1)
k+1, . . . , w

(k+1)
k+1) = arg minw∈∆k+1

w>Kk+1w −
2c>k+1w, where ∆k+1 is the (k + 1)-dimensional prob-
ability simplex, Kk+1 is the kernel matrix on the
(k+1) vertices: (Kk+1)ij = k(x(i), x(j)) and (ck+1)i =
µp(x

(i)) for i = 1, . . . , (k + 1). This is a convex
quadratic problem over the simplex. A slightly modi-
fied version of the FCFW is called the min-norm point
algorithm and can be more efficiently optimized using
specific purpose active-set algorithms (see Bach (2013,
§9.2) for more details). We refer the reader to Bach
et al. (2012) for more details on the rate of conver-
gence of Frank-Wolfe quadrature assuming that the
FW vertex is found with guarantees. We summarize
them as follows: if H is infinite dimensional, then FW-
Quad gives the same O(1/

√
N) rate for the MMD error

as standard random sampling, for all FW methods.
On the other hand, if a ball of non-zero radius cen-
tered at µp lies within M, then faster rates than ran-
dom sampling are possible: FW gives a O(1/N) rate
whereas FW-LS and FCFW gives exponential conver-
gence rates (though in practice, we often see differences
not explained by the theory between these methods).

2.3 Example: mixture of Gaussians

We describe here in more details the Frank-Wolfe
quadrature when p is a mixture of Gaussians p(x) =∑K
i=1 πiN (x|µi,Σi) for X = Rd and k is the Gaus-

sian kernel kσ(x, x′) := exp(− 1
2σ2 ‖x − x′‖2). In this

case, µp(x) =
∑K
i=1 πi(

√
2πσ)dN (x|µi,Σi+σ2Id). We

thus need to optimize a difference of mixture of Gaus-
sian bumps in step 3 of Algorithm 1, a non-convex
optimization problem that we approximately solve by
exhaustive search over M random samples from p.

3 Sequential kernel herding

3.1 Sequential Monte Carlo

Consider again the SSM in (1). The joint probabil-
ity density function for a sequence of latent states

Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering

Algorithm 1 FW-Quad(p, H, N): Frank-Wolfe adap-
tive quadrature

Input: distribution p, RKHS H which defines ker-
nel k(·, ·) and state-space X , number of samples N

1: Let g0 = 0.
2: for k = 0 . . . N − 1 do
3: Solve x(k+1) = arg min

x∈X
〈gk − µp,Φ(x)〉

That is:

x(k+1) = arg min
x∈X

k∑
i=1

w
(i)
k (k(x(i), x)− µp(x)).

4: Option (1): Let γk = 1
k+1 .

5: Option (2): Let γk =
〈gk−µp,gk−Φ(x(k+1))〉
‖gk−Φ(x(k+1))‖2

6: Update gk+1 = (1− γk)gk + γkΦ(x(k+1))

i.e. w
(k+1)
k+1 = γk;

and w
(i)
k+1 = (1− γk)w

(i)
k for i = 1 . . . k

7: end for
8: Return: p̂ =

∑N
i=1 w

(i)
N δx(i)

Algorithm 2 Particle filter template (joint predictive
distribution form) — SKH alg. by changing step 3

Input: SSM p(xt|xt−1),
ot(xt) := p(yt|xt) for t ∈ 1 : T .

Maintain p̂t(x1:t) =
∑N
i=1 w

(i)
t δ

x
(i)
1:t

during algo-

rithm as approximation of p(xt, x1:(t−1)|y1:(t−1)).
1: Let p̃1(x1) := p(x1)
2: for t=1 . . . , T do
3: Sample: get p̂t = SAMPLE(p̃t, N)

[For SKH, use p̂t = FW-Quad(p̃t,Ht, N)]
4: Include observation and normalize:

Ŵt = Ep̂t [ot]; r̂t(x1:t) := 1
Ŵt
ot(xt)p̂t(x1:t).

5: Propagate approximation forward:
p̃t+1(xt+1, x1:t) := p(xt+1|xt)r̂t(x1:t)

6: end for
7: Return Filtering distribution r̂T ; predictive

distribution p̂T+1; normalization constants
Ŵ1, . . . , ŴT .

x1:T := (x1, . . . , xT) and observations y1:T factor-

izes as p(x1:T , y1:T) =
∏T
t=1 p(xt|xt−1)p(yt|xt), with

p(x1|x0) := p(x1) denoting the prior density on the
initial state. We would like to do approximate in-
ference in this SSM. In particular, we could be in-
terested in computing the joint filtering distribution
rt(x1:t) := p(x1:t|y1:t) or the joint predictive distri-
bution pt+1(xt+1, x1:t) := p(xt+1, x1:t|y1:t). In parti-
cle filtering methods, we approximate these distribu-
tions with empirical distributions from weighted par-

ticle sets {w(i)
t , x

(i)
1:t}Ni=1 as in (2). We note that it is

easy to marginalize p̂ (just a sum of weights), and so
we will present the algorithm as getting an approx-
imation for the joint distributions rt and pt defined
above, with the understanding that the marginal ones
are easy to obtain afterwards. In the terminology of

particle filtering, x
(i)
t would be the particle at time t,

whereas x
(i)
1:t would be the particle trajectory. While

principally the PF provides an approximation of the
full joint distribution rt(x1:t), it is well known that this
approximation deteriorates for any marginal of xs for
s� t (Doucet and Johansen, 2011). Hence, the PF is
typically only used to approximate marginals of xs for
s . t (fixed-lag smoothing) or s = t (filtering), or for
prediction.

Algorithm 2 presents a somewhat unconventional
description of the bootstrap particle filtering algo-
rithm (Gordon et al., 1993). Rather than using
the importance sampling viewpoint (see Doucet and
Johansen (2011) for example), we consider it from
the point of view of propagating an approximation
p̂t(x1:t) of the joint predictive distribution one time

step forward with the model dynamics to obtain
p̃t+1(xt+1, x1:t) (step 5) and then randomly sampling
from it (step 3) to get the new predictive approxima-
tion p̂t+1(xt+1, x1:t). As p̂t was an empirical distribu-
tion, p̃t+1 is a mixture distribution (the mixture com-
ponents are coming from the particles at time t):

p̃t+1(xt+1, x1:t) =

1

Ŵt

N∑
i=1

p(yt|x(i)
t)w

(i)
t︸ ︷︷ ︸

mixture weight

p(xt+1|x(i)
1:t)︸ ︷︷ ︸

mixture component

. (5)

We denote the conditional normalization constant at
time t by Wt := p(yt|y1:(t−1)) and the global normal-

ization constant by Zt := p(y1:t) =
∏t
u=1Wu. Ŵt is

the particle filter approximation to Wt and is obtained
by summing the un-normalized mixture weights in (5)
— see also step 4 in Algorithm 2. Randomly sampling
from (5) is equivalent to first sampling a mixture com-
ponent according to the mixture weight (like choosing

a past particle x
(i)
1:t to propagate with its weight pro-

portional to w
(i)
t p(yt|x(i)

1:t)), and then sampling its next

extension state x
(i)
t+1 with probability p(xt+1|x(i)

1:t). The
standard bootstrap particle filter is thus obtained by
maintaining uniform weight for the predictive distri-

bution (w
(i)
t = 1

N) and randomly sampling from (5)
to obtain the particles at time t + 1. This gives an
unbiased estimate of p̃t+1: Ep̃t+1

[p̂t+1] = p̃t+1. Lower
variance estimators can be obtained by using a differ-
ent resampling mechanism for the particles than this
multinomial sampling scheme, such as stratified resam-
pling (Carpenter et al., 1999) and are usually used in
practice instead.

Simon Lacoste-Julien, Fredrik Lindsten, Francis Bach

One way to improve the particle filter is thus to re-
place the random sampling stage of step 3 with differ-
ent sampling mechanisms with lower variance or better
approximation properties of the distribution p̃t+1 that
we are trying to approximate. Note that the normal-
ization constants Wt are obtained by integrating the
observation probability; we thus would like to obtain
particle point sets with better integration properties.
By replacing random sampling with a quasi-random
number sequence, which has better integration proper-
ties, we obtain the already proposed sequential quasi-
Monte Carlo scheme (Philomin et al., 2000; Ormoneit
et al., 2001; Gerber and Chopin, 2014). The main
contribution of our work is to instead propose to use
Frank-Wolfe quadrature in step 3 of the particle filter
to obtain better (adapted) point sets.

3.2 Sequential kernel herding

In the sequential kernel herding (SKH) algorithm,
we simply replace step 3 of Algorithm 2 with p̂t =
FW-Quad(p̃t,Ht, N). As mentioned in the introduc-
tion, many dynamical models used in practice assume
Gaussian transitions. Therefore, we will put particu-
lar emphasis on the case when p(xt|xt−1) is a mixture
of Gaussians, with parameters for the mixture com-
ponents that can be arbitrary functions of the state
history x1:(t−1), y1:(t−1), and thus is still fairly gen-
eral. We thus consider the Gaussian kernel for the
FW-Quad procedure as then we can compute the re-
quired quantities analytically. An important subtle
point is which Ht to consider. In this paper, we focus
on the marginalized filtering case, i.e. we are inter-
ested in p(xt|y1:t) only. Thus we are only interested
in functions of xt, which is why we define our kernel
at time t to only depend on xt and not the past his-
tories. For simplicity, we also assume that Ht = H for
all t (we use the same kernel for each time step). Even
though the algorithm can maintain the distribution on
the whole history p̂t(x1:t), the past histories x1:(t−1)

are marginalized out when computing the mean map,
for example µ(p̃t) = Ep̃t(x1:t)[Φ(xt)]. During the SKH
algorithm, we can still track the particle histories by
keeping track from which mixture component in (5)
xt was coming from, but the past history is not used
in the computation of the kernel and thus does not
appear as a repulsion term in step 3 of Algorithm 1.
We leave it as future work to analyze what kind of
high-dimensional kernel on past histories would make
sense in this context, and to analyze its convergence
properties. The particle histories are useful in the Rao-
Blackwellized extension that we present in Section 3.4.

