
HAL Id: hal-01099186
https://hal.science/hal-01099186v3

Submitted on 15 Jan 2015 (v3), last revised 17 Nov 2016 (v8)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Concurrency in Snap-Stabilizing Local Resource
Allocation

Karine Altisen, Stéphane Devismes, Anaïs Durand

To cite this version:
Karine Altisen, Stéphane Devismes, Anaïs Durand. Concurrency in Snap-Stabilizing Local Resource
Allocation. [Research Report] VERIMAG. 2014. �hal-01099186v3�

https://hal.science/hal-01099186v3
https://hal.archives-ouvertes.fr

Concurrency in Snap-Stabilizing Local Resource Allocation

Karine Altisen, Stéphane Devismes, and Anaïs Durand

VERIMAG UMR 5104
Université Grenoble Alpes, France

firstname.lastname@imag.fr

Abstract

In distributed systems, resource allocation consists in managing fair access of a large number
of processes to a typically small number of reusable resources. As soon as the number of available
resources is greater than one, the efficiency in concurrent accesses becomes an important issue, as a
crucial goal is to maximize the utilization rate of resources. In this paper, we tackle the concurrency
issue in resource allocation problems. We first characterize the maximal level of concurrency we can
obtain in such problems by proposing the notion of maximal-concurrency. Then, we focus on Local
Resource Allocation problems (LRA). Our results are both negative and positive. On the negative
side, we show that it is impossible to obtain maximal-concurrency in LRA without compromising
the fairness. On the positive side, we propose a snap-stabilizing LRA algorithm which achieves a
high (but not maximal) level of concurrency, called here strong partial maximal-concurrency.

1 Introduction

Mutual exclusion [13, 23] is a fundamental resource allocation problem, which consists in managing
fair access of all (requesting) processes to a unique non-shareable reusable resource. This problem is
inherently sequential, as no two processes should access this resource concurrently. There are many
other resource allocation problems which, in contrast, allow several resources to be accessed simultane-
ously. In those problems, parallelism on access to resources may be restricted by some of the following
conditions:

1. The maximum number of resources that can be used concurrently, e.g., the `-exclusion prob-
lem [18] is a generalization of the mutual exclusion problem which allows use of ` identical
copies of a non-shareable reusable resource among all processes, instead of only one, as standard
mutual exclusion.

2. The maximum number of resources a process can use simultaneously, e.g., the k-out-of-`-exclusion
problem [25] is a generalization of `-exclusion where a process can request for up to k resources
simultaneously.

3. Some topological constraints, e.g., in the dining philosophers problem [15], two neighbors cannot
use their common resource simultaneously.

For efficiency purposes, algorithms solving such problems must be as parallel as possible. As a con-
sequence, these algorithms should be, in particular, evaluated at the light of the level of concurrency
they permit, and this level of concurrency should be captured by a dedicated property. However, most
of the solutions to resource allocation problems simply do not consider the concurrency issue, e.g.,
[4, 6, 8, 19, 20, 22, 24]

1

Now, as quoted by Fischer et al. [18], specifying resource allocation problems without including a
property of concurrency may lead to degenerated solutions, e.g., any mutual exclusion algorithm real-
izes the safety and the fairness of `-exclusion. To address this issue, Fischer et al. [18] proposed an
ad hoc property to capture concurrency in `-exclusion. This property is called avoiding `-deadlock and
is informally defined as follows: “if fewer than ` processes are executing their critical section,1 then
it is possible for another process to enter its critical section, even though no process leaves its criti-
cal section in the meantime.” Some other properties, inspired from the avoiding `-deadlock property,
have been proposed to capture the level of concurrency in other resource allocation problems, e.g., k-
out-of-`-exclusion [10] and committee coordination [5]. However, until now, all existing properties of
concurrency are specific to a particular problem.

In this paper, we first propose to generalize the definition of avoiding `-deadlock to any resource allo-
cation problems. We call this new property the maximal-concurrency. Then, we consider the maximal-
concurrency in the context of the Local Resource Allocation (LRA) problem, defined by Cantarell et
al. [8]. LRA is a generalization of resource allocation problems in which resources are shared among
neighboring processes. Dining philosophers, local reader-writers, local mutual exclusion, and local
group mutual exclusion are particular instances of LRA. In contrast, local `-exclusion and local k-out-
of-`-exclusion cannot be expressed with LRA although they also deal with neighboring resource sharing.

Now, we show that algorithms for any instance of this important problem cannot achieve maximal-
concurrency. This impossibility result is mainly due to the fact that fairness of LRA and maximal-
concurrency are incompatible properties: it is impossible to implement an algorithm achieving both
properties. As unfair resource allocation algorithms are clearly unpractical, we propose to weakened the
property of maximal-concurrency. We call partial maximal-concurrency this weaker version of maximal
concurrency. The goal of partial maximal-concurrency is to capture the maximal level of concurrency
that can be obtained in LRA without compromising fairness.

We propose a LRA algorithm achieving (strong) partial maximal-concurrency in bidirectional iden-
tified networks of arbitrary topology. As additional feature, this algorithm is snap-stabilizing [7]. Snap-
stabilization is a versatile property which enables a distributed system to efficiently withstand transient
faults. Informally, after transient faults cease, a snap-stabilizing algorithm immediately resumes correct
behavior, without external intervention. More precisely, a snap-stabilizing algorithm guarantees that any
computation started after the faults cease will operate correctly. However, we have no guarantees for
those executed all or a part during faults. By definition, snap-stabilization is a strengthened form of
self-stabilization [14]: after transient faults cease, a self-stabilizing algorithm eventually resume correct
behavior, without external intervention.

There exist many algorithms for particular instances of the LRA problem. Many of these solutions
have been proven to be self-stabilizing, e.g., [4, 6, 8, 19, 20, 22, 24]. In [6], Boulinier et al. propose
a self-stabilizing unison algorithm which allows to solve local mutual exclusion, local group mutual
exclusion, and the local reader-writers problem. There are also many self-stabilizing algorithms for the
local mutual exclusion [4, 19, 22, 24]. In [20], Huang proposes a self-stabilizing algorithm solving the
dining philosophers problem. A self-stabilizing drinking philosophers algorithm is given in [24]. In [8],
Cantarell et al. generalize the above problems by introducing the LRA problem. They also propose a
self-stabilizing algorithm for that problem. To the best of our knowledge, no other paper deals with the
general instance of LRA and no paper proposes snap-stabilizing solution for any particular instance of
LRA. Finally, none of the aforementioned papers (especially [8]) consider the concurrency issue.

Roadmap. The next section introduce the computation model and the specification of the LRA prob-
lem. In Section 3, we introduce the property of maximal-concurrency, show the impossibility result,
and introduce the property of partial maximal-concurrency. Our algorithm is presented in Section 4.

1The critical section is the code that manages the access of a process to its allocated resources.

2

We prove its correctness in Section 5 and its partial maximal-concurrency in Section 6. We conclude in
Section 7.

2 Computational Model and Specifications

2.1 Distributed Systems

We consider distributed systems composed of n processes. A process p can (directly) communicate
with a subset Np of other processes, called its neighbors. These communications are assumed to be
bidirectional, i.e., for any two processes p and q, q ∈ Np if and only if p ∈ Nq. Hence, the topology of
the network can be modeled by a simple undirected graph G = (V,E), where V is the set of processes
and E is the set of edges representing (direct) communication relations. Moreover, we assume that each
process has a unique ID, a natural integer. By abuse of notation, we identify the process with its own
ID, whenever convenient.

