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We present a theory of periodically driven, many-body localized (MBL) systems. We show that
many-body localization persists under periodic driving at high enough driving frequency. The Flo-
quet operator (evolution operator over one driving period) can be represented as an exponential of
an effective time-independent Hamiltonian, which is a sum of local terms and is itself MBL. The
Floquet eigenstates in this case have area-law entanglement entropy, and there exists an extensive
set of local integrals of motion. We argue that at sufficiently low frequency, there is always delo-
calization, owing to a large number of many-body level crossings and non-diabatic Landau-Zener
transition between them. We propose a phase diagram of driven MBL systems.

Introduction. Recently, there has been much in-
terest in quantum many-body localized (MBL) systems
and their properties [1–17]. MBL phase is characterized
by an extensive set of emergent local integrals of mo-
tion [12, 13], which lead to quantum ergodicity break-
ing, and in particular, absence of thermalization. There-
fore, MBL systems cannot be described by conventional
statistical mechanics. Previous works explored experi-
mental manifestations of MBL systems, and predicted
universal dynamical properties following a sudden quan-
tum quench, including logarithmic growth of entangle-
ment entropy [6, 8–10, 12, 13], as well as characteristic
decay [18] and revivals [19] of local observables.

In this paper, we study the behaviour of MBL sys-
tems under periodic driving. Our motivation is twofold.
First, studying response of many-body systems to period-
ically varying fields is a conventional experimental probe
in systems of cold atoms in optical lattices [20, 21], which
are promising candidates for realizing MBL phase [22,
23]. Second, theoretically little is known about general
properties of quantum many-body systems under time-
varying fields (beyond linear-response theory).

We consider a time-dependent periodic Hamiltonian
H(t) = H(t+T ) and we split it in its mean and oscillating
parts:

H(t) = H(0) + gV (t), H(0) =
1

T

∫ T

0

dtH(t). (1)

We study the case when the time-averaged Hamiltonian
H(0) is fully MBL (meaning that all its eigenstates are
localized), and present two main results:

(I) We show that at high driving frequency, the system
remains many-body localized, failing to absorb energy.
To reach our conclusion, we develop a scheme similar
to that devised by Imbrie [15] to establish the existence
of a localized phase for time-independent Hamiltonians
(see also [24]). We apply it to show that the Floquet
operator U(T ) (evolution operator over one period) can
be represented as U(T ) = e−iH∗T , where H∗ is a time-
independent quasi-local effective Hamiltonian, which is

MBL. We emphasize that H(0) can be fully MBL even
when the instantaneous Hamiltonian H(t) is ergodic for
most or even all t ∈ [0, T ].

(II) We argue that at sufficiently low frequency, the
Floquet operator strongly mixes states with a very dif-
ferent spatial structure, thus inducing delocalization. To
show this, we invoke an analogy with the multi-level
Landau-Zener problem. Combining the results (I,II), we
propose a phase diagram of driven MBL systems.

Previous works on driven many-body systems focused
mostly on the translationally invariant case [25–30]. In
particular, D’Alessio and Polkovnikov [27] conjectured
that, if the dynamics is generated by switching be-
tween an ergodic and an integrable (but translationally-
invariant) Hamiltonian, a transition will be observed in
function of the driving frequency: At low frequency, the
system shows heating to an infinite temperature, while
at high frequency the dynamics is described by an effec-
tive Hamiltonian written as a sum of local terms, so that
there is an integral of motion in the system, which leads
to localization in the energy space. For translationally in-
variant systems, this conjecture remains unproven (and
moreover, it was argued that driven ergodic systems typ-
ically delocalize and heat up to an infinite temperature
[28, 30, 31]).

Our theory demonstrates that localization in energy
space is indeed possible in driven MBL systems in the
high-frequency regime, as there exists a local Floquet
Hamiltonian. Furthermore, not only there is energy lo-
calization, but also there exists a complete set of emer-
gent local integrals of motion (LIOM).
Model. For concreteness, we assume that our system

is a one-dimensional spins− 1
2 chain of size L. We make

the following assumptions: (a) The Hamiltonian H(0) is
fully MBL, and therefore it has a complete set of LIOMs.
Choosing the LIOM’s to be local spins σj = σzj (third

Pauli matrix), H(0) takes the form

H(0) =
∑
i

hjσj +
∑
i<j

Ji,jσiσj + . . . (2)
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where
∑
K |Ji,K,j | ∼ e−(j−i)/ξ with K ranging over sets

of sites between i and j > i, and with ξ . 1 the lo-
calization length of H(0). (b) The Hamiltonian H(0) is
disordered: hj , Ji,j , . . . are random. We assume that a
local spin flip results in a typical energy change of order
W (the strength of the disorder). (c) The driving is of
the form

V (t) =
∑
i

V̂i(t), (3)

with g the coupling strength, V̂i(t) = V̂i(t+T ) such that
V̂i(t) acts on a few sites around site i (and hence also on

a few LIOM’s around i) ‖V̂i(t)‖ ≤ 1 for all t and such

that 1
T

∫ T
0

ds V (s) = 0, e.g. V̂i(t) = cos(ωt)V̂i with ω =
2π/T . The ultimate aim of our analysis is to analyze the
one-cycle evolution operator U(T ), where the evolution
operator U(·) is the solution of the equation

i
d

dt
U(t) = H(t)U(t), U(0) = 1.