3.3 Convergence theory

In this section, we give sufficient conditions to guar-
antee that SKH is consistent as N goes to infinity.
Let pt here denote the marginalized predictive in-
stead of the joint. Let Ft be the forward transfor-
mation operator on measures that takes the predic-
tive distribution pt on xt and yields the un-normalized
marginalized predictive distribution Ftpt on xt+1 in
the SSM. Thus for a measure ν, we get (Ftν)(·) :=∫
Xt p(·|xt)p(yt|xt)dν(xt). We also have that pt+1 =
1
Wt
Ftpt.

For the following theorem, Ft is a function space on
Xt+1 defined (depending on Ht+1) as all functions for
which the following semi-norm is finite:3

‖f‖Ft := sup
‖h‖Ht+1

=1

|
∫
Xt+1

f(xt+1)h(xt+1)dxt+1|.

Theorem 1 (Bounded growth of the mean map).
Suppose that the function ft : (xt+1, xt) →
p(yt|xt)p(xt+1|xt) is in the tensor product function
space Ft⊗Ht with the following defined nuclear norm:
‖ft‖Ft⊗Ht := inf

∑
i ‖αi‖Ft‖βi‖Ht , where the infimum

is taken over all the possible expansions such that
ft(xt+1, xt) =

∑
i αi(xt+1)βi(xt) for all xt, xt+1. Then

for any finite signed Borel measure ν on Xt, we have:

‖µ(Ftν)‖Ht+1
≤ ‖ft‖Ft⊗Ht ‖µ(ν)‖Ht .

Theorem 2 (Consistency of SKH). Suppose that for
all t ≤ T , ft is in Ft ⊗ Ht as defined in Theorem 1
and ot is in Ht. Then we have:4

‖µ(p̂T)− µ(pT)‖HT ≤

ε̂T +

(
R
‖oT−1‖HT−1

WT−1
+ ρT−1

) T−1∑
t=1

κt ε̂t

(
T−2∏
k=t

ρk

)
,

where ρt :=
‖ft‖Ft⊗Ht

Wt
, κt :=

∏t−1
k=1

Ŵk

Wk
and ε̂t is the

FW error reported at time t by the algorithm: ε̂t :=
‖µ(p̂t)− µ(p̃t)‖Ht .

We note that κt ≈ 1 as we expect the errors on Wk

to go in either direction, and thus to cancel each other
over time (though in the worst case it could grow expo-
nentially in t). If ε̂t ≤ ε and ρt ≤ ρ, we basically have
‖µ(p̂T) − µ(pT)‖ = O(ρT ε) if ρ > 1; O(Tε) if ρ = 1;
and O(ε) if ρ < 1 (a contraction). The exponential
dependence in T is similar as for a standard particle

3In general, the integral on Xt+1 should be with re-
spect to the base measure for which the conditional density
p(xt+1|xt) is defined. All proofs are in the supplementary
material.

4We use the convention that the empty sum is 0 and
the empty product is 1.

Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering

filter for general distributions; see Douc et al. (2012)
though for conditions to get a contraction for the PF.

Importantly, for a fixed T it follows that the rates of
convergence for Frank-Wolfe in N translates to rates
of errors for integrals of functions in H with respect
to the predictive distribution pT . If we suppose that
pt has full support on a compact X for all t, that k is
continuous andH is finite dimensional, then by Propo-
sition 1 in Bach et al. (2012), we have that the faster
rates for Frank-Wolfe hold and in particular we could
obtain an error bound of O(1/N) with N particles. As
far as we know, this is the first explicit faster rates of
convergence as a function of the number of particles
than the standard O(1√

N
) for Monte Carlo particle fil-

ters. In contrast, Gerber and Chopin (2014, Theorem
7) showed a o(1√

N
) rate for the randomized version

of their SQMC algorithm (note the little-o)5. Note
that the theorem does not depend on how the error
of ε is obtained on the mean maps of the distribution;
and so if one could show that a QMC point set could
also achieve a faster rate for the error on the mean
maps (rather than on the distributions itself as is usu-
ally given), then their rates would translate also to the
global rate by Theorem 2.6

3.4 Extension for Rao-Blackwellization

A common strategy for improving the efficiency of
the PF is to make use of Rao-Blackwellization—this
idea can be used also with SKH. Rao-Blackwellization,
here, refers to analytically marginalizing some condi-
tionally tractable component of the state vector and
thereby reducing the dimensionality of the space on
which the PF operates. Assume that the state of the
system is comprised of two components xt and zt,
where the filtering density for zt is tractable con-
ditionally on the history of x1:t. The typical case
is that of a conditionally linear Gaussian system, in
which case the aforementioned conditional filtering
density p(zt|x1:t, y1:t) is Gaussian and computable us-
ing a Kalman filter (conditionally on x1:t). The Rao-
Blackwellized PF (RBPF) exploits this property by
factorizing

p(zt, x1:t|y1:t) = p(zt|x1:t, y1:t)p(x1:t|y1:t)

≈
N∑
i=1

w
(i)
t N (zt|ẑt(x(i)

1:t),Σt(x
(i)
1:t))δx(i)

1:t
(x1:t), (6)

5The rate holds on the approximation of integrals of
continuous bounded functions.

6We also note that a simple computation shows that
for a Monte Carlo sample of size N , E‖µ(p̂) − µ(p)‖2H ≤
(R2−‖µ(p)‖2)

N
.

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

 −0.53 −0.64

 −0.95

 −1.47

Number of particles

M
M

D
 E

rr

d = 2, K = 100, σ
2
 = 1

MC
QMC
FW
FCFW

10
0

10
1

10
2

10
3

10
−4

10
−2

10
0

10
2

 −0.44
 −0.57
 −0.76

 −1.83

Number of particles

E
rr

 f
o

r
fu

n
c
ti
o

n
 m

e
a

n

d = 2, K = 100, σ
2
 = 1

MC
QMC
FW
FCFW

Figure 1: Top: MMD error for different sampling
schemes where p is a mixture of 2d Gaussians with
K = 100 components. Bottom: error on the mean
estimate for the same mixture. The dashed lines are
linear fits with slopes reported next to the axes.

where the conditional mean ẑt(x1:t) := E[zt|x1:t, y1:t]
and covariance matrix Σt(x1:t) := V(zt|x1:t, y1:t) can
be computed (for a fixed trajectory x1:t) using a
Kalman filter. The mixture approximation follows
by plugging in a particle approximation of p(x1:t|y1:t)
computed using a standard PF. Hence, for a condition-
ally linear Gaussian model, the RBPF takes the form
of a Mixture Kalman filter; see Chen and Liu (2000).
Analogously to a standard PF, the SKH procedure al-
lows us to to compute an empirical point-mass approx-
imation of p(x1:t|y1:t) by keeping track of the complete
history of the state x1:t. Consequently, by (6) it is
straightforward to employ Rao-Blackwellization also
for SKH; we use this approach in the numerical exam-
ple in Section 4.3.

4 Experiments

4.1 Sampling from a mixture of Gaussians

We start by investigating the merits of different sam-
pling schemes for approximating mixtures of Gaus-

Simon Lacoste-Julien, Fredrik Lindsten, Francis Bach

sians, since this is an intrinsic step to the SKH algo-
rithm. In Figure 1, we give the MMD error as well as
the error on the mean function in term of the number
of particles N for the different sampling schemes on a
randomly chosen mixture of Gaussians with K = 100
components in d = 2 dimensions. Additional results
as well as the details of the model are given in Ap-
pendix B.1 of the Supplement. In all our experiments,
the number of FW search points is M = 50k. We
note that even though in theory all methods should
have the same rate of convergence O(1/

√
N) for the

MMD (as H is infinite dimensional), FCFW empir-
ically improves significantly over the other methods.
As d increases, the difference between the methods ta-
pers off for a fixed σ2, but increasing σ2 gives better
results for FW and FCFW than the other schemes.

In the remaining sections, we evaluate empirically the
application of kernel herding in a filtering context us-
ing the proposed SKH algorithm.

4.2 Particle filtering using SKH on synthetic
examples

We consider first several synthetic data sets in order
to assess the improvements offered by Frank-Wolfe
quadrature over standard Monte Carlo and quasi-
Monte-Carlo techniques. We generate data from four
different systems:7 (further details on the experimen-
tal setup can be found in Appendix B.2):

Two linear Gaussian state-space (LGSS) mod-
els of dimensions d = 3 and d = 15, respectively.

A jump Markov linear system (JMLS), consist-
ing of 2 interacting LGSS models of dimension
d = 2. The switching between the models is gov-
erned by a hidden 2-state Markov chain.

A nonlinear benchmark time-series model used by,
among others, Doucet et al. (2000); Gordon et al.
(1993). The model is of dimension d = 1 and is
given by

xt+1 = 0.5xt + 25
xt

1 + x2
t

+ 8 cos(1.2t) + vt,

yt = 0.05x2
t + et,

with vt and et mutually independent standard
Gaussian.

These models are ordered in increasing level of diffi-
culty for inference. For the LGSS models, the exact
filtering distributions can be computed by a Kalman

7The LGSS models and the modes of the JMLS are gen-
erated randomly using the function drss from the Matlab
Control Systems Toolbox.

filter. For the JMLS, this is also possible by running
a mixture of Kalman filters, albeit at a computational
cost of 2T (where T is the total number of time steps).
For the nonlinear system, no closed form expressions
are available for the filtering densities; instead we run
a PF with N = 10 000 particles as a reference.