2.2 Locally Shared Memory Model

We consider the locally shared memory model in which the processes communicate using a finite number
of locally shared registers, called variables. Each process can read its own variables and those of its
neighbors, but can only write to its own variables. The state of a process is the vector of values of all its
variables. A configuration γ of the system is the vector of states of all processes. We denote by γ(p) the
state of a process p in a configuration γ.

A distributed algorithm consists of one program per process. The program of a process p is com-
posed of a finite number of actions, where each action has the following form:

(〈priority〉) 〈label〉 : 〈guard〉 → 〈statement〉

The labels are used to identify actions. The guard of an action in the program of process p is a Boolean
expression involving the variables of p and its neighbors. Priorities are used to simplify the guards of
the actions. The actual guard of an action “(j) L : G → S” at p is the conjunction of G and the
negation of the disjunction of all guards of actions at p with priority i < j. An action of priority i is said
to be of higher priority than any action of priority i < j. If the actual guard of some action evaluates
to true, then the action is said to be enabled at p. By definition, a process p is not enabled to execute
any (lower priority) action if it is enabled to execute an action of higher priority. If at least one action
is enabled at p, p is also said to be enabled. We denote by Enabled(γ) the set of processes enabled
in configuration γ. The statement of an action is a sequence of assignments on the variables of p. An
action can be executed only if it is enabled. In this case, the execution of the action consists in executing
its statement.

The asynchronism of the system is materialized by an adversary, called the daemon. In a configu-
ration γ, if there is at least one enabled process (i.e., Enabled(γ) 6= ∅), then the daemon selects a non
empty subset S of Enabled(γ) to perform an (atomic) step: Each process of S atomically executes one
of its enabled action in γ, leading the system to a new configuration γ′. We denote by 7→ the relation
between configurations such that γ 7→ γ′ if and only if γ′ can be reached from γ in one (atomic) step.
An execution is a maximal sequence of configurations γ0, γ1, . . . such that ∀i > 0, γi−1 7→ γi. The term
“maximal” means that the execution is either infinite, or ends at a terminal configuration γ in which
Enabled(γ) is empty.

In this paper, we assume a distributed weakly fair daemon. “Distributed” means that while the con-
figuration is not terminal, the daemon should select at least one enabled process, maybe more. “Weakly
fair” means that there is no infinite suffix of execution in which a process p is continuously enabled
without ever being selected by the daemon.

3

2.3 Snap-Stabilizing Local Resource Allocation

In resource allocation problems, a typically small amount of reusable resources is shared among a large
number of processes. A process may spontaneously request for one or several resources. When granted,
the access to the requested resource(s) is done using a special section of code, called critical section.
The process can only hold resources for a finite time: eventually, it should release these resources to the
system, in order to make them available for other requesting processes. In particular, this means that the
critical section is always assumed to be finite. In the following, we denote by Rp the set of resources
that can be accessed by a process p.

2.3.1 Local Resource Allocation

The Local Resource Allocation (LRA) problem [8] is based on the notion of compatibility: two resources
X and Y are said to be compatible if two neighbors can concurrently access them. Otherwise, X and Y
are said to be conflicting. In the following, we denote by X
 Y (resp. X 6
 Y) the fact that X and Y
are compatible (resp. conflicting). Notice that
 is a symmetric relation.

Using the compatibility relation, the local resource allocation problem consists in ensuring that
every process which requires a resource r eventually accesses r while no other conflicting resource is
currently used by a neighbor. Notice that the case where there are no conflicting resources is trivial: a
process can always use a resource whatever the state of its neighbors. So, from now on, we will always
assume that there exists at least one conflict, i.e., there are (at least) two neighbors p, q and two resources
X , Y such that X ∈ Rp, Y ∈ Rq and X 6
 Y .

Specifying the relation
, it is possible to define some classic resource allocation problems in which
the resources are shared among neighboring processes.

Example 1: Local Mutual Exclusion. In the local mutual exclusion problem, no two neighbors can
concurrently access the unique resource. So there is only one resource X common to all processes and
X 6
 X .

Example 2: Local Readers-Writers. In the local readers-writers problem, the processes can access a
file in two different modes: a read access (the process is said to be a reader) or a write access (the process
is said to be a writer). A writer must access the file in local mutual exclusion, while several reading
neighbors can concurrently access the file. We represent these two access modes by two resources at
every process: R for a “read access” and W for a “write access.” Then, R
 R, but W 6
 R and
W 6
W .

Example 3: Local Group Mutual Exclusion. In the local group mutual exclusion problem, there are
several resources r0, r1, . . . , rk shared between the processes. Two neighbors can access concurrently
the same resource but cannot access different resources at the same time. Then:

∀i ∈ {0, . . . , k},∀j ∈ {0, . . . , k},

{
ri
 rj if i = j

ri 6
 rj otherwise

2.3.2 Snap-Stabilization

LetA be a distributed algorithm. A specification SP is a predicate over all executions ofA. In [7], snap-
stabilization has been defined as follows: A is snap-stabilizing w.r.t. SP if starting from any arbitrary
configuration, all its executions satisfy SP .

Of course, not all specifications — in particular their safety part — can be satisfied when considering
a system which can start from an arbitrary configuration. Actually, snap-stabilization’s notion of safety

4

is user-centric: when the user initiates a computation, then the computed result should be correct. So,
we express a problem using a guaranteed service specification [2]. Such a specification consists in
specifying three properties related to the computation start, computation end, and correctness of the
delivered result. (In the context of LRA, this latter property will be referred to as “resource conflict
freedom.”)

To formally define the guaranteed service specification of the local resource allocation problem, we
need to introduce the following four predicates, where p is a process, r is a resource, and e = (γi)i≥0 is
an execution:

• Request(γi, p, r) means that an application at p requires r in configuration γi. We assume that if
Request(γi, p, r) holds, it continuously holds until p accesses r.

• Start(γi, γi+1, p, r) means that p starts a computation to access r in γi 7→ γi+1.

• Result(γi . . . γj , p, r) means that p obtains access to r in γi−1 7→ γi and p ends the computation
in γj 7→ γj+1. Notably, p released r between γi and γj .

• NoConflict(γi, p) means that, in γi, if a resource is allocated to p, then none of its neighbors is
using a conflicting resource.

These predicates will be instantiated with the variables of the local resource allocation algorithm.
Below, we define the guaranteed service specification of LRA.

Definition 1 (Local Resource Allocation). Let A be an algorithm. An execution e = (γi)i≥0 of A
satisfies the guaranteed service specification of LRA, noted SPLRA, if the three following properties
hold:

Resource Conflict Freedom: If a process p starts a computation to access a resource, then there is no
conflict involving p during the computation:

∀k ≥ 0,∀k′ > k, ∀p ∈ V,∀r ∈ Rp,
[
Result(γk . . . γk′ , p, r) ∧

(
∃l < k, Start(γl, γl+1, p, r)

)]
⇒
[
∀i ∈ {k, . . . , k′}, NoConflict(γi, p)

]
Computation Start: If an application at process p requests resource r, then p eventually starts a com-

putation to obtain r:

∀k ≥ 0,∀p ∈ V,∀r ∈ Rp,
[
∃l > k,Request(γl, p, r)⇒ Start(γl, γl+1, p, r)

]
Computation End: If process p starts a computation to obtain resource r, the computation eventually

ends (in particular, p obtained r during the computation):

∀k ≥ 0,∀p ∈ V,∀r ∈ Rp, Start(γk, γk+1, p, r)⇒
[
∃l > k,∃l′ > l,Result(γl . . . γl′ , p, r)

]
Hence, an algorithm A is snap-stabilizing for the LRA problem if starting from any arbitrary con-

figuration, all its executions satisfy SPLRA.2

3 Concurrency

Many existing resource allocation algorithms, especially self-stabilizing ones [4, 6, 8, 19, 20, 22, 24],
do not consider the concurrency issue. In [18], authors propose a concurrency property ad hoc to `-
exclusion. We now define the maximal-concurrency, which generalizes the definition of [18] to any
resource allocation problem.