FIG. 1. (a) Spectrum of the many-body localized system as
a function of parameter λ. (b-d) Three kinds of level cross-
ings: (b) Adiabatic, when the system follows instantaneous
eigenstate, (c) Diabatic, when the system ends up in the orig-
inal eigenstate, and (c) Intermediate, when the system is in a
superposition of two states at long times.

Localization at high frequency. We will start our
analysis from the limit of large driving frequency ν ≡
1/T . We will show that, for large enough ν, the unitary
U(T ) is still fully MBL, i.e. that the eigenvectors of U(T )
are locally close to the eigenvectors of H(0) (that is, they
can be obtained from the eigenvectors of H(0) by quasi-
local unitary transformation) and that one can construct
a full set of local conserved quantities for U(T ).

An effective Hamiltonian H∗ is defined by U(T ) =
e−iH∗T . We can decompose U(t) as U(t) = P (t)e−iH∗t

where P (t) is a unitary so that P (t) = P (t + T ). Since

FIG. 2. Phase diagram of the driven MBL system at given
W , depending on driving frequency ν and driving strength g.
At small g, the critical frequency is given by (19), while at
large g it is estimated from the condition (10), which gives
νc ∼

√
gW .

i d
dtU(t) = H(t)U(t), it follows that

P ∗(t)
(
H(t)− i

d

dt

)
P (t) = H∗. (4)

Obviously, H∗ is not given to us, but we can now start
from this relation to determine it: we try to find P (t)
such that H∗ in (4) is time independent. While at
g = 0, we can immediately solve (4) with P (t) = 1 and
H∗ = H(0), this equation admits in general no explicit
solution for g > 0. Nevertheless, we show that for g small
enough compared to ν and

√
νW (see (10) below), we can

solve it approximately and start an iterative procedure
to eventually determine H∗.

Let us write H(t) =: H1(t) (H(t) is the Hamiltonian
we start with). We look for a unitary P1(t) “close to
the identity”, meaning that P ∗1 (t)OiP1(t) stays a quasi-
local observable around the site i if Oi was so, and so as
to remove the driving in first order in the perturbative
parameter (g/ν � 1, see below):

P ∗1 (t)
(
H

(0)
1 +gV1(t)−i

d

dt

)
P1(t) = H

(0)
1 +

g2

ν
Ṽ (t) =: H2(t)

(5)
We then decompose

H2(t) = H
(0)
2 +

g2

ν
V2(t), H

(0)
2 :=

1

T

∫ T

0

dsH2(s).

The main point is that, with P1(t) close to the identity

and assuming g2/νW � 1, H
(0)
2 can be seen as a small

perturbation of H
(0)
1 , and is therefore still MBL. Decom-

posing next P (t) = P̃ (t)P1(t), (4) becomes

P̃ ∗(t)
(
H2(t)− i

d

dt

)
P̃ (t) = H∗.
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From this point, we see that the procedure can be iter-
ated. For g small enough (compared to ν and

√
νW ),

we expect the Hamiltonians H
(0)
n to converge super-

exponentially fast to H∗ , each step bringing super-
exponentially small corrections. Therefore, the Hamil-
tonian H∗ will only be a small perturbation of H(0) and
will stay MBL.

We now carry out in more details a general step of this
scheme. Mostly for notational convenience, we consider
the first step. Doing so we will determine conditions on g,
ν and W so that convergence can indeed be expected (but
we do not claim that they generally allow to correctly
locate the transition).