We generate 30 batches of observations for T = 100
time steps from all systems, except for the JMLS where
we use T = 10 (to allow for computation of the ex-
act filtering distributions). We run the proposed SKH
filter, using both FW and FCFW optimization and
compare against a bootstrap PF (using stratified re-
sampling (Carpenter et al., 1999)) and a quasi-Monte-
Carlo PF based on a Sobol-sequence point-set. All
methods are run with N varying from 20 to 200 par-
ticles. We deliberately use rather few particles since,
as discussed above, we believe that this is the setting
when the proposed method can be particularly useful.

To assess the performances of the different meth-
ods, we first compute the root-mean-squared errors
(RMSE) for the filtered mean-state-estimates over
the T time steps, w.r.t. the reference filters. We re-
port the median RMSEs over the 30 different data
batches, along with the 25% and 75% quantiles, and
the minimum and maximum values in Figure 2. The
SKH algorithms were run for three different values of
σ2 ∈ {0.01, 0.1, 1}. Here, we report the results for
σ2 = 1 for the LGSS models and the JMLS, and for
σ2 = 0.1 for the nonlinear benchmark model. The re-
sults for the other values are given in the Supplement.
The results are largely robust to the value of σ2, but
in some cases significant differences were observed. As
can be seen, both SKH methods improve significantly
upon both QMC and the bootstrap PF. For the two
LGSS models, we also compute the MMD (reported in
the rightmost column in Figure 2). It is interesting to
note the small difference between the methods in the
MMD for LGSS with d = 15, despite an improvement
in RMSE for the SKH algorithms.

4.3 Vision-based UAV Localization

In this section we apply the proposed SKH algorithm
to solve a filtering problem in field robotics. We
use the data and the experimental setup described
by Törnqvist et al. (2009). The problem consists of es-
timating the full six-dimensional pose of an unmanned
aerial vehicle (UAV).

Törnqvist et al. (2009) proposed a vision-based solu-
tion, essentially tracking interest points in the camera
images over consecutive frames to estimate the ego-
motion. This information is then fused with the in-
ertial and barometer sensors to estimate the pose of
the UAV. The system is modelled on state-space form,

Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering

20 50 100 200

10
−1

10
0

 −0.46

Number of particles

RMSE, LGSS, d = 3

 −0.55

 −0.56

 −0.60

PF
QMC
FW (σ2 = 1)
FCFW (σ2 = 1)
min/max

20 50 100

10
−1

10
0

 −0.49

Number of particles

RMSE, JMLS

 −0.46

 −0.21
 −0.32

PF
QMC
FW (σ2 = 1)
FCFW (σ2 = 1)
min/max

20 50 100 200

10
−1

10
0

 −0.45

Number of particles

MMD RMS, LGSS, d = 3

 −0.46

 −0.54

 −0.64

PF
QMC
FW (σ2 = 1)
FCFW (σ2 = 1)
min/max

20 50 100 200
10

−1

10
0

10
1

 −0.36

Number of particles

RMSE, LGSS, d = 15

 −0.38
 −0.36 −0.36

PF
QMC
FW (σ2 = 1)
FCFW (σ2 = 1)
min/max

20 50 100 200
10

−2

10
−1

10
0

10
1

 −0.81

Number of particles

RMSE, Nonlinear benchmark

 −0.89

 −1.26
 −1.08

PF
QMC
FW (σ2 = 0.1)
FCFW (σ2 = 0.1)
min/max

20 50 100 200
10

−1

10
0

 −0.41

Number of particles

MMD RMS, LGSS, d = 15

 −0.43

 −0.35 −0.36

PF
QMC
FW (σ2 = 1)
FCFW (σ2 = 1)
min/max

Figure 2: RMSEs (left and middle columns) for the four considered models and MMDs (right column) for the
two LGSS models.

with a state vector comprising the position, velocity,
acceleration, as well as the orientation and the angu-
lar velocity of the UAV. The state is also augmented
with sensor biases, resulting in a state dimension of 22.
Furthermore, the state is augmented with the three-
dimensional positions of the interest points that are
currently tracked by the vision system; this is a vary-
ing number but typically around ten.

To deal with the high-dimensional state-vector,
Törnqvist et al. (2009) used an RBPF to solve the
filtering problem, marginalizing all but 6 state com-
ponents (being the pose, i.e., the position and orien-
tation) using a combination of Kalman filters and ex-
tended Kalman filters. The remaining 6 state-variables
were tracked using a bootstrap particle filter with
N = 200 particles; the strikingly small number of par-
ticles owing to the computational complexity of the
problem.

For the current experiment, we obtained the code and
the flight-test data from Törnqvist et al. (2009). The
modularity of our approach allowed us to simply re-
place the Monte Carlo simulation step within their
setup with FW-Quad. We ran SKH-FW and SKH-
FCFW with σ2 = 0.1, as well as the bootstrap PF
used in Törnqvist et al. (2009), and a QMC-PF; all
methods using N = 50, 100, and 200 particles. We
ran all methods 10 times on the same data; the varia-
tion in SKH coming from the random search points for

the FW procedure, and in QMC for starting the Sobol
sequence at different points. For comparison, we ran
10 times a reference PF with N = 100 000 particles
and averaged the results. The median position errors
for 100s of robot time are given in Figure 3. The UAV
is assumed to start at a known location at time zero,
hence, all the errors are zero initially. Note that all
methods accumulate errors over time. This is natural,
since there is no absolute position reference available
(i.e., the filter is unstable) and the objective is basi-
cally to keep the error as small as possible for as long
time as possible. SKH-FCFW gives the overall best
results, with significant improvements over the boot-
strap PF and the QMC methods for small number of
particles. As a further comparison, we also give the
results for one of the reference PFs (using N = 100k
particles) and, indeed, this filter gives errors compa-
rable to those obtained with SKH-FCFW for the last
time step.

Runtimes. In these experiments, we focused on in-
vestigating how optimization could improve the error
per particle, as the gain in runtime depends on the ex-
act implementation as well as the likelihood evaluation
cost. We note that the FW-Quad algorithm scales as
O(N ∗M) for N samples and M search points when
using FW, by updating the objective on the M search
points in an online fashion (we also empirically ob-
served this linear scaling in N). On the other hand,

Simon Lacoste-Julien, Fredrik Lindsten, Francis Bach

0 20 40 60 80 100
0

2

4

6

8

10
P
o
si
ti
o
n
er
ro
r
(m

)

Robot time (s)

N = 50

PF
QMC
FW (σ2 = 0.1)
FCFW (σ2 = 0.1)
PF N = 10k
PF N = 100k

0 20 40 60 80 100
0

2

4

6

8

10

P
o
si
ti
o
n
er
ro
r
(m

)

Robot time (s)

N = 100

PF
QMC
FW (σ2 = 0.1)
FCFW (σ2 = 0.1)
PF N = 10k
PF N = 100k

50 100 200
0

5

10

15

20

25

P
o
si
ti
o
n
er
ro
r
(m

)

Number of particles

UAV - last time step error

PF
QMC
FW (σ2 = 0.1)
FCFW (σ2 = 0.1)
PF N = 10k
PF N = 100k
min/max

Figure 3: Median of position errors over 10 runs for each method. The errors are computed relative to the mean
prediction over 10 runs of a PF with 100k particles (the variation of the reference PF is also shown for PF 100k).
The error bars represent the [25%, 75%] quantile. The rightmost plot shows the error at the last time step as a
function of N . The robot time represents the SSM time steps, it does not correspond to computation time.

FCFW scales as O(N2 ∗M) as the weights on the par-
ticles possibly change at each iteration, preventing the
same online trick. SKH scales linearly with the num-
ber of time steps T (as a standard PF). For the UAV
application, the original Matlab code from Törnqvist
et al. (2009) spent an average of 0.2s per time step for
N = 50 particles (linear in the number of particles) on
a XEON E5-2620 2.10 GHz PC. The overhead of using
our Matlab implementation of FW-Quad with N = 50
is about 0.1s per time step for FW and 0.3s for FCFW;
and 0.2s for FW and 1s for FCFW for N = 100. In
practice, this means that SKH-FCFW can be run here
with 50 particles in the same time as the standard
PF is run with about 125 particles. But as Figure 3
shows, the error for SKH-FCFW with 50 particles is
still much lower than the PF with 200 particles.

5 Discussion

We have developed a method for Bayesian filtering
problems using a combination of optimization and par-
ticle filtering. The method has been demonstrated to
provide improved performance over both random sam-
pling and quasi-Monte Carlo methods. The proposed
method is modular and it can be used with different
types of particle filtering techniques, such as the Rao-
Blackwellized particle filter. Further investigating this
possibility for other classes of particle filters is a topic
for future work. Future work also includes a deeper
analysis of the convergence theory for the method in
order to develop practical guidelines for the choice of
the kernel bandwidth.

Acknowledgements

We thank Eric Moulines for useful discussions. This
work was partially supported by the MSR-Inria Joint

Centre, a grant by the European Research Council
(SIERRA project 239993) and by the Swedish Re-
search Council (project Learning of complex dynamical
systems number 637-2014-466).

References

F. Bach. Learning with submodular functions: A
convex optimization perspective. Foundations and
Trends in Machine Learning, 6(2-3):145–373, 2013.

F. Bach, S. Lacoste-Julien, and G. Obozinski. On the
equivalence between herding and conditional gradi-
ent algorithms. In Proceedings of the 29th Inter-
national Conference on Machine Learning (ICML),
pages 1359–1366, 2012.

O. Cappé, E. Moulines, and T. Rydén. Inference in
Hidden Markov Models. Springer, 2005.

J. Carpenter, P. Clifford, and P. Fearnhead. Improved
particle filter for nonlinear problems. IEE Proceed-
ings Radar, Sonar and Navigation, 146(1):2–7, 1999.