2By contrast, a non-stabilizing algorithm achieves LRA if all its executions starting from a predefined initial configuration
satisfy SPLRA.

5

3.1 Maximal-Concurrency

Informally, maximal-concurrency can be defined as follows: if there are processes that can access some
resource they are requesting without violating the safety of the considered resource allocation problem,
then at least one of them should eventually access one of its requested resources, even if no process
releases the resource it holds in the meantime.

Let PCS(γ) be the set of processes that are executing their critical section in γ, i.e., the set of
processes holding resources in γ. Let PReq(γ) be the set of processes that are requesting in γ. Let
PFree(γ) ⊆ Preq(γ) be the set of requesting processes that can access their requested resource(s) in γ
without violating the safety of the considered resource allocation problem. We denote by γ(p).req the
resource(s) requested by process p in γ. Let

continuousCS(γi . . . γj) ≡ ∀k ∈ {i, . . . , j − 1}, PCS(γk) ⊆ PCS(γk+1)

Definition 2 (Maximal-Concurrency). An algorithm is maximal-concurrent if and only if ∀e = (γi)i≥0 ∈
E , ∀i ≥ 0, ∃N ∈ N, ∀j > N ,(

continuousCS(γi . . . γi+j) ∧ PFree(γi) 6= ∅
)
⇒

(
∃k ∈ {i, . . . , i+ j − 1},∃p ∈ V,

p ∈ PFree(γk) ∩ PCS(γk+1)
)

The two examples below show the versatility of our property: we instantiate the set PFree according
to the considered problem.

Example 1: `-Exclusion Maximal-Concurrency. In the `-exclusion problem, up to ` processes can
execute their critical section concurrently . Hence,

PFree(γ) = ∅ if |PCS(γ)| = `; PFree(γ) = PReq(γ) otherwise

Using this latter instantiation, we obtain a definition of maximal concurrency which is equivalent to
the “avoiding `-deadlock” property of Fischer et al. [18].

Example 2: Local Resource Allocation Maximal-Concurrency. In the local resource allocation
problem, a requesting process is allowed to enter its critical section if all its neighbors in critical section
are using resources which are compatible with its request:

PFree(γ) = {p ∈ PReq(γ) | ∀q ∈ Np, (q ∈ PCS(γ)⇒ γ(q).req
 γ(p).req)}

The maximal-concurrency property can also be defined using the following alternative definition:

Definition 3 (Maximal Concurrency). An algorithm is maximal concurrent if and only if ∀e = (γi)i≥0 ∈
E , ∀i ≥ 0, ∃T ∈ N, ∀t ≥ T ,

continuousCS(γi . . . γi+t)⇒ PFree(γi+t) = ∅

Lemma 1. Definition 2 and Definition 3 are equivalent.

Proof. Let e = (γi)i≥0 ∈ E , i ≥ 0.
Assume Definition 2 holds. If PFree(γi) is not empty, there exists some N ∈ N such that if

continuousCS continuously holds between γi and γi+N+1 the set PFree strictly decreases meanwhile
(as it cannot increase). Applying inductively this step of reasoning and as PFree(γi) is finite proves that
within a finite number of steps PFree becomes empty provided that continuousCS continuously holds.

Conversely, assume that for some T ∈ N, for all t ≥ T , continuousCS(γi . . . γi+t)⇒ PFree(γi+t) =
∅. If PFree(γi) = ∅, we are done. Otherwise, again the set PFree can never increase from γi to γi+T .
But, from γi to γi+t, it passes from non-empty to empty: this means it strictly decreases meanwhile. We
pose N ∈ N the maximum number of steps between two processes going out PFree: with such N , the
proposition of Definition 2 becomes true.

6

Using the latter definition, remark that an algorithm is not maximal concurrent if and only if ∃e =
(γi)i≥0 ∈ E , ∃i ≥ 0, ∀T ∈ N, ∃t ≥ T , continuousCS(γi . . . γi+t) ∧ PFree(γi+t) 6= ∅.

3.2 Maximal Concurrency vs. Fairness

Definition 4 below gives a definition of fairness classically used in resource allocation problems. No-
tably, Computation Start and End properties of Definition 1 trivially implies this fairness property. Next,
Theorem 1 states that no LRA algorithm (stabilizing or not) can achieve maximal-concurrency. Actually,
its proof is based on the incompatibilty between fairness and maximal-concurrency.

Definition 4 (Fairness). Each time a process is (continuously) requesting a resource r, it eventually
accesses r.

Theorem 1. It is impossible to design a LRA algorithm for arbitrary networks that satisfies maximal-
concurrency.

Proof. Assume, by contradiction, that there is a local resource allocation algorithm A (stabilizing or
not) which satisfies maximal-concurrency. Let consider the following graph: G = (V,E) where V =
{p1, p2, p3} and E = {(p1, p2), (p2, p3)}. Let X and Y be two resources such that X 6
 Y such that
X ∈ Rp1 , Y ∈ Rp2 , and X ∈ Rp3 (notice that we can have X = Y). We assume that, when p1 and p3
request a resource, they request X , and, when p2 requests a resource, it requests Y . Below, we exhibit a
possible execution e of A on G where fairness is violated if maximal-concurrency is achieved. Figure 1
illustrates the proof.

First, assume that p1 continuously requests X while p2 and p3 are idle (Configuration 1.(a)). As A
satisfies the fairness property, p1 eventually executes its critical section to accessX . This critical section
can last an arbitrary long (yet finite) time (Figure 1.(b)).

Then, p2 and p3 starts continuously requesting (Y for p2 and X for p3). To satisfy the maximal-
concurrency property, p3 must eventually obtain resourceX , even if p1 does not finish its critical section
in the meantime. In this case, the system reaches the configuration given in Figure 1.(d).

Then, it is possible that p1 ends its critical section and releases resource X right after Configura-
tion 1.(d). But, in this case, p2 still cannot access Y because Y is conflicting with the resource X
currently used by p3. So, the system can reach Configuration 1.(e). If p1 continuously requests X again
right after Configuration 1.(e), we obtain Configuration 1.(f). Now, the execution of the critical section
of p3 may last an arbitrary long (yet finite) time, and p1 should again accessX , even if p3 does not finish
its critical section in the meantime, by maximal-concurrency. So, the system can reach Configuration
1.(g).

Now, if p3 releases its resource and then continuously requests it again, we retrieve a configuration
similar to the one of Figure 1.(c). We can repeat this scheme infinitely often so that p2 continuously
requests Y but never access it: the fairness property is violated, a contradiction.

3.3 Partial Maximal-Concurrency

To circumvent the previous impossibility result, we propose a weaker version of maximal concurrency,
called partial maximal-concurrency.