For simplicity, let us think of g as the perturbative
parameter. We write P1(t) = e−gA1(t) where A1(t) =
A1(t + T ) is anti-hermitian. Expanding the l.h.s. of (5)
in powers of g, we find in first order

P ∗1 (t)
(
H

(0)
1 + gV1(t)− i

d

dt

)
P1(t) = H

(0)
1 +

g
(
V1(t) + [A1(t), H

(0)
1 ] + i

dA1

dt
(t)
)

+O(g2/ν). (6)

In this first step, the Hamiltonian H(0) is diagonal in
the basis of classical configurations where each spin is
up/down, denoted by |η〉 ∈ {±1}L. Expanding V1(t)
and A1(t) in Fourier series, V1(t) =

∑
k 6=0 V1(k)eiνkt and

similarly for A1(t), the first order in g in the r.h.s. of (6)
will vanish if

〈η′|A1(k)|η〉 =
〈η′|V1(k)|η〉(

H
(0)
1 (η′)−H(0)

1 (η)
)

+ νk
, k 6= 0 (7)

with H
(0)
1 (η) = 〈η|H(0)|η〉. Since V1(t) is a sum of local

terms, A1(t) is also a sum of local terms. The denomina-
tor in the r.h.s. of (7) is typically of order ν. Therefore,
for the unitary P1(t) to be close to the identity and for
the expansion in g to make sense, we impose

g/ν � 1. (8)

We observe that it was here crucial that V1(t) was local

in the basis that diagonalizes H
(0)
1 ; we do not expect the

theory to extend to the case where H(0) is ergodic.
From (6), we can compute H2(t) in second order in g,

taking (7) into account:

H2(t) = H(0) +
g2

2ν
[A1(t), V1(t)] +O(g3/ν2).

Since the new perturbation does not in general average
to zero over one cycle, we further impose that

g2/νW � 1 (9)

to ensure that H
(0)
2 = 1

T

∫ T
0

dsH2(s) is still MBL.
From (8) and (9), we expect the scheme to converge

towards H∗ given that

max(g2/(νW ), g/ν)� 1. (10)

Note that (10) allows for g � W which means that we
can easily find V (t) such that for all times t, the local
terms in V (t) are of order 1 and hence the Hamiltonian
H(t) is in the ergodic phase, i.e. it does not have MBL
itself.

Let us finally remark that, due to fluctuations of the
disorder, the perturbative approach will fail in some
places. A resonance occurs for example in (7) when an en-
ergy difference H(0)(η′)−H(0)(η) becomes approximately
equal to νk for some k such that V̂1(k) ∼ 1. In general,
non-perturbative effects may be responsible for delocal-
ization, as it is probably the case in disorder-free systems
[32] and in classical disordered systems [36, 37]. Here
however, the location of resonances is determined by the
disorder; as in [15], in the spots where P1(t) cannot be
determined via perturbation, a solution to (4) can always
be given by P (t) = U(t)eiH∗t.

Delocalization at low frequency. Next, we will ar-
gue that at sufficiently low driving frequencies, the prop-
erties of the Floquet operator U(T ) change dramatically
compared to the high-frequency limit considered above:
U(T ) strongly mixes eigenstates of H(0), and the Floquet
eigenstates become delocalized.

Our argument relies on the analogy with the multi-
level Landau-Zener problem. It is convenient to intro-
duce parameter λ = νt, and to slightly change notation
by setting H(λ) := H(t),

H(λ) = H(0) + gV (λ), (11)

For simplicity, we shall assume that g � W , and there-
fore for any λ ∈ [0; 1], the Hamiltonian H(λ) is in the
MBL phase. For the sake of exposition, let us split
V = Vd + Vod such that Vd is that part of the per-
turbation that commutes with H(0). Then we write α
and Eα = Eα(λ) for the eigenvectors and energies of
H(0) + gVd(λ). As λ goes through a cycle, these levels
can cross, whereas the levels of H(λ) have an avoided
crossing (see Fig.1(a)). The character of a pairwise level
crossing is determined by (i) the matrix element of the
operator V (λ) between the energy levels |α〉, |β〉 that un-
dergo the crossing, Mαβ = 〈β|Vd(λc)|α〉, where λc is
the value of parameter λ at which crossing takes place,
and by (ii) the speed at which the crossing is passed:

vαβ =
d(Eα(λ)−Eβ(λ))

dλ ν. In the Landau-Zener problem
(crossing of just two levels), the transition amplitude is
given by (see, e.g. Ref. [33]:

Sα→α = exp(−Cαβ), Cαβ ≡ π
|Mαβ |2

vαβ
, (12)

and therefore one can distinguish three regimes: (1) adia-
batic, when parameter Cαβ � 1. In this case, the system
ends up in eigenstate β after the crossing is passed, and
the probability to stay in the “excited” state α is expo-
nentially small; (2) diabatic, when Cαβ � 1; in this case,
the system stays in state α, and (3) intermediate, when
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Cαβ ∼ 1; in this case, the system ends up in a super-
position of states α and β at long times, with approxi-
mately similar weights. The three regimes are illustrated
in Fig. 1(b-d).