R. Chen and J. S. Liu. Mixture Kalman filters. Journal
of the Royal Statistical Society: Series B, 62(3):493–
508, 2000.

Y. Chen, M. Welling, and A. Smola. Super-
samples from kernel herding. In Proceedings of the
26th International Conference on Machine Learning
(ICML), 2010.

R. Douc, E. Moulines, and J. Olsson. On the long-
term stability of bootstrap-type particle filters. In
System Identification, volume 16, pages 1131–1136,
2012.

A. Doucet and A. Johansen. A tutorial on particle
filtering and smoothing: Fifteen years later. In
D. Crisan and B. Rozovsky, editors, The Oxford
Handbook of Nonlinear Filtering. Oxford University
Press, 2011.

Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering

A. Doucet, S. J. Godsill, and C. Andrieu. On sequen-
tial Monte Carlo sampling methods for Bayesian
filtering. Statistics and Computing, 10(3):197–208,
2000.

J. C. Dunn. Convergence rates for conditional gra-
dient sequences generated by implicit step length
rules. SIAM Journal on Control and Optimization,
18:473–487, 1980.

M. Frank and P. Wolfe. An algorithm for quadratic
programming. Naval Research Logistics Quarterly,
3:95–110, 1956.

M. Gerber and N. Chopin. Sequential quasi-Monte
Carlo. arXiv preprint arXiv:1402.4039v5, 2014.

N. J. Gordon, D. J. Salmond, and A. F. M.
Smith. Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. Radar and Signal Pro-
cessing, IEE Proceedings F, 140(2):107–113, Apr.
1993.

A. Gretton, K. M. Borgwardt, M. J. Rasch,
B. Schölkopf, and A. Smola. A kernel two-sample
test. The Journal of Machine Learning Research,
13:723–773, 2012.

M. Jaggi. Revisiting Frank-Wolfe: Projection-free
sparse convex optimization. In Proceedings of the
30th International Conference on Machine Learning
(ICML), 2013.

D. Ormoneit, C. Lemieux, and D. J. Fleet. Lattice
particle filters. In Proceedings of the 17th Confer-
ence on Uncertainty in Artificial Intelligence (UAI),
pages 395–402, 2001.

V. Philomin, R. Duraiswami, and L. Davis. Quasi-
random sampling for condensation. In Proceedings
of the 6th European Conference on Computer Vision
(ECCV), 2000.

M. K. Pitt and N. Shephard. Filtering via simulation:
Auxiliary particle filters. Journal of the American
Statistical Association, 94(446):590–599, 1999.

B. Ristic, S. Arulampalam, and N. Gordon. Beyond
the Kalman filter: particle filters for tracking appli-
cations. Artech House, London, UK, 2004.

A. Smola, A. Gretton, L. Song, and B. Schölkopf. A
Hilbert space embedding for distributions. In Al-
gorithmic Learning Theory, pages 13–31. Springer,
2007.

B. K. Sriperumbudur, A. Gretton, K. Fukumizu,
B. Schölkopf, and G. R. Lanckriet. Hilbert space em-
beddings and metrics on probability measures. The
Journal of Machine Learning Research, 99:1517–
1561, 2010.

D. Törnqvist, T. B. Schön, R. Karlsson, and
F. Gustafsson. Particle filter SLAM with high di-

mensional vehicle model. Journal of Intelligent and
Robotic Systems, 55(4):249–266, 2009.

Simon Lacoste-Julien, Fredrik Lindsten, Francis Bach

Supplementary material

A Rates for SKH when using random search points

In this section, we show that we can get guarantees on the MMD error of the FW-Quad procedure when
approximately finding the FW vertex in step 3 of Algorithm 1 using exhaustive search through M random
samples from p. This means that despite not solving step 3 exactly, the SKH procedure with M random search
points (under assumptions of Theorem 2) is still consistent as long as M grows to infinity.

The main idea is that the rates of convergence for the Frank-Wolfe optimization procedure still holds when the
linear subproblem (step 3) is solved within accuracy of δ. More specifically, if we guarantee that the FW vertex
ḡk+1 that we use satisfy 〈J ′(gk), ḡk+1〉 ≤ ming∈M〈J ′(gk), g〉+ δ during the algorithm, then the standard O(1/k)
rate of convergence for FW carries through but within δ of the optimal objective (i.e. up to J(g∗) + δ). A simple
modification of the argument by Jaggi (2013) (who used a shrinking δ during the FW algorithm) can show this
for the step-size of γk = 2

k+2 ; we give the proofs for the step-size of γk = 1
k+1 as well as the potential faster rate

O(1/k2) for the MMD objective in Appendix F.

Let XM ⊆ X be the set of M search points, and pM be the empirical distribution for the M samples from p.
Let δM := ‖µ(pM) − µ(p)‖H which can be made small by increasing M . Consider the iteration k in FW-Quad
where we do exhaustive search on XM in step 3. We thus have:

〈gk − µp,Φ(x(k+1))〉 = min
x∈XM

〈gk − µp,Φ(x)〉 = min
x∈XM

〈gk − µ(pM) + µ(pM)− µ(p),Φ(x)〉

≤ min
x∈XM

〈gk − µ(pM),Φ(x)〉+ δMRM ,

where RM := maxx∈XM ‖Φ(x)‖ (RM ≤ R). We can thus interpret step 3 as approximately solving (within
δMRM) the linear subproblem for the Frank-Wolfe optimization of JM (g) := 1

2‖g − µ(pM)‖2H over the marginal
polytope of XM . We thus get a rate of convergence to within δMRM of ming JM (g) = 0. Finally, we have

‖gN − µ(p)‖H ≤ ‖gN − µ(pM)‖H + δM =
√

2JM (gN) + δM ≤
√

2(εN +RMδM) + δM

where εN would be the error after N steps of a standard (non-approximate) Frank-Wolfe procedure (e.g. O(1/N),
though it could be O(1/N2) if µ(pM) is in the strict interior of the marginal polytope of XM as we show in
Appendix F). Finally, we know that E[δM] ≤ R/

√
M , and we could also obtain a high probability bound for it

as well using a concentration inequality with triangular arrays. This gives the guarantee for the MMD error of
the SKH procedure with M random search points (with a term of O(1/M1/4)). Even though the rate is slow in
M , the approach is motivated for problems where the bottleneck is the evaluation of the observation probability
(which is only evaluated N times per time step) whereas M can be taken to be very large. We also note that if
H is finite dimensional and the kernel k is continuous, then an asymptotically faster rate of O(1/

√
M) can be

shown (see Appendix F), though with a worse constant that makes the comparison for smaller M less clear.

B Additional details on experiments

B.1 Mixture of Gaussians experiment

The parameters for the mixture of Gaussians p(x) =
∑K
i=1 πiN (x|µi,Σi) were randomly sampled as follows:

• The means µi’s are uniformly sampled on [−5, 5]d.

• Σi = σ2
i I where σ2

i is uniformly sampled on [0.1, 4.1].

• πi are obtained by normalizing independent uniform random variables.

Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering

10
0

10
1

10
2

10
3

10
−4

10
−2

10
0

10
2

 −0.36

 −0.98 −0.85

 −2.04

Number of particles

E
rr

 f
o

r
fu

n
c
ti
o

n
 m

e
a

n
d = 2, K = 20, σ

2
 = 1

MC

QMC

FW

FCFW

10
0

10
1

10
2

10
3

10
−4

10
−2

10
0

10
2

 −0.49
 −0.77
 −0.38 −0.39

Number of particles

E
rr

 f
o

r
fu

n
c
ti
o

n
 m

e
a

n

d = 5, K = 100, σ
2
 = 1

MC

QMC

FW

FCFW

10
0

10
1

10
2

10
3

10
−4

10
−2

10
0

10
2

 −0.49
 −0.77

 −1.03

 −1.55

Number of particles

E
rr

 f
o

r
fu

n
c
ti
o

n
 m

e
a

n

d = 5, K = 100, σ
2
 = 100

MC

QMC

FW

FCFW

10
0

10
1

10
2

10
3

10
−4

10
−2

10
0

10
2

 −0.47 −0.63

 −0.93

 −1.54

Number of particles

M
M

D
 E

rr

d = 2, K = 20, σ
2
 = 1

MC

QMC

FW

FCFW

10
0

10
1

10
2

10
3

10
−4

10
−2

10
0

10
2

 −0.53 −0.53 −0.57 −0.57

Number of particles

M
M

D
 E

rr

d = 5, K = 100, σ
2
 = 1

MC

QMC

FW

FCFW

10
0

10
1

10
2

10
3

10
−4

10
−2

10
0

10
2

 −0.58
 −0.73

 −1.01

 −1.62

Number of particles

M
M

D
 E

rr

d = 5, K = 100, σ
2
 = 100

MC

QMC

FW

FCFW

Figure 4: Error on the mean function (top tow) and MMD error (bottom row) for the mixture of Gaussians
experiment. The first column is for K = 20 and d = 2. The next two columns are for the same mixture of
Gaussians in higher dimension d = 5 with K = 100 components, but running FW-Quad with σ2 = 1 (middle
column) or σ2 = 100 (last column). We see that using a higher σ2 helps significantly in higher dimension. The
dashed lines are linear fits with slopes reported next to the axes.

Figure 4 present additional results for the mixture of Gaussians experiments. From our experiments, we make
the following observations:

– FCFW always performs best (this was observed similarly in Bach et al. (2012) but for other pairs of distribution
/ kernel).

– As d increases, the difference between the methods tapers off for a fixed σ2, but increasing σ2 gives better
results for FW and FCFW than the others (see for example the last column of Figure 4).