Definition 5 (Partial Maximal-Concurrency). An algorithm A is partially maximal-concurrent if and
only if ∀e = (γi)i≥0 ∈ E , ∀i ≥ 0, ∃T ∈ N such that ∀t ≥ T , ∃X ⊆ V such that

continuousCS(γi . . . γi+t)⇒ PFree(γi+t) ⊆ X

7

(a)

p1 p2 p3

X

(b)
X

(c)
X Y X

(d)
X Y X

(e)
Y X

(f)
X Y X

(g)
X Y X

(h)
X Y

fairness
maximal concurrency

maximal concurrency

Figure 1: Maximal concurrency vs. fairness. The processes in black are executing their critical section.
The processes in gray are requesting resources. The processes in white are idle. Requested resources
are given in the bubbles next to the nodes.

Notice that, by definition, a maximal-concurrent algorithm is also partially maximal-concurrent.
The proof of Theorem 1 reveals that fairness and maximal concurrency are contradictory in the

following situation: some neighbors of a process alternatively use resources which are conflicting with
its own request. So, to achieve fairness, we must relax the expected level of concurrency in such a way
that at least in that situation p eventually satisfies its request. To ensure this, any LRA algorithm should
then eventually allow p to prevent its requesting neighbors from entering their critical section, even if
p cannot currently satisfies its request (i.e., even if one of its neighbor is using a conflicting resource)
and even if some of its requesting neighbors can enter critical section without creating any conflict.
Hence, in the worst case, p has one neighbor holding a conflicting resource and it should prevent all
other neighbors to satisfy their requests, in order to eventually satisfy its own request (and so to ensure
fairness).

We derive the following refinement of partial maximal concurrency based on this latter observation:
this seems to be the finest concurrency we can expect in LRA algorithm.

Definition 6 (Strong Partial Maximal-Concurrency). An algorithm A is strongly partially maximal-
concurrent if and only if ∀e = (γi)i≥0 ∈ E , ∀i ≥ 0, ∃T ∈ N such that ∀t ≥ T , ∃p, q ∈ V , q ∈ Np such
that

continuousCS(γi . . . γi+t)⇒ PFree(γi+t) ⊆ Np\{q}

In the next section, we show that strong partial maximal-concurrency can be realized by a snap-
stabilizing LRA algorithm.

4 Local Resource Allocation Algorithm

We now propose a snap-stabilizing LRA algorithm which achieves the strong partial maximal concur-
rency. This algorithm consists of two modules: Algorithm LRA, which manages local resource alloca-
tion, and Algorithm T C which provides a self-stabilizing token circulation service to LRA, whose goal
is to ensure fairness.

4.1 Composition

These two modules are composed using a fair composition [16], denoted LRA ◦ T C. In such a compo-
sition, each process executes a step of each algorithm alternately.

8

Notice that the purpose of this composition is only to simplify the design of the algorithm: a com-
posite algorithm written in the locally shared memory model can be translated into an equivalent non-
composite algorithm.

Consider the fair composition of two algorithms A and B. The equivalent non-composite algorithm
C can be obtain by applying the following rewriting rule: In C, a process has its variables in A, those in
B, and an additional variable b ∈ {1, 2}. Assume now that A is composed of x actions denoted by

lblAi : grdAi → stmtAi ,∀i ∈ {1, . . . , x}

and B is composed of y actions denoted by

lblBj : grdBj → stmtBj ,∀j ∈ {1, . . . , y}

Then, C is composed of the following m+ n+ 2 actions:

∀i ∈ {1, . . . , x}, lblAi : (b = 1) ∧ grdAi → stmtAi ; b← 2

∀j ∈ {1, . . . , y}, lblBj : (b = 2) ∧ grdBj → stmtBj ; b← 1

lbl1 : (b = 1) ∧ ¬grdA1 ∧ ¬grdA2 ∧ · · · ∧ ¬grdAx → b← 2

lbl2 : (b = 2) ∧ ¬grdB1 ∧ ¬grdB2 ∧ · · · ∧ ¬grdBy → b← 1

4.2 Token Circulation Module

We assume that T C is a self-stabilizing black box which allows LRA to emulate a self-stabilizing
token circulation. T C provides two outputs to each process p in LRA: the predicate Token(p) and
the statement PassToken(p). The predicate Token(p) expresses whether the process p holds a token
or not. The statement PassToken(p) can be used to pass the token from p to one of its neighbor. Of
course, it should be executed (by LRA) only if Token(p) holds. Precisely, we assume that T C satisfies
the following properties.

Property 1 (Stabilization). T C stabilizes, i.e., reaches and remains in configurations where there is a
unique token in the network, independently of any call to PassToken(p) at any process p.

Property 2. Once T C has stabilized, ∀p ∈ V , if Token(p) holds, then Token(p) is continuously true
until PassToken(p) is invoked.

Property 3 (Fairness). Once T C has stabilized, if ∀p ∈ V , PassToken(p) is invoked in finite time each
time Token(p) holds, then ∀p ∈ V , Token(p) holds infinitely often.

To design T C we proceed as follows. There exist several self-stabilizing token circulations for
arbitrary rooted networks [9, 11, 21] that contain a particular action, T : Token(p)→ PassToken(p),
to pass the token, and that stabilizes independently of the activations of action T . Now, the networks
we consider are not rooted, but identified. So, to obtain a self-stabilizing token circulation for arbitrary
identified networks, we can fairly compose any of them with a self-stabilizing leader election algorithm
[3, 17, 12, 1] using the following additional rule: if a process considers itself as leader it executes the
token circulation program for a root; otherwise it executes the program for a non-root. Finally, we obtain
T C by removing action T from the resulting algorithm, while keeping Token(p) and PassToken(p)
as outputs, for every process p.

9

Algorithm 1 Algorithm LRA for every process p
Variables
p.status ∈ {Out,Wait,Blocked, In}
p.token ∈ B

Inputs
p.req ∈ Rp ∪ {⊥}: Variable from the application
Token(p): Predicate from T C, indicate that p holds the token
PassToken(p): Statement from T C, pass the token to a neighbor

Macros
WaitingNeigh(p) ≡ {q ∈ Np | q.status = Wait}
LocalMax(p) ≡ max {q ∈WaitingNeigh(p) ∪ {p}}
LocalTokens(p) ≡ {q ∈ Np ∪ {p} | q.token}
TokenMax(p) ≡ max {q ∈ LocalTokens(p)}

Predicates
ResourceFree(p) ≡ ∀q ∈ Np,

(
q.status = In⇒ p.req
 q.req

)
IsBlocked(p) ≡ ¬ResourceFree(p) ∨

(
∃q ∈ Np, q.status = Blocked

∧q.token
)

TokenAccess(p) ≡ LocalTokens(p) 6= ∅ ∧ p = TokenMax(p)
MaxAccess(p) ≡ LocalTokens(p) = ∅ ∧ p = LocalMax(p)

Guards
Requested(p) ≡ p.status = Out ∧ p.req 6= ⊥
Block(p) ≡ p.status = Wait ∧ IsBlocked(p)
Unblock(p) ≡ p.status = Blocked ∧ ¬IsBlocked(p)
Enter(p) ≡ p.status = Wait ∧ ¬IsBlocked(p) ∧ (TokenAccess(p)

∨MaxAccess(p))
Exit(p) ≡ p.status = In ∧ p.req = ⊥
ResetToken(p) ≡ Token(p) 6= p.token
ReleaseToken(p) ≡ p.token ∧ p.status ∈ {Out, In}

Actions
(1) RsT -action :: ResetToken(p) → p.token← Token(p);
(2) RlT -action :: ReleaseToken(p) → PassToken(p);
(3) R-action :: Requested(p) → p.status←Wait;
(3) B-action :: Block(p) → p.status← Blocked;
(3) UB-action :: Unblock(p) → p.status←Wait;
(3) E-action :: Enter(p) → p.status← In;

if p.token then PassToken(p) fi;
(3) Ex-action :: Exit(p) → p.status← Out;

10

4.3 Resource Allocation Module

The code of LRA is given in Algorithm 1. Priorities and guards ensure that actions of Algorithm 1 are
mutually exclusive. We now informally describe Algorithm 1, and explain how the specification given
in Definition 1 is instantiated with its variables.