As we will now argue, in our problem the relevant
crossings, which lead to delocalization at low frequency,
occur between levels that differ only by a small number
of LIOM’s. Let us consider two levels α, β, which have
different values of local integrals of motion only in a re-
gion R of size x� L. We first show that there is a scale
x̄, such that at x� x̄ the crossings between states which
differ in region R are very rare, while at x � x̄ there
are many such crossings. There are n(x) = 2x different
levels which have different value of LIOM’s in region R,
and are identical outside R. The typical level spacing for
this group of levels can be estimated as:

∆(x) ≈W
√
x

2x
. (13)

On the other hand, the typical change of energy difference
between two levels α, β when δλ ∼ 1 can be estimated
as:

δEαβ(x) ∼ g(〈α|V |α〉 − 〈β|V |β)〉 ∼ g
√
x, (14)

where we used ‖V̂i‖ ∼ 1. If δEαβ(x) is much smaller than
the level spacing ∆(x), the levels in this group typically
do not cross. In the opposite limit, δEαβ � ∆(x), there
are multiple level crossings of this kind. The scale x̄ can
therefore estimated from the condition δEαβ(x̄) ≈ ∆(x̄),
which gives:

x̄ = log2

W

g
. (15)

At x & x̄, each level α therefore crosses multiple other
levels which differ from α by changing values of some or
all LIOMs in (any) region of size x.

Next, let us understand the character of crossings be-
tween levels α, β that have different LIOMs only in a re-
gion R or size x (assuming such crossing is encountered
as λ is varied). First, we estimate the speed at which
crossing is passed: vαβ(x) ∼ δEαβν ∼ gν

√
x. Second, we

note that the typical matrix element of a local operator
between two MBL eigenstates which differ in region R,
is given by:

Mαβ(x) ∼ g〈α|V |β〉 ∼ g
√
xe−x/ξ. (16)

The value of the parameter Cαβ(x) characterizing the
crossing is then given by:

Cαβ(x) ∼ g
√
x

ν
e−2x/ξ. (17)

The crossing is in the intermediate regime (the two cross-
ing levels mix strongly at long times) at scale x∗, which
can be estimated from the relation Cαβ(x∗) ∼ 1:

x∗ ≈
ξ

2
log

g

ν
. (18)

At x � x∗, (nearly) all crossings are in the diabatic
regime, while at x� x∗ crossings are adiabatic.

The properties of the Floquet operator, most impor-
tantly, the way it mixes states with very different spatial
structure, depend on the relation between length scales
x∗, x̄ (15,18). If x∗ � x̄, during one period of driving,
each level experiences multiple crossings which are in the
intermediate or adiabatic regime. This means that the
operator U(T ) cannot be considered a small perturbation
of Ug=0(T ) = exp(−iTH(0)), as it changes the values of
most LIOM’s. Hence, in this case we expect that the
eigenstates of U(T ) are delocalized.

Using Eqs.(15,18) the condition x∗ � x̄ under which
the system delocalizes, can be rewritten in terms of fre-
quency ν:

ν � ν∗, ν∗ = g
( g
W

)1/a
, a ≡ ξ log 2

2
. (19)

Thus, at sufficiently low driving frequency, the system
always delocalizes.

As we showed above, in the limit of high frequency
(Eqs.(8,9)), the system is in the MBL phase. Therefore,
we expect a localization-delocalization transition to take
place at some critical frequency νc. We conjecture that at
g � W (the assumption under which the analogy with
Landau-Zener problem can be invoked), the transition
takes place when x∗ ≈ x̄, that is, νc ≈ ν∗, although we
were not able to prove this fact. Further, in the limit of
large driving strength, g � W , the perturbation theory
shows that MBL persists at ν �

√
gW . The perturbation

theory breaks down at ν ∼
√
gW , and we conjecture

that in this limit delocalization occurs at νc ∼
√
gW .

Combining these two results, we propose a phase diagram
in Fig.2.
Discussion. In summary, we have analytically estab-

lished that many-body localization persists under peri-
odic driving, if the driving frequency is high enough. The
MBL phase in driven systems is characterized by (i) the
existence of an extensive number of local conservation
laws; (ii) area-law for all, but an exponentially small frac-
tion of Floquet eigenstates; (iii) logarithmic spreading of
entanglement entropy of initial product states. At suffi-
ciently low driving frequencies, the system undergoes a
transition into the delocalized (almost certainly ergodic)
phase. In the future, it will be interesting to explore the
nature of the MBL-delocalization transition in driven sys-
tems, and in particular, to understand whether it belongs
to the same universality class as the MBL-delocalization
transition for static Hamiltonians.

We also note that the existence of MBL phase at large
driving frequency is confirmed by two recent numeri-
cal studies [34, 35]. Ponte et al. [34] studied an MBL
spin model, periodically “kicked” with a delocalizing per-
turbation, finding an MBL-delocalization transition as a
function of driving strength. Lazarides et al. [35] studied
a periodically driven system of disordered bosons, and
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presented numerical evidence for the persistence of MBL
phase at high driving frequency.
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