– The FW-LS results are identical to FW, and so we have excluded them from the plots for clarity.
– The improvement of QMC over MC decreases as the number of mixture components K increase. FW and

FCFW are not affected by K as much.

B.2 Synthetic data examples and additional results

In this section we provide additional details and results for the synthetic data examples. The four models that
were considered are given by:

LGSS, d = 3 on the form

xt+1 = Axt + vt, vt ∼ N (0, I),

yt+1 = Cxt + et, et ∼ N (0, 0.1)

with (A,C) being an observable pair. The system has poles in −0.2825 and −0.3669± 0.0379i.

LGSS, d = 15 on the form

xt+1 = Axt + vt, vt ∼ N (0, I),

yt+1 = Cxt + et, et ∼ N (0, 0.1)

Simon Lacoste-Julien, Fredrik Lindsten, Francis Bach

20 50 100

10
−1

10
0

 −0.49

Number of particles

RMSE, JMLS

 −0.46

 −0.20 −0.21

PF
QMC
FW (σ2 = 0.01)
FCFW (σ2 = 0.01)
min/max

20 50 100

10
−1

10
0

 −0.49

Number of particles

RMSE, JMLS

 −0.46 −0.90
 −0.91

PF
QMC
FW (σ2 = 0.1)
FCFW (σ2 = 0.1)
min/max

20 50 100

10
−1

10
0

 −0.49

Number of particles

RMSE, JMLS

 −0.46

 −0.21
 −0.32

PF
QMC
FW (σ2 = 1)
FCFW (σ2 = 1)
min/max

Figure 5: RMSE for JMLS, using σ2 = 0.01, σ2 = 0.1, and σ2 = 1 (left to right).

20 50 100 200
10

−2

10
−1

10
0

10
1

 −0.81

Number of particles

RMSE, Nonlinear benchmark

 −0.89
 −1.14

 −2.52

PF
QMC
FW (σ2 = 0.01)
FCFW (σ2 = 0.01)
min/max

20 50 100 200
10

−2

10
−1

10
0

10
1

 −0.81

Number of particles

RMSE, Nonlinear benchmark

 −0.89

 −1.26
 −1.08

PF
QMC
FW (σ2 = 0.1)
FCFW (σ2 = 0.1)
min/max

20 50 100 200
10

−2

10
−1

10
0

10
1

 −0.81

Number of particles

RMSE, Nonlinear benchmark

 −0.89

 −0.84

 −0.04

PF
QMC
FW (σ2 = 1)
FCFW (σ2 = 1)
min/max

Figure 6: RMSE for nonlinear benchmark model, using σ2 = 0.01, σ2 = 0.1, and σ2 = 1 (left to right).

with (A,C) being an observable pair. The system has poles in 0.2456 ± 0.6594i, 0.4833, 0.3329, 0.0882 ±
0.2512i, −0.1485, −0.8045, −0.4848, −0.5252± 0.0368i, −0.6692± 0.0612i, −0.6604, and −0.6680.

JMLS on the form

P(rt+1 = `|rt = k) = Πk`,

xt+1 = Artxt + Frtvt, vt ∼ N (0, I),

yt = Crtxt +Grtet, et ∼ N (0, 1),

with Π =

(
0.7 0.3
0.3 0.7

)
, and the two system modes corresponding to observable systems with poles in −0.4429,

0.0937, and −0.6576, 0.3109, respectively.

Nonlinear benchmark model as described in the main text.

Additional results, for the different values of σ2 ∈ {0.01, 0.1, 1} are reported in Figures 5–8. We note that FCFW
sometimes seems to behave abnormally for larger N and σ2. For example, the error for FCFW with N = 200
is larger than for N = 100 for the non-linear benchmark Figure 6 when σ2 = 0.1 or σ2 = 1. We think this is
due to the numerical instability of our current implementation that simply uses the Matlab quadprog QP-solver
for the correction step in FCFW. In these cases though (low d, large σ2), the Gaussian kernel matrix becomes
rank-deficient and this brings numerical instabilities in our current implementation.

Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering

20 50 100 200

10
−1

10
0

 −0.46

Number of particles

RMSE, LGSS, d = 3

 −0.55

 −0.27 −0.27

PF
QMC
FW (σ2 = 0.01)
FCFW (σ2 = 0.01)
min/max

20 50 100 200

10
−1

10
0

 −0.46

Number of particles

RMSE, LGSS, d = 3

 −0.55

 −0.55

 −0.66

PF
QMC
FW (σ2 = 0.1)
FCFW (σ2 = 0.1)
min/max

20 50 100 200

10
−1

10
0

 −0.46

Number of particles

RMSE, LGSS, d = 3

 −0.55

 −0.56

 −0.60

PF
QMC
FW (σ2 = 1)
FCFW (σ2 = 1)
min/max

20 50 100 200

10
−1

10
0

 −0.45

Number of particles

MMD RMS, LGSS, d = 3

 −0.46
 −0.40 −0.39

PF
QMC
FW (σ2 = 0.01)
FCFW (σ2 = 0.01)
min/max

20 50 100 200

10
−1

10
0

 −0.45

Number of particles

MMD RMS, LGSS, d = 3

 −0.46

 −0.54

 −0.61

PF
QMC
FW (σ2 = 0.1)
FCFW (σ2 = 0.1)
min/max

20 50 100 200

10
−1

10
0

 −0.45

Number of particles

MMD RMS, LGSS, d = 3

 −0.46

 −0.54

 −0.64

PF
QMC
FW (σ2 = 1)
FCFW (σ2 = 1)
min/max

Figure 7: RMSE (top row) and MMD (bottom row) for LGSS (d = 3), using σ2 = 0.01, σ2 = 0.1, and σ2 = 1
(left to right).

20 50 100 200
10

−1

10
0

10
1

 −0.36

Number of particles

RMSE, LGSS, d = 15

 −0.38
 −0.14 −0.15

PF
QMC
FW (σ2 = 0.01)
FCFW (σ2 = 0.01)
min/max

20 50 100 200
10

−1

10
0

10
1

 −0.36

Number of particles

RMSE, LGSS, d = 15

 −0.38
 −0.16 −0.17

PF
QMC
FW (σ2 = 0.1)
FCFW (σ2 = 0.1)
min/max

20 50 100 200
10

−1

10
0

10
1

 −0.36

Number of particles

RMSE, LGSS, d = 15

 −0.38
 −0.36 −0.36

PF
QMC
FW (σ2 = 1)
FCFW (σ2 = 1)
min/max

20 50 100 200
10

−1

10
0

 −0.41

Number of particles

MMD RMS, LGSS, d = 15

 −0.43

 −0.18 −0.19

PF
QMC
FW (σ2 = 0.01)
FCFW (σ2 = 0.01)
min/max

20 50 100 200
10

−1

10
0

 −0.41

Number of particles

MMD RMS, LGSS, d = 15

 −0.43

 −0.19 −0.19

PF
QMC
FW (σ2 = 0.1)
FCFW (σ2 = 0.1)
min/max

20 50 100 200
10

−1

10
0

 −0.41

Number of particles

MMD RMS, LGSS, d = 15

 −0.43

 −0.35 −0.36

PF
QMC
FW (σ2 = 1)
FCFW (σ2 = 1)
min/max

Figure 8: RMSE (top row) and MMD (bottom row) for LGSS (d = 15), using σ2 = 0.01, σ2 = 0.1, and σ2 = 1
(left to right).

Simon Lacoste-Julien, Fredrik Lindsten, Francis Bach

C Proof sketch for Theorem 1

Proof sketch. We assume that the function ft : (xt+1, xt) → p(yt|xt)p(xt+1|xt) is in the tensor product
Ft ⊗Ht, with Ft defined as in the statement of the theorem. We consider the nuclear norm (Jameson, 1987):

‖ft‖Ft⊗Ht = inf
{αi,βi}∞i=1

∑
i

‖αi‖Ft‖βi‖Ht

over all possible decompositions {αi, βi}∞i=1 of ft such that, for all xt, xt+1

ft(xt+1, xt) =
∑
i

αi(xt+1)βi(xt).

In the following, let {αi, βi}∞i=1 be such a decomposition for ft. We have

(Ftν)(xt+1) =

∫
p(xt+1|xt)p(yt|xt)︸ ︷︷ ︸

ft(xt+1,xt)

dν(xt) ∈ R

µ(Ftv) =

∫
(Ftν)(xt+1)Φ(xt+1)dxt+1 ∈ Ht+1

Now we have that ‖µ(Ftν)‖Ht+1
= sup‖h‖Ht+1

=1 |〈h, µ(Ftν)〉|, so we consider for some h ∈ Ht+1:

〈h, µ(Ftν)〉 =

∫
(Ftν)(xt+1)h(xt+1)dxt+1 (by linearity and reproducing property)

=

∫ (∫
ft(xt+1, xt)dν(xt)

)
h(xt+1)dxt+1

=

∫ ∫
ft(xt+1, xt)h(xt+1)dxt+1dν(xt) (Fubini’s theorem)

=

∫ ∫ (∑
i

αi(xt+1)βi(xt)

)
h(xt+1)dxt+1dν(xt)

=
∑
i

(∫
βi(xt)dν(xt)︸ ︷︷ ︸

Eν [βi]

)(∫
αi(xt+1)h(xt+1)dxt+1

)
(Fubini’s theorem)

By (4), we have that |Eν [βi]| ≤ ‖βi‖Ht‖µ(ν)‖Ht . Thus we have:

‖µ(Ftν)‖Ht+1 = sup
‖h‖Ht+1

=1

|〈h, µ(Ftν)〉| = sup
‖h‖Ht+1

=1

∣∣∣∣∣∑
i

Eν [βi]

(∫
αi(xt+1)h(xt+1)dxt+1

)∣∣∣∣∣
≤

∑
i

∣∣Eν [βi]
∣∣︸ ︷︷ ︸

≤‖βi‖Ht‖µ(ν)‖Ht

(
sup

‖h‖Ht+1
=1

∣∣∣∣∫ αi(xt+1)h(xt+1)dxt+1

∣∣∣∣︸ ︷︷ ︸
:= ‖αi‖Ft

)

≤

(∑
i

‖αi‖Ft‖βi‖Ht

)
‖µ(ν)‖Ht .