First, a process p interacts with its application through two variables: p.req ∈ Rp ∪ {⊥} and
p.status ∈ {Out,Wait, In,Blocked}. p.req can be read and written by the application, but can only be
read by p in LRA. Conversely, p.status can be written by p in LRA, but the application can only read
it. Variable p.status can take the following values:

• Wait, which means that p requests a resource but does not hold it yet;

• Blocked, which means that p requests a resource, but cannot hold it now;

• In, which means that p holds a resource;

• Out, which means that p is currently not involved into an allocation process.

When p.req = ⊥, this means that no resource is requested. Conversely, when p.req ∈ Rp, the
value of p.req informs p about the resource requested by the application. We assume two properties on
p.req. Property 4 ensures that the application (1) does not request for resource r′ while a computation to
access resource r is running, and (2) does not cancel or modify a request before the request is satisfied.
Property 5 ensures that any critical section is finite.

Property 4. ∀p ∈ V , the updates on p.req (by the application) satisfy the following constraints:

• The value of p.req can change from ⊥ to r ∈ Rp if and only if p.status = Out,

• The value of p.req can change from r ∈ Rp to ⊥ if and only if p.status = In.

• The value of p.req cannot directly change from r ∈ Rp to r′ ∈ Rp with r′ 6= r.

Property 5. ∀p ∈ V , if p.status = In and p.req 6= ⊥, then eventually p.req becomes ⊥.

Consequently, the predicate Request(γi, p, r) in Definition 1 is true if and only if p.req = r in
γi; the predicate NoConflict(γi, p) is expressed by p.status = In ⇒

(
∀q ∈ Np, q.status = In ⇒

(q.req
 p.req)
)

in γi. (We set ⊥ compatible with every resource.)
The predicate Start(γi, γi+1, p, r) becomes true when process p takes the request for resource r

into account in γi 7→ γi+1, i.e., when the status of p switches from Out to Wait in γi 7→ γi+1 because
p.req = r 6= ⊥ in γi.

Assume that γi . . . γj is a computation where Result(γi . . . γj , p, r) holds: process p accesses re-
source r, i.e., p switches its status from Wait to In in γi−1 7→ γi while p.req = r, and later switches its
status from In to Out in γj 7→ γj+1.

We now illustrate the principles of LRA with the example given in Figure 2. In this example, we
consider the local reader-writer problem. In the figure, the numbers inside the nodes represent their IDs.
The color of a node represents its status: white for Out, gray for Wait, black for In, and crossed out for
Blocked. A double circled node holds a token. The bubble next to a node represents its request. Recall
that we have two resources: R for a reading access and W for a writing access.

When the process is idle (p.status = Out), its application can request a resource. In this case,
p.req = r 6= ⊥ and p sets p.status to Wait by R-action: p starts the computation to obtain r. For
example, 5 starts a computation to obtain R in (a)7→(b). If one of its neighbors is using a conflicting
resource, p cannot satisfy its request yet. So, p switches p.status from Wait to Blocked by B-action
(see 6 in (a)7→(b)). If there is no more neighbor using conflicting resources, p gets back to status Wait
by UB-action.

11

8

6

2

7

1

5

3

W

W

R

R

R

R

W

(a) Initial configuration.

8

6

2

7

1

5

3

W

W

R

R

R

R

W

(b) 6 executed B-action, 1 exe-
cuted E-action, and 5 executed
R-action.

8

6

2

7

1

5

3

W

W

R

R

R

R

W

(c) 3 executed B-action and 7 exe-
cuted E-action.

8

6

2

7

1

5

3

W

W

R

R

R

R

W

(d) 2 executed E-action and 5 exe-
cuted B-action.

8

6

2

7

1

5

3

⊥

W

R

R

R

R

W

(e) The application of 8 does not
need the write access anymore.

8

6

2

7

1

5

3

⊥

W

R

R

R

R

W

(f) 8 executed Ex-action.

Figure 2: Example of execution of LRA ◦ T C.

When several neighbors request for conflicting resources, we break ties using a token-based priority:
Each process p has an additional Boolean variable p.token which is used to inform neighbors about
whether p holds a token or not. A process p takes priority over any neighbor q if and only if

(
p.token ∧

¬q.token
)
∨
(
p.token = q.token ∧ p > q

)
. More precisely, if there is no token in the neighborhood of

p, the highest priority process is the waiting process with highest ID. Otherwise, the token holders (there
may be several tokens during the stabilization phase of T C) blocked all their requesting neighbors, even
if they request for non-conflicting resources, and until the token holders obtain their requested resources.
This mechanism allows to ensure fairness by slightly decreasing the level of concurrency. (The token
circulates to eventually give priority to blocked processes, e.g., processes with small IDs.)

The highest priority waiting process in the neighborhood gets status In and can use its requested
resource by E-action, e.g., 7 in step (b) 7→(c) or 1 in (a)7→(b). Moreover, if it holds a token, it releases
it. Notice that, as a process is not blocked when one of its neighbors is using a compatible resource,
several neighbors using compatible resources can concurrently enter and/or execute their critical section
(see 1, 2, and 7 in Configuration (d)). When the application at process p does not need the resource
anymore, i.e., when it sets the value of p.req to ⊥, p executes Ex-action and switches its status to Out,
e.g., 8 during step (e)7→(f).

RlT -action is used to straight away pass the token to a neighbor when the process does not need it,
i.e., when its status is either Out or In. (Hence, the token can eventually reach a process of status Wait
or Blocked and help it to satisfy its request.)

The last action, RsT -action, ensures the consistency of variable token so that the neighbors realize
whether or not a process holds a token.

Hence, a requesting process is served in a finite time. This is illustrated by an example of execution
on Figure 3. We consider here the local mutual exclusion problem in which two neighbors cannot
concurrently execute their critical section. We try to delay as long as possible the service of process 2.
As its neighbors 7 and 8 also request the resource but have greater IDs, they can access their critical
section before 2 (see Steps (a)7→(b) and (e) 7→(f)). But a token circulates in the network and eventually
reaches 2 (see Configuration (g)). Then, 2 has priority over its neighbors (even if it has a lower ID) and
eventually starts executing its critical section in (j)7→(k).

12

4

6

1

9

3

7

5

2

8
(a)

4

6

1

9

3

7

5

2

8
(b)

4

6

1

9

3

7

5

2

8
(c)

4

6

1

9

3

7

5

2

8
(d)

4

6

1

9

3

7

5

2

8
(e)

4

6

1

9

3

7

5

2

8
(f)

4

6

1

9

3

7

5

2

8
(g)

4

6

1

9

3

7

5

2

8
(h)

4

6

1

9

3

7

5

2

8
(i)

4

6

1

9

3

7

5

2

8
(j)

4

6

1

9

3

7

5

2

8
(k)

Figure 3: Example of execution of LRA◦T C on the local mutual exclusion problem. The bubbles mark
the requesting processes.