This inequality was valid for any expansion {αi, βi}∞i=1 for ft, and thus we can take the infimum of the upper
bound over all possible expansions to get:

‖µ(Ftν)‖Ht+1
≤ ‖ft‖Ft⊗Ht‖µ(ν)‖Ht

as we wanted to prove.

Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering

D Special case for the Gaussian kernel

In this section, we explore what form ‖ · ‖F takes for the Gaussian kernel. We then show that ‖ft‖F⊗H is finite
for a simple one-dimensional linear Gaussian SSM as long as σ is small enough (and thus H is big enough, as
the size of H increases when σ decreases for the Gaussian kernel).

For the Gaussian kernel k(x, y) = exp(−‖x− y‖22/2σ2) = q(x− y), then its Fourier transform is

q̂(ω) =

∫
e−ix

>ωq(x) = (2π)d/2σde−‖ω‖
2σ2/2

and

‖h‖2H =
1

(2π)d

∫
|ĥ(ω)|2

q̂(ω)
dω

Moreover,

〈α, h〉L2 =
1

(2π)d
〈α̂, ĥ〉L2 =

1

(2π)d

∫
ĥ(ω)

q̂(ω)1/2
q̂(ω)1/2α̂(ω)dω

By applying Cauchy-Schwartz on L2 on the RHS, this leads to

|〈α, h〉L2 | 6 ‖h‖H
(

1

(2π)d

∫
|α̂(ω)|2q̂(ω)dω

)1/2

Thus, we can take the function space:

‖α‖2F =
1

(2π)d

∫
|α̂(ω)|2q̂(ω)dω =

σd

(2π)d/2

∫
|α̂(ω)|2e−‖ω‖

2σ2/2dω

This allows for quite peaky distributions for the dynamics, as Diracs are authorized (with constant Fourier
transform).

To compute an upper bound on ‖ft‖F⊗H, we simply need to find a decomposition of p(yt|xt)p(xt+1|xt) as a sum
of terms αi(xt+1)βi(xt) and bound the appropriate norms of αi and βi.

We do this for a special case in the following section.

D.1 Bound for one-dimensional Gaussian distribution

We assume that xt+1 ∈ Rd and yt ∈ Rm, and that

p(xt+1|xt) =
1

(
√

2πτ)d
e−

1
2τ2
‖xt+1−Axt‖22

p(yt|xt) =
1

(
√

2πυ)m
e−

1
2υ2
‖yt−Bxt‖22

We only do the proof for d = m = 1 and yt = 0 (constant observations) to make the proof simpler. We conjecture
that similar results hold more generally. We use the Mehler formula for w such that 2w

1−w2 = 1
τ2 (Abramowitz

and Stegun, 2012):

e2xyw/(1−w2) =
√

1− w2e(x2+y2)w2/(1−w2)
∞∑
n=0

1

n!
(w/2)nHn(x)Hn(y)

Thus

p(xt+1|xt)p(yt|xt) =
1

(
√

2πτ)
e−

1
2τ2

x2
t+1− 1

2τ2
A2x2

t e(x2
t+1+A2x2

t)w
2/(1−w2) 1

(
√

2πυ)
e−

1
2υ2

B2x2
t

√
1− w2

∞∑
n=0

1

n!
(w/2)nHn(xt+1)Hn(Axt)

=
√

1− w2
1

(
√

2πτ)

1

(
√

2πυ)

∞∑
n=0

1

n!
(w/2)nαn(xt+1)βn(xt)

Simon Lacoste-Julien, Fredrik Lindsten, Francis Bach

with, using − 1
2τ2 + w2

1−w2 = w2−w
1−w2 = −w

1+w :

αn(xt+1) = e−x
2
t+1w/(1+w)Hn(xt+1)

βn(xt) = e−A
2x2
tw/(1+w)e−

1
2υ2

B2x2
tHn(Axt).

We thus now need to compute the norms of αn and βn, by first computing the Fourier transform. We use the
representation:

Hn(x) =
n!

2iπ

∮
e−t

2+2xt dt

tn+1
,

integrating over a contour around the origin, which leads to:

α̂n(ω) =

∫
R
e−iωxHn(x)e−x

2w/(1+w)dx

=

∫
R
e−iωx

n!

2iπ

∮
e−t

2+2xte−x
2w/(1+w) dt

tn+1
dx

=
n!

2iπ

∮
e−t

2

(∫
R
e−iωxe+2xte−x

2w/(1+w)dx

)
dt

tn+1

We may now use ∫
R
e−ax

2+bxdx =

√
π

a
eb

2/4a

to get, using −1 + 4(1 + w)/4w = 1/w,

α̂n(ω) =
n!

2iπ

∮
e−t

2

(√
π(1 + w)

w
exp

(
(2t− iω)2(1 + w)

4w

))
dt

tn+1

=
n!

2iπ
exp

(
− ω2(1 + w)

4w

)√
π(1 + w)

w

∮
et

2/w exp

(
−iωt(1 + w)

w

)
dt

tn+1

=
n!

2iπ
exp

(
− ω2(1 + w)

4w

)√
π(1 + w)

w
w−n/2in

∮
e−t̃

2

exp

(
ωt̃(1 + w)√

w

)
dt̃

t̃n+1

using the change of variable t = i
√
wt̃. This leads to

α̂n(ω) = exp

(
− ω2(1 + w)

4w

)√
π(1 + w)

w
w−n/2inHn

(
ω(1 + w)

2
√
w

)
|α̂n(ω)| 6 exp

(
− ω2(1 + w)

4w

)√
π(1 + w)

w
w−n/2C exp

(
ω2(1 + w)2

8w

)
(2nn!

√
π)1/2

6 exp

(
− ω2(1− w2)

8w

)√
π(1 + w)

w
w−n/2C(2nn!

√
π)1/2

using Hn(x) 6 C exp(x2/2)(2nn!
√
π)1/2, with C = π−1/4, and − 1+w

4w + (1+w)2

8w = 1+w
4w

(
− 1 + 1+w

2

)
= − 1−w2

8w .

We thus have

‖αn‖2F =
σ√
2π

∫
|α̂n(ω)|2e−ω

2σ2/2dω

6 w−n2nn!
√
πC2π(1 + w)

w

σ√
2π

∫
exp

(
− ω2(1− w2)

4w

)
e−ω

2σ2/2dω

= w−n2nn!
√
πC2π(1 + w)

w

σ√
2π

√
2π

σ2 + (1− w2)/2w

= (w−n2nn!)× C(w, σ)

Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering

Moreover,

β̂n(ω) =

∫
R
e−iωxHn(Ax)e−x

2(A2w/(1+w)+B2/2υ2)dx

=
n!

2iπ

∫
R
e−iωx

∮
e−t

2

e+2Axt dt

tn+1
e−x

2(A2w/(1+w)+B2/2υ2)dx

=
n!

2iπ

∮
e−t

2

(∫
R
e−iωxe+2Axte−x

2(A2w/(1+w)+B2/2υ2)dx

)
dt

tn+1

=
n!

2iπ

∮
e−t

2

(√
π

A2w/(1 + w) +B2/2υ2
exp

(
[2At− iω]2

4(A2w/(1 + w) +B2/2υ2)

))
dt

tn+1

=
n!

2iπ
exp

(
−ω2

4(A2w/(1 + w) +B2/2υ2)

)√
π

A2w/(1 + w) +B2/2υ2

×
∮
e−t

2

(
exp

(
4A2t2 − 4Atiω

4(A2w/(1 + w) +B2/2υ2)

))
dt

tn+1

=
n!

2iπ
exp

(
−ω2

4(A2w/(1 + w) +B2/2υ2)

)√
π

A2w/(1 + w) +B2/2υ2

×
∮

exp

(
t2
A2 − (A2w/(1 + w) +B2/2υ2)

(A2w/(1 + w) +B2/2υ2)

)(
exp

(
−4Aitω

4(A2w/(1 + w) +B2/2υ2)

))
dt

tn+1

=
n!

2iπ
exp

(
−ω2

4(A2w/(1 + w) +B2/2υ2)

)√
π

A2w/(1 + w) +B2/2υ2

×
∮

exp

(
t2

A2/(1 + w)−B2/2υ2)

(A2w/(1 + w) +B2/2υ2)

)(
exp

(
−4Atiω

4(A2w/(1 + w) +B2/2υ2)

))
dt

tn+1

=
n!

2iπ
exp

(
−ω2

4(A2w/(1 + w) +B2/2υ2)

)√
π

A2w/(1 + w) +B2/2υ2

×
∮

exp

(
t2

1−B2(1 + w)/2υ2A2)

w +B2(1 + w)/2υ2A2

)(
exp

(
−4Atiω

4(A2w/(1 + w) +B2/2υ2)

))
dt

tn+1

We can now perform the change of variable t = it̃
√

w+B2(1+w)/2υ2A2)
1−B2(1+w)/2υ2A2 = it̃

√
w̃, with w̃ > w for B > 0.

This leads to

β̂n(ω) =
n!

2iπ
exp

(
−ω2

4(A2w/(1 + w) +B2/2υ2)

)√
π

A2w/(1 + w) +B2/2υ2

×w̃−n/2
∮

exp(−t̃2)

(
exp

(
4At̃
√
w̃ω

4(A2w/(1 + w) +B2/2υ2)

))
dt̃

t̃n+1

= exp

(
−ω2

4(A2w/(1 + w) +B2/2υ2)

)√
π

A2w/(1 + w) +B2/2υ2

×w̃−n/2H
(

2A
√
w̃ω

4(A2w/(1 + w) +B2/2υ2)

)
|β̂n(ω)| 6 exp

(
−ω2

4(A2w/(1 + w) +B2/2υ2)

)√
π

A2w/(1 + w) +B2/2υ2

×w̃−n/2(2nn!
√
π)1/2C exp

(
1

2

[
2At̃
√
w̃ω

4(A2w/(1 + w) +B2/2υ2)

]2)
6 cst × w̃−n/2(2nn!

√
π)1/2 exp(−�(A,w,B)ω2)

with

�(A,w,B) =
1

4(A2w/(1 + w) +B2/2υ2)
− 1

8

w̃

(A2w/(1 + w) +B2/2υ2)2

Simon Lacoste-Julien, Fredrik Lindsten, Francis Bach

We have �(A,w, 0) = 1−w2

8A2w . Thus, by continuity if B if small enough, �(A,w,B) > 0. Note that when we have
B = 0 and A = 1, we recover previous results for αn.

We thus have

‖βn‖2H =
1

(2π)3/2σ

∫
|β̂n(ω)|2eω

2σ2/2dω

6 (2nw̃−nn!)C(A,B,w, σ)

as long as σ2 < 4�(A,w,B).

Thus, for σ small enough, we have the norm less than a constant times

∞∑
n=0

(w/w̃)n/2 <∞

since w̃ > w. This shows that
∑∞
n=0 ‖αn‖F‖βn‖H < ∞ and thus that Ct is finite if the linear dependency

parameter B and the kernel bandwidth σ2 are small enough.

E Proof for Theorem 2

Proof We recall here that pt(xt) = p(xt|y1:(t−1)) (we are in the marginalized setting). In the notation of the

algorithm, we have p̃t+1 = 1
Ŵt
Ftp̂t. Let qt = ptZt−1 be the un-normalized marginalized predictive distribution

(and similarly, q̂t = p̂tẐt−1). We thus have p̃t+1 = 1
Ẑt
Ftq̂t. We use the metric inequality (as well as the linearity

of the MMD in each of its argument as it is related to the RKHS norm; so a scalar multiplication of a distribution
can be taken out of the MMD):

MMD(p̂t+1, pt+1) ≤ MMD(p̂t+1,
1

Ẑt
Ftq̂t)︸ ︷︷ ︸

(I) FW error := ε̂t+1

+ MMD(
1

Ẑt
Ftq̂t,

1

Zt
Ftq̂t)︸ ︷︷ ︸

(II) Normalization error

+
1

Zt
MMD(Ftq̂t, Ftqt)︸ ︷︷ ︸

(III) Initialization error

.

The term (I) is the algorithmic Frank-Wolfe error ε̂t+1 := MMD(p̂t+1, p̃t+1). The term (II) is the normalization
error which can be bounded as follows:

MMD(
1

Ẑt
Ftq̂t,

1

Zt
Ftq̂t) = ‖ 1

Ẑt
µ(Ftq̂t)‖H︸ ︷︷ ︸
(A) ≤R

1

Zt
|Zt − Ẑt|︸ ︷︷ ︸

(B) ≤‖ot‖HMMD(qt,q̂t)

≤ R‖ot‖H
Zt

MMD(q̂t, qt).

For inequality (A), we note that Ftp̂t
Ẑt

= p̃t+1 which is a normalized distribution on xt+1, this is why ‖µ(p̃t+1)‖H ≤
R as ‖Φ(x)‖H ≤ R ∀x ∈ X by assumption. For inequality (B), we have that |Zt − Ẑt| = |Eqt [ot] − Eq̂t [ot]| ≤
||ot||HMMD(qt, q̂t) by (4) under the assumption that ot ∈ H.

Finally, the initialization error term (III) can be bounded by using Theorem 1 (with ν = q̂t − qt):

MMD(Ftq̂t, Ftqt) ≤ Ct MMD(q̂t, qt),

where Ct := ‖ft‖F⊗H.

To control MMD(q̂t, qt), we now only work on the un-normalized distributions:

MMD(q̂t, qt) ≤ MMD(q̂t, Ft−1q̂t−1)︸ ︷︷ ︸
:= εt

+ MMD(Ft−1q̂t−1, Ft−1qt−1)︸ ︷︷ ︸
≤Ct−1 MMD(q̂t−1,qt−1)

≤
t∑

u=1

εu

(
t−1∏
k=u

Ck

)
,

by repeating the arguments for smaller t’s and unrolling the recursion (and recall that
∏t−1
u=t(·) = 1 by convention).

Combining the three terms, we thus get:

MMD(p̂t+1, pt+1) ≤ ε̂t+1 + (R‖ot‖H + Ct)

t∑
u=1

εu
Zt

(
t−1∏
k=u

Ck

)
. (7)

Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering

Finally, we transform back the εt errors in the algorithmic quantities ε̂t that the FW algorithm measures:

ε̂t+1 = MMD(p̂t+1,
1

Ŵt

Ftp̂t) = MMD(
1

Ẑt
q̂t+1,

1

Ŵt

Ft
q̂t

Ẑt−1

) =
1

Ẑt
MMD(q̂t+1, Ftq̂t) =

1

Ẑt
εt+1.

And so we can rewrite:
εu
Zt

= ε̂u
Ẑu−1

Zt
= ε̂u

1

Wt

(
t−1∏
k=u

1

Wk

)(
u−1∏
k=1

Ŵk

Wk

)
︸ ︷︷ ︸

:=κu

.

We expect κu =
∏u−1
k=1

Ŵk

Wk
≈ 1 as the errors on the normalization constants could hopefully go in both direction

and thus cancel each other, though in the worst case it could also grow with u. Substituting back in (7), we get
what we wanted to prove:

MMD(p̂t+1, pt+1) ≤ ε̂t+1 +
(R‖ot‖H + Ct)

Wt

t∑
u=1

κu ε̂u

(
t−1∏
k=u

Ck
Wk

)
. (8)

Remark 1 (Bound for Ẑt). For parameter estimation in a HMM, one would also be interested in the quality of
approximation for Zt. We note that inequality (B) also gives us a bound on the relative error of our estimate Ẑt
for the normalization constant:

|Zt − Ẑt|
Zt

≤ ‖ot‖H
Wt

t∑
u=1

κu ε̂u

(
t−1∏
k=u

Ck
Wk

)
.

Remark 2 (Bound for joint predictive distribution pJt). To be more precise, we could have used the notation
Ht and MMDt to be explicit that the RKHS considered was for functions of xt. For example Theorem 1
really says that MMDt+1(Ftq̂t, Ftqt) ≤ Ct MMDt(q̂t, qt). But since Ht = H (in the isomorphism sense) for
all t, we did not have to worry about this. On the other hand, as Ht contains functions of xt only, we have
that µ(pt) is the same whether pt is the marginalized or the joint predictive distributions pJt (as for the joint,
the expectation in the mean map definition will marginalize out the variables x1:(t−1) as they do not appear
in Ht). This means that if we consider the joint forward transformation F Jt on a joint measures νJ on x1:t:
(F Jt ν)(xt+1, x1:t) := p(xt+1|xt)p(yt|xt)νJ(x1:t), i.e. p̃Jt+1 = 1

Wt
F Jt p

J
t (now in the joint sense), then we have

µ(Ftpt) = µ(F Jt p
J
t), and thus Theorem 1 also holds for the joint predictive distribution pJT .

Remark 3 (Bound without κu). The disadvantage of the bound (8) is the presence of the quantity κu for which
we did not provide an explicit upper bound (though we would expect it to be close to 1). To get an explicit
upper bound for the error, we can repeat a similar argument but always working with the normalized quantities:

MMD(p̂t+1, pt+1) ≤ MMD(p̂t+1,
1

Ŵt

Ftp̂t)︸ ︷︷ ︸
(I) FW error := ε̂t+1

+ MMD(
1

Ŵt

Ftp̂t,
1

Wt
Ftp̂t)︸ ︷︷ ︸

(II) Normalization error

+
1

Wt
MMD(Ftp̂t, Ftpt)︸ ︷︷ ︸

(III) Initialization error

.

The term (II) is the normalization error which can bounded similarly as before as:

MMD(
1

Ŵt

Ftp̂t,
1

Wt
Ftp̂t) = ‖ 1

Ŵt

µ(Ftp̂t)‖H︸ ︷︷ ︸
(A) ≤R

1

Wt
|Wt − Ŵt|︸ ︷︷ ︸

(B) ≤‖ot‖HMMD(pt,p̂t)

≤ R‖ot‖H
Wt

MMD(p̂t, pt).

Similarly as before, we also have for (III) that by Theorem 1 (with ν = p̂t − pt) that MMD(Ftp̂t, Ftpt) ≤
CtMMD(p̂t, pt). Combining the three terms, we get:

MMD(p̂t+1, pt+1) ≤ ε̂t+1 +
R‖ot‖H + Ct

Wt
MMD(p̂t, pt) ≤

t+1∑
u=1

ε̂u

(
t∏

k=u

ρ̃k

)
, (9)

Simon Lacoste-Julien, Fredrik Lindsten, Francis Bach

where ρ̃t := R‖ot‖H+Ct
Wt

, by unrolling the recursion for smaller t’s.

The problem with bound (9) is that ρ̃ > 1 usually due to the extra term R‖ot‖ in its definition, which is why we
preferred the tighter form (8).