5 Correctness of LRA ◦ T C

In this section, we show that LRA ◦ T C is snap-stabilizing w.r.t. SPLRA (Definition 1), assuming a
weakly fair daemon. The predicates of this specification are instantiated as follow:

• Request(γ, p, r) ≡ γ(p).req = r

• Start(γi, γi+1, p, r) ≡ γi(p).status = Out ∧ γi+1(p).status = Wait ∧ γi(p).req = γi+1(p).req =
r

• Result(γi . . . γj , p, r) ≡ γi(p).status = Wait ∧ γi+1(p).status = In ∧ γi(p).req = γi+1(p).req =
r ∧ γj−1(p).status = In ∧ γj(p).status = Out

• NoConflict(γ, p) ≡ γ(p).status = In ⇒
(
∀q ∈ Np, γ(q).status = In ⇒ (γ(q).req

γ(p).req)
)

First, we show that the resource conflict freedom property is always satisfied.

Remark 1. If E-action is enabled at a process p in a configuration γ, then ∀q ∈ NP ,
(
γ(q).status =

In⇒ γ(p).req
 γ(q).req
)
.

Lemma 2. E-action cannot be simultaneously enabled at two neighbors.

Proof. Let γ be a configuration. Let p ∈ V and q ∈ Np. Assume by contradiction that E-action is
enabled at p and q in γ. Then,

(
TokenAccess(p)∨MaxAccess(p)

)
holds in γ. Let examine these two

cases:

13

1. If TokenAccess(p) holds in γ, p = TokenMax(p) in γ. So, γ(p).token = true, and, conse-
quently p ∈ LocalTokens(q) 6= ∅ in γ. Hence, ¬MaxAccess(q) in γ and then TokenAccess(q)
holds in γ. (Otherwise, E-action is not enabled at q in γ.)

Now, p = TokenMax(p) = max{x ∈ LocalTokens(p)} > q since q ∈ LocalTokens(p)
and q = TokenMax(q) = max{x ∈ LocalTokens(q)} > p since p ∈ LocalTokens(q), a
contradiction.

2. If MaxAccess(p) holds in γ, LocalTokens(p) = ∅ in γ. As q ∈ Np, γ(q).token = false so
q 6= TokenMax(q) in γ, and, consequently, ¬TokenAccess(q) in γ. Hence, MaxAccess(q)
holds in γ. (Otherwise, E-action is not enabled at q in γ.)

Now, p = LocalMax(p) = max{x ∈WaitingNeigh(p)∪{p}} > q since q ∈WaitingNeigh(p)
and q = LocalMax(q) = max{x ∈WaitingNeigh(q)∪{q}} > p since p ∈WaitingNeigh(q),
a contradiction.

Lemma 3. Let γ 7→ γ′ be a step. Let p ∈ V . If NoConflict(γ, p) holds, then NoConflict(γ′, p)
holds.

Proof. Let γ 7→ γ′ be a step. Let p ∈ V . Assume by contradiction that NoConflict(γ, p) holds
but ¬NoConflict(γ′, p). Then, γ′(p).status = In and ∃q ∈ Np such that γ′(q).status = In and
γ′(q).req 6
 γ′(p).req.

Using Property 4, there is only two way to change the value of p.req between γ and γ′:

• From some r ∈ Rp, r 6= ⊥, to ⊥: As ⊥ is compatible with every resource, if γ′(p).req = ⊥,
γ′(p).req
 γ′(q).req, a contradiction.

• From⊥ to some r ∈ Rp: The application of p can only change its request this way if γ(p).status =
Out. But γ′(p).status = In and there is no way to go from Out to In in one step.

Hence, γ(p).req = γ′(p).req. We can make the same reasoning on q so γ(q).req = γ′(q).req.
Now, there are two cases:

1. If γ(p).status = In, as NoConflict(γ, p) holds, ∀x ∈ Np, (γ(x).status = In ⇒ γ(p).req

γ(x).req). In particular, γ(q).status 6= In. (Otherwise, as γ(q).req 6
 γ(p).req, we have
¬NoConflict(γ, p).) So q executes an action during γ 7→ γ′ to obtain status In. The only
possible action is E-action. So q executes E-action even if it has a neighbor using a conflicting
resource, a contradiction to Remark 1.

2. If γ(p).status 6= In, then p execute an action in γ 7→ γ′. p can only execute E-action in γ 7→ γ′

(to get status In). Now, there are two cases:

(a) If γ(q).status 6= In, then q executes E-action in γ 7→ γ′. So E-action is enabled at p and
q in γ, a contradiction to Lemma 2.

(b) If γ(q).status = In, then E-action is enabled at p in γ even though a neighbor of p has
status In and a conflicting request (p is in a similar situation to the one of q in case 1), a
contradiction to Remark 1.

Theorem 2 (Resource Conflict Freedom). Any execution of LRA ◦ T C satisfies the resource conflict
freedom property.

14

Proof. Let e = (γi)i≥0 be an execution. Let k ≥ 0 and k′ > k. Let p ∈ V . Let r ∈ Rp. Assume
Result(γk . . . γk′ , p, r). Assume ∃l < k such that Start(γl, γl+1, p, r). In particular, γl(p).status 6= In.
Hence, NoConflict(γl, p) trivially holds. Using Lemma 3, ∀i ≥ l, NoConflict(γi, p) holds. In
particular, ∀i ∈ {k, . . . , k′}, NoConflict(γi, p).

In the following, we assume a weakly fair daemon.

Lemma 4. The stabilization of T C is preserved by fair composition.

Proof. The fair composition of T C with LRA does not degrade the behavior of T C (it is just slowed
down). Indeed, its actions are similar (only the additional Boolean management) and T C stabilizes
independently to the call to PassToken (Property 1). So T C remains self-stabilizing in LRA ◦ T C.
(But its stabilization phase lasts twice as long.)

Lemma 5. A process cannot keep a token forever in LRA ◦ T C.

Proof. Let e be an infinite execution. By Lemma 4, the token circulation eventually stabilizes, i.e., there
is a unique token in every configuration after the stabilization of T C. Assume by contradiction that, after
such a configuration γ, a process p keeps the token forever: Token(p) holds forever and ∀q ∈ V , q 6= p,
¬Token(q) holds forever.

First, let show that the values of token variables are eventually updated to the corresponding value
of the predicate Token. The values of the predicate Token do not change. So, if there is x ∈ V such
that x.token 6= Token(x), RsT -action is continuously enabled at x with higher priority and, in finite
time, x is selected by the weakly fair daemon and updates its token variable. Then, in finite time, the
system reaches and remains in configurations where p.token = true forever and ∀q ∈ V , q 6= p,
q.token = false forever. Let γ′ be such a configuration.

Then, there are three cases:

1. If γ′(p).status ∈ {Out, In}, RlT -action is continuously enabled at p. So, in finite time, p
executes RlT -action and releases its token by a call to PassToken(p), a contradiction.