Remark 4 (Removing the ot ∈ H condition in Theorem 2). We note that the condition ot ∈ H is not really
necessary in Theorem 2. If ot /∈ H, we can instead re-derive a similar argument as above but using Zt = EFtqt [1],

where 1 is the constant unit function (here on xt+1). We then have |Zt − Ẑt| ≤ ‖1‖H′ MMD′(Ftqt, Ftq̂t), where
H′ is an augmented RKHS to ensure that it contains the constant function 1. We define H′ = H if 1 ∈ H already.
If 1 /∈ H, we define H′ to be the Hilbert sum of the RKHS H and the one generated by the constant kernel 1 (and
thus H′ is a RKHS with kernel k′ = 1 + k where k is the original kernel for H; see Berlinet and Thomas-Agnan
(2004, Thm. 5)). We can show that running the Frank-Wolfe algorithm using the kernel k′ yields exactly the
same objective values and updates, and thus we can use the space H′ to analyze its behavior: Theorem 1 and
an analog of Theorem 2 then hold, but with all norms defined with respect to H′ instead.

F Faster rates for FW with approximate vertex search for the MMD objective

In this section, we provide the proofs for the rate of convergence for FW on the MMD objective J(g) :=
1
2‖g−µ(p)‖2H when an approximate vertex search is used (as mentioned in Appendix A) by extending the proofs
from Chen et al. (2010). We consider the step-size γk = 1

k+1 .8 We note that the standard step-size for Frank-

Wolfe optimization to get a O(1/k) rate is γk = 2
k+2 .9 The best rate known for general objectives when using

FW with γk = 1
k+1 is actually O(log(k)/k) (Freund and Grigas, 2013, Bound 3.2). We make use of the specific

form of the MMD objective here to prove the O(1/k) rate, as well as the faster O(1/k2) rate under additional
assumptions. For the rest of this section, we use ‖ · ‖ to mean ‖ · ‖H.

Theorem F.1 (Rates for FW-Quad with approximate vertex search). Consider the FW-Quad Algorithm 1
where an approximate vertex search is used: 〈gk − µp, ḡk+1〉 ≤ ming∈M〈gk − µp, g〉 + δ, where ḡk+1 := Φ(xk+1)
and δ ≥ 0. Suppose that µp lies in the strict interior of M with a radius r > 0, i.e. a ball of radius r centered
at µp lies within M. Recall that maxg∈M ‖g‖ ≤ R. Then we have the faster rate O(1/k2) for the objective J :

‖gk − µp‖ ≤
1

k

2R2

r
+
δ

r
. (10)

If r = 0 (note that µp ∈M), then we can still get a standard O(1/k) FW rate:

‖gk − µp‖2 ≤
1

k
4R2 + δ. (11)

Proof If a ball of a radius r centered at µp lies within M, then we have that:

min
g∈M
〈gk − µp, g − µp〉 ≤ −r‖gk − µp‖.

So the approximate vertex search yields ḡk+1 with the property:

〈gk − µp, ḡk+1 − µp〉 ≤ −r‖gk − µp‖+ δ. (12)

By using the FW update gk+1 = γkḡk+1 + (1− γk)gk with the γk = 1
k+1 step-size, we get:

‖gk+1 − µp‖2 = ‖γkḡk+1 + (1− γk)gk − µp‖2 = ‖ 1

k + 1
ḡk+1 +

k

k + 1
gk −

k + 1

k + 1
µp‖2

=
1

(k + 1)2
‖(ḡk+1 − µp) + k(gk − µp)‖2.

8We note that the rate extends to the line-search step-size as well as the improvement at each iteration can only be
better in this case considering the proof technique that we use.

9We also tried the γk = 2
k+2

step-size in the mixture of Gaussians experiment of Section 2.3, but it gave similar results

as the γk
1
k+1

step-size.

Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering

Thus if we let vk := k(gk − µp), then we get:

‖vk+1‖2 = ‖(ḡk+1 − µp) + vk‖2

= ‖ḡk+1 − µp||2 + ‖vk‖2 + 2〈vk, ḡk+1 − µp〉

≤ 4R2 + ‖vk‖2 + 2(kδ − r‖vk‖) = ‖vk‖2 + 2‖vk‖
[

2R2 + kδ

‖vk‖
− r
]
. (13)

The last inequality used the crucial strict interior assumption that yielded (12). Now let Ck := 1
r (2R2 + kδ).

Note that Ck+1 ≥ Ck. We will now proceed to show by induction that ‖vk‖ ≤ Ck for k ≥ 1. Note that the
bracket in (13) is negative if and only if ‖vk‖ ≥ Ck (i.e. ‖vk+1‖ ≤ ‖vk‖ in this case), giving the inspiration for
the Ck threshold.

First, we have that

‖v1‖ = ‖g1 − µp‖ ≤ 2R ≤ 2R
R

r
≤ C1,

by using the fact that R
r ≥ 1 since a ball of radius r fitting inM implies that the maximum norm R of elements

in M is at least r.

Now suppose that ‖vk‖ ≤ Ck, i.e. that ‖vk‖ = αCk for some α ∈ [0, 1]. Then (13) becomes:

‖vk+1‖2 ≤ α2C2
k + 2αCk[

rCk
αCk

− r] = α2C2
k + 2Ckr[1− α].

The RHS is a convex function of α, and so it is maximized at the boundary of its domain. For α = 0, we get
‖vk+1‖2 ≤ 2Ckr = 4R2 + 2kδ. For α = 1, we get ‖vk+1‖2 ≤ C2

k . And thus in general, supposing α ∈ [0, 1], we
get that ‖vk+1‖2 ≤ max{2Ckr, C2

k} = C2
k as:

C2
k = 4R2

(
R

r

)2

+ 4kδ

(
R

r

)2

+ k2

(
δ

r

)2

≥ 2Ckr = 4R2 + 2kδ

using R
r ≥ 1. This completes the induction step as this means that ‖vk+1‖ ≤ Ck ≤ Ck+1.

Thus we conclude that ‖vk‖ ≤ Ck for all k ≥ 1, i.e.

‖gk − µp‖ ≤
1

k

2R2

r
+
δ

r
.

This shows the faster O(1/k) rate (10). If we do not have µp in the strict interior of M, i.e. r = 0, then we can
unroll the inequality (13) to get:

‖vk+1‖2 ≤ 4R2 + 2kδ + ‖vk‖2

≤
k∑
l=1

(
4R2 + 2lδ

)
+ ‖v1‖2︸ ︷︷ ︸
≤4R2

≤ (k + 1)4R2 +
k(k + 1)

2
2δ.

This thus shows (11):

‖gk − µp‖2 ≤
1

k
4R2 + δ.

This translates to a slower O(1/
√
k) rate on ‖gk − µp‖ (with

√
δ precision), but note that at least it does not

have the log(k) factor from the rate by Freund and Grigas (2013).

Simon Lacoste-Julien, Fredrik Lindsten, Francis Bach

Consequence for SKH with random search points. Going back over the argument from Appendix A, we
said that using M random search points in FW-Quad was similar to approximately solving (within δMRM) the
linear subproblem for the Frank-Wolfe optimization of JM (g) := 1

2‖g − µ(pM)‖2H over the marginal polytope of
XM . We note that the marginal polytope of XM is at most M -dimensional, and thus, by using a similar argument
as in Proposition 1 of Bach et al. (2012), we could show that it contains a ball of radius rM > 0 centered at
µ(pM).10 From (10) in Theorem F.1, we can thus conclude that:

‖gk − µ(pM)‖ ≤ RM
rM

(
1

k
2RM + δM

)
.

This seems to give a faster rate, but the problem is that rM might shrink at an exponential rate with M if H
is infinite dimensional. Thus even though δM is O(1/

√
M), the dependence of δM

RM
rM

might be worse than the

previously quoted rate of O(1/M1/4); the latter is thus the general worst-case.

On the other hand, under the additional assumption that H is finite dimensional and that there is a ball of radius
r > 0 centered around µp inM (by using Proposition 1 of Bach et al. (2012) for example), then for a sufficiently
large M , we will have rM close to r. Thus for large M , we will have ‖gk − µ(pM)‖ . R

r

(
2R
k + δM

)
, and thus

‖gN − µp‖ = O
(
R2

r

(
1
N + 1√

M

))
. This gives an asymptotically faster rate than the O

(
R
(

1√
N

+ 1√
RM1/4

))
rate given in Appendix A arising from (11), but the constant is worse by a factor of R

r .

Supplementary References

M. Abramowitz and I. A. Stegun. Handbook of mathematical functions: with formulas, graphs, and mathematical
tables. Courier Dover Publications, 2012.

A. Berlinet and C. Thomas-Agnan. Reproducing Kernel Hilbert Spaces in Probability and Statistics. Springer,
2004.

R. M. Freund and P. Grigas. New analysis and results for the Frank-Wolfe method. arXiv preprint
arXiv:1307.0873v2, 2013.

G. J. O. Jameson. Summing and nuclear norms in Banach space theory. Number 8. Cambridge University Press,
1987.

10We note that as XM is finite, we do not need to make the additional assumption that the kernel k is continuous unlike
in Proposition 1 of Bach et al. (2012).

	Introduction
	Adaptive quadrature rules with Frank-Wolfe optimization
	Approximating the mean element for integration in a RKHS
	Frank-Wolfe optimization for adaptive quadrature
	Example: mixture of Gaussians

	Sequential kernel herding
	Sequential Monte Carlo
	Sequential kernel herding
	Convergence theory
	Extension for Rao-Blackwellization

	Experiments
	Sampling from a mixture of Gaussians
	Particle filtering using SKH on synthetic examples
	Vision-based UAV Localization

	Discussion
	Rates for SKH when using random search points
	Additional details on experiments
	Mixture of Gaussians experiment
	Synthetic data examples and additional results

	Proof sketch for Theorem 1
	Special case for the Gaussian kernel
	Bound for one-dimensional Gaussian distribution

	Proof for Theorem 2
	Faster rates for FW with approximate vertex search for the MMD objective