2. If γ′(p).status = Wait, TokenAccess(p) holds forever and ∀q ∈ Np, ¬TokenAccess(q) holds
forever. So, ∀q ∈ Np, E-action is disabled forever. Now, if ∃q ∈ Np such that γ′(q).status =
In ∧ γ′(q).req 6
 γ′(p).req, then, as ⊥ is compatible with any resource, γ′(q).req 6= ⊥. Using
Property 5, in finite time the request of q becomes ⊥ and remains ⊥ until q obtains status Out
(Property 4). So RequestOut(p) continuously holds, and Ex-action is continuously enabled at
q. Hence, in finite time, ∀q ∈ Np, q.status 6= In forever. So E-action is continuously enabled at
p and, in finite time, p executes E-action and releases its token, a contradiction.

3. If γ′(p).status = Blocked, ∀q ∈ Np, IsBlocked(q) holds forever so E-action is disabled at
q forever. Now, as in case 2, ∀q ∈ Np, q.status 6= In in finite time, and then, UB-action is
continuously enabled at p. in finite time, p gets statusWait and, as in case 2, eventually releases
its token, a contradiction.

Lemma 5 implies that the hypothesis of Property 3 is satisfied. Hence, we can deduce Corollary 1.

Corollary 1. After stabilization of the token circulation module, Token(p) holds infinitely often at any
process p in LRA ◦ T C.

Lemma 6. A process of statusWait or Blocked executes E-action in finite time.

15

Proof. Let e be an infinite execution, γ ∈ e be a configuration, p ∈ V such that γ(p).status ∈
{Wait,Blocked}. By Lemma 4, the token circulation eventually stabilizes. By Corollary 1, in finite
time p holds the unique token. If p did not execute E-action yet at this configuration then, it cannot
keep forever the token (Lemma 5): it can only release its token executing E-action (by Property 2).

Lemma 7. A process of statusWait or Blocked gets status Out in finite time.

Proof. Let p ∈ V . Let γ be a configuration. If γ(p).status ∈ {Wait,Blocked}, then p executes
E-action in a finite time (Lemma 6) and gets status In in configuration γ′. Now, if γ′(p).req 6= ⊥, in
finite time it changes to⊥ (Property 5) and cannot change anymore until p gets status Out (Property 4).
So, RequestOut(p) continuously holds and Ex-action is continuously enabled at p. So, p executes
Ex-action and eventually gets status Out.

Notice that if a process that had status Wait or Blocked obtains status Out, this means that its
computation ended.

Theorem 3 (Computation Start). Any execution of LRA◦ T C satisfies the Computation Start property.

Proof. Let e = (γi)i≥0 be an execution. Let k ≥ 0. Let p ∈ V . Let r ∈ Rp. First, p eventually has
status Out. Indeed, if γk(p).status 6= Out, p is computing a service and cannot answer a new request
(the application cannot change its request before being served by Property 4). But, in finite time, p ends
its current computation and obtains status Out (Lemma 7), let say in γj−1 7→ γj (j ≥ k).

Now, if γj(p).req 6= ⊥ holds, it holds continuously (Property 4). Hence, R-action is continu-
ously enabled at p, and, p eventually executes R-action (let say in γl 7→ γl+1, l > j ≥ k). So
γl+1(p).status = Wait. Notice that the application of p cannot change its mind (Property 4), so
γl(p).req = γl+1.req = r. Hence, Request(γl, p, r) and Start(γl, γl+1, p, r) hold.

Theorem 4 (Computation End). Any execution of LRA ◦ T C satisfies the Computation End property.

Proof. Let e = (γi)i≥0 be an execution. Let k ≥ 0. Let p ∈ V . Let r ∈ Rp. If Start(γk, γk+1, p, r)
holds, then γk+1(p).status = Wait and γk+1(p).req = r. Using Lemma 6, in finite time, p executes
E-action and gets status In (let say in γl−1 7→ γl, l > k). Notice that the application cannot change
the value of req until p obtains status In (Property 4) so γl−1(p).req = γl(p).req = γk+1(p).req = r.

Then, in finite time, the application does not need the resource anymore and changes the value of
p.req to ⊥ (Property 5). So p.req = ⊥ continuously and Ex-action is continuously enabled at p. Let
say p executes Ex-action in γl′ 7→ γl′+1 (l′ ≥ l). So, γl′(p).status = In and γl′+1(p).status = Out,
and consequently, Result(γl . . . γl′ , p, r) holds.

Using Theorems 2, 3, and 4, we can conclude:

Theorem 5 (Correctness). Algorithm LRA ◦ T C is a snap-stabilizing local resource allocation algo-
rithm working assuming a weakly fair daemon.

6 Strong Partial Maximal Concurrency of LRA ◦ T C

We now show that LRA ◦ T C is strongly partially maximal-concurrent.

Theorem 6. Algorithm LRA ◦ T C is strongly partially maximal-concurrent.

Proof. Let e = (γi)i≥0 be an execution. Let i ≥ 0. As T C is self-stabilizing, there exists in this execu-
tion e a date s ≥ 0 after which T C has stabilized. Let j ≥ s and assume that continuousCS(γi, ..., γj).

16

1. Then, for some process p ∈ V , there may exist a date k ∈ {i, ..., j} such that p ∈ PCS(γk):
then for all k′ ∈ {k, ..., j}, p ∈ PCS(γ

′
k) (by definition of continuousCS), γk′(p).req stays

unchanged and γk′(p).status is In (see Property 4).

2. For other process p ∈ V , we have that ∀k ∈ {i, ..., j}, p /∈ PCS(γk) and

(a) either ∀k ∈ {i, ..., j}, p /∈ PReq(γk) also – in this case, γk(p).req = ⊥ and p.status can be
In and become Out or can be directly Out;

(b) or ∃k′ ∈ {i, ..., j} such that p ∈ PReq(γk′) – in this case, since k′, p.req 6= ⊥ remains
unchanged, p.status can be Out, Wait or Blocked.

Now, we can chose j ≥ s such that for processes p ∈ V in case 2,

(a’) for sub-case 2a, there exists kp ∈ {i, ..., j} such that p.status is Out since kp;

(b’) for sub-case 2b, there exists kp ∈ {i, ..., j} such that since kp, p.req stays unchanged (6= ⊥),
p.status is Blocked if p /∈ PFree(γkp) and p.status is either Wait or Blocked if p ∈ PFree(γkp).

This can be easily proven by induction, using the fact that for the corresponding actions, if one becomes
true for some process, it remains continuously enabled until, in finite time, the weakly fair daemon
selects the process that performs this action.

We pose T ≥ s the maximum of the dates kp as defined above. Therefore for all j′ ≥ j, if
continuousCS(γi, ..., γj′) holds, then for all k ∈ {T, ..., j′} the above property (cases 1, 2a’ and 2b’)
holds: this implies that T does not depend on the choice of j. Note also that after T and provided that
continuousCS still continuously holds, R-action, B-action, UB-action, E-action, and Ex-action
are disabled (and PFree remains unchanged).

Let t ≥ T . We now show that for every process p ∈ PFree(γt) (case 2b’), γt(p).status = Blocked,
(i.e., ∃q ∈ Np such that γt(q).status = Blocked ∧ γt(q).token = true).

Assume by contradiction that γt(p).status = Wait. There are two cases:

1. if p = LocalMax(p), E-action is enabled at p, a contradiction to the definition of T ;

2. if q = LocalMax(p), q 6= p, we can build a sequence of processes p0, p1, . . . , pk where p0 = p,
p1 = q, and such that ∀i ∈ {1, . . . , k}, pi = LocalMax(pi−1). Notice that ∀i ∈ {0, . . . , k},
pi ∈ PFree(γt). This sequence is finite because p0 < p1 < · · · < pk (so a process cannot be
involved several times in this sequence) and the number of processes is finite. Hence, we can take
this sequence maximal, in which case, pk = LocalMax(pk) and pk is in the same case as p in 1,
a contradiction.

Let p ∈ PFree(γt): p is blocked because of the unique token holder, let say x. Then, p ∈ Nx and
PFree(γt) contains all the requesting neighbors of x. In the worst case, it contains all the neighborhood
of x except one process y ∈ Nx such that γt(y).status = In and γt(y).req 6
 γt(x).req, namely,
the one that blocks x. Hence, PFree(γt) ⊆ Nx\{y}, and LRA ◦ T C is strongly partially maximal-
concurrent.

7 Conclusion

We characterized the maximal level of concurrency we can obtain in resource allocation problems by
proposing the notion of maximal-concurrency. This notion is versatile, e.g., it generalizes the avoiding `-
deadlock [18] and (k,`)-liveness [10] defined for the `-exclusion and k-out-of-`-exclusion, respectively.
From [18, 10], we already know that maximal-concurrency can be achieved in some important global

17

resource allocation problems.3 Now, perhaps surprisingly, our results show that maximal-concurrency
cannot be achieved in problems that can be expressed with the LRA paradigm. However, we showed that
strong partial maximal-concurrency (an high, but not maximal, level of concurrency) can be achieved by
a snap-stabilizing LRA algorithm. We have to underline that the level of concurrency we achieve here
is similar to the one obtained in the committee coordination problem [5]. Defining the exact class of
resource allocation problems where maximal-concurrency (resp. strong partial maximal-concurrency)
can be achieved is a challenging perspective.

References

[1] Karine Altisen, Alain Cournier, Stéphane Devismes, Anaïs Durand, and Franck Petit. Self-
stabilizing Leader Election in Polynomial Steps. In Stabilization, Safety, and Security of Dis-
tributed Systems - 16th International Symposium, SSS 2014, Paderborn, Germany, September 28 -
October 1, 2014. Proceedings, pages 106–119, 2014.

[2] Karine Altisen and Stéphane Devismes. On Probabilistic Snap-Stabilization. In ICDCN’2014, 15th
International Conference on Distributed Computing and Networking, pages 272–286, Coimbatore,
India, January 4-7 2014. LNCS.

[3] Anish Arora and Mohamed G. Gouda. Distributed Reset. IEEE Trans. Computers, 43(9):1026–
1038, 1994.

[4] Joffroy Beauquier, Ajoy Kumar Datta, Maria Gradinariu, and Frédéric Magniette. Self-Stabilizing
Local Mutual Exclusion and Daemon Refinement. Chicago J. Theor. Comput. Sci., 2002, 2002.

[5] Borzoo Bonakdarpour, Stéphane Devismes, and Franck Petit. Snap-Stabilizing Comittee Coor-
dination. In 25th IEEE International Symposium on Parallel and Distributed Processing IPDPS
2011, Anchorage, Alaska, USA, 16-20 May, 2011 - Conference Proceedings, pages 231–242, 2011.

[6] Christian Boulinier, Franck Petit, and Vincent Villain. When Graph Theory Helps Self-
Stabilization. In Proceedings of the Twenty-Third Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC 2004, St. John’s, Newfoundland, Canada, July 25-28, 2004, pages
150–159, 2004.

[7] Alain Bui, Ajoy Kumar Datta, Franck Petit, and Vincent Villain. Snap-Stabilization and PIF in
Tree Networks. Distributed Computing, 20(1):3–19, 2007.

[8] Sébastien Cantarell, Ajoy Kumar Datta, and Franck Petit. Self-Stabilizing Atomicity Refinement
Allowing Neighborhood Concurrency. In Self-Stabilizing Systems, 6th International Symposium,
SSS 2003, San Francisco, CA, USA, June 24-25, 2003, Proceedings, pages 102–112, 2003.

[9] Alain Cournier, Stéphane Devismes, and Vincent Villain. Light Enabling Snap-Stabilization of
Fundamental Protocols. TAAS, 4(1), 2009.

[10] Ajoy Kumar Datta, Rachid Hadid, and Vincent Villain. A Self-Stabilizing Token-Based k-out-of-l-
Exclusion Algorithm. Concurrency and Computation: Practice and Experience, 15(11-12):1069–
1091, 2003.

[11] Ajoy Kumar Datta, Colette Johnen, Franck Petit, and Vincent Villain. Self-Stabilizing Depth-First
Token Circulation in Arbitrary Rooted Networks. Distributed Computing, 13(4):207–218, 2000.

3By “global” we mean resource allocation problems where a resource can be accessed by any process.

18

[12] Ajoy Kumar Datta, Lawrence L. Larmore, and Priyanka Vemula. Self-stabilizing Leader Election
in Optimal Space under an Arbitrary Scheduler. Theor. Comput. Sci., 412(40):5541–5561, 2011.

[13] Edsger W. Dijkstra. Solution of a Problem in Concurrent Programming Control. Commun. ACM,
8(9):569, 1965.

[14] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun. ACM,
17(11):643–644, 1974.

[15] Edsger W Dijkstra. Two Starvation-Free Solutions of a General Exclusion Problem. Technical
Report EWD 625, Plataanstraat 5, 5671, AL Nuenen, The Netherlands, 1978.

[16] Shlomi Dolev. Self-Stabilization. MIT Press, 2000.

[17] Shlomi Dolev and Ted Herman. Superstabilizing Protocols for Dynamic Distributed Systems.
Chicago J. Theor. Comput. Sci., 1997, 1997.

[18] Michael J. Fischer, Nancy A. Lynch, James E. Burns, and Allan Borodin. Resource Allocation
with Immunity to Limited Process Failure (Preliminary Report). In 20th Annual Symposium on
Foundations of Computer Science, San Juan, Puerto Rico, 29-31 October 1979, pages 234–254,
1979.

[19] Mohamed G. Gouda and F. Furman Haddix. The Alternator. Distributed Computing, 20(1):21–28,
2007.

[20] Shing-Tsaan Huang. The Fuzzy Philosophers. In Parallel and Distributed Processing, 15 IPDPS
2000 Workshops, Cancun, Mexico, May 1-5, 2000, Proceedings, pages 130–136, 2000.

[21] Shing-Tsaan Huang and Nian-Shing Chen. Self-Stabilizing Depth-First Token Circulation on Net-
works. Distributed Computing, 7(1):61–66, 1993.

[22] Hirotsugu Kakugawa and Masafumi Yamashita. Self-Stabilizing Local Mutual Exclusion on Net-
works in which Process Identifiers are not Distinct. In 21st Symposium on Reliable Distributed
Systems (SRDS 2002), 13-16 October 2002, Osaka, Japan, pages 202–211, 2002.

[23] Leslie Lamport. A New Solution of Dijkstra’s Concurrent Programming Problem. Commun. ACM,
17(8):453–455, 1974.

[24] Mikhail Nesterenko and Anish Arora. Stabilization-Preserving Atomicity Refinement. J. Parallel
Distrib. Comput., 62(5):766–791, 2002.

[25] Michel Raynal. A Distributed Solution to the k-out of-M Resources Allocation Problem. In Ad-
vances in Computing and Information - ICCI’91, International Conference on Computing and
Information, Ottawa, Canada, May 27-29, 1991, Proceedings, pages 599–609, 1991.

19

