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François Huveneers, François Simenhaus
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Abstract

We prove strong law of large numbers and an annealed invariance principle for a random walk

in a one-dimensional dynamic random environment evolving as the simple exclusion process with

jump parameter γ. First we establish that, if the asymptotic velocity of the walker is non-zero in

the limiting case “γ = ∞” where the environment gets fully refreshed between each step, then, for

γ large enough, the walker still has a non-zero asymptotic velocity in the same direction. Second

we establish that if the walker is transient in the limiting case γ = 0, then, for γ small enough but

positive, the walker has a non-zero asymptotic velocity in the direction of the transience. These two

limiting velocities can sometimes be of opposite sign. In all cases, we show that fluctuations are

normal.

1 Introduction

The question of the evolution of a random walk in a disordered environment has attracted a lot of attention

in both the mathematical and physical communities over the past few decades. The first studies were

concerned with static random environments. In this set-up anomalous slowdowns are expected with

respect to the homogeneous case as the environment may create traps where the walker could be blocked

for long times. This effect is most obvious in dimension 1, where it is by now well understood (see [19] for

background). In dynamical random environments instead, the transition probabilities of the walker evolve

with time too. If the environment has good space-time mixing properties, the trapping phenomenon is

expected to disappear and one may hope that the evolution of the walker will resemble more that in

an homogeneous medium. The study of this case has recently led to intense researches; see for example

[12, 16] and references therein, as well as [1] for an overview and further references.

However, examples of dynamical environments with slow relaxation times occur naturally. Indeed,

in the presence of a macroscopically conserved quantity, the environment may evolve diffusively. Time

correlations then only decay as t−d/2 in dimension d. Such environments constitute an intermediate class

of models, that is still far for being well understood at the present time [1, 4].

In this paper, we are interested in the asymptotic behavior as t → ∞ of Xt/t, where Xt denotes the

position at time t of a walker driven by the one-dimensional simple exclusion process at equilibrium with

density 0 < ρ < 1. The walker evolves in discrete time: if he sits on a particle at the moment of jumping,
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he moves to the right with probability α and to the left with probability 1−α for some 0 < α < 1, while

if he sits on a vacant site, these probabilities become respectively β and 1 − β for some 0 < β < 1 (see

below for a more rigorous description). Of particular interest is the case α < 1
2 < β or vice versa, as we

then see reappearing the possibility of trapping mechanisms.

Let γ be the jump rate of the particles of the exclusion dynamics. Two regimes, depending on the

value of γ, are considered in this article. We first deal with the fluid regime γ ≫ 1. In the formal limit

“γ = ∞”, the walker evolves as in an homogeneous medium: he jumps to the right with the homogenized

probability p̃ = ρα + (1 − ρ)β and to the left with probability 1 − p̃. We assume p̃ 6= 1
2 , and say p̃ > 1

2

to fix things. The walker is thus drifted to the right in the limiting case “γ = ∞” and the fluctuations

are normal. Let us now take 1 ≪ γ < ∞. The exclusion processes mixes the particles in boxes of size

γ1/2 in between each step of the walker. Therefore, most of the time, the walk will behave in the same

way as the limiting homogeneous walk. However, the walker will eventually visit some regions where

the density of particles is anomalously high or small, and behave then differently. But regions of size l

with an anomalous density of particles, are typically at distance ecl from the origin for some c > 0 in

the equilibrium measure, while only a time of order l2 is needed for the dynamics to disaggregate them.

Therefore, these regions do not act as efficient barriers to the evolution of the walker, that exhibits thus a

positive asymptotic velocity. This is made precise in Theorem 1, where it is also shown that fluctuations

are normal.

We next deal with the quasi-static regime γ ≪ 1. The dynamics is then no longer dominated by the

homogenized probability p̃. Instead of the condition p̃ 6= 1
2 , we now assume that, in the limiting static

case γ = 0, the walk is transient, say to the right (see (1.9) below). Under this hypothesis, at γ = 0, it

is known that Xt ∼ tδ as t → ∞ for some 0 < δ ≤ 1, and that the sub-ballistic behavior observed in

the cases where δ < 1, is due to the fluctuations of the environment. Let us now take γ > 0. We take it

however small enough so that, over a time t = τγ−1 for some small τ > 0, during which the environment

has not evolved significantly, the walk moves to the right by an amount of order tδ, if started in an

environment that looks locally typical with respect to the Gibbs measure. As long as the walk evolves

in such configurations of the environment, it is thus drifted to the right. Nevertheless, when coming in

a region where the density of particles is anomalous, its progression may be much slowed down. Since

however γ is positive, we may just reuse the argument developed for large γ and show that traps are

irrelevant: large traps (of size l) disappear on much shorter time scales (γ−1l2) than the time needed for

the walker to see a next trap of that size (a time at least of order lK for some K ≫ 1, see Section 4). We

conclude that the walker has a positive velocity to the right, as stated in Theorem 2. Again, we show

also that fluctuations are normal.

From these two results, we conclude that the value of the limiting velocity v(γ) may change drastically

between the large an small γ regimes. The following cases seem to be of particular interest: for some

values ρ, α and β, the walk is transient to the left in a static environment while the homogenized drift

2p̃− 1 is positive (the asymptotic velocity in the static environement is then necessarily zero). Therefore

it hods that v(0) = 0, then v(γ) < 0 for small enough γ > 0, and finally v(γ) > 0 for large enough γ > 0.
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We did not show that v(γ) has limit v(0) when γ goes to 0 nor limit 2p̃ − 1 when γ goes to ∞, but

expect both of them. While the latter could be shown using the technique of the present article, at the

cost of slightly more involved estimates (control on both excess and shortage of particles), some more

care should be needed to check the continuity at 0.

Theorems 1 and 2 are shown in essentially the same way. In a first step, by means of a multi-scale

analysis, we show recursively that the walker can pass larger and larger traps, for environments that are

allowed to become locally more and more atypical. The introduction of renormalization techniques to

study random walks in random environments seems to go back to [7] and [9], from where our strategy is

inspired. A similar method is used in [14] (see also [11] and [13] for a slightly different approach). This

first step allows to conclude that the walker is drifted almost surely to the left or the right.

The law of large numbers and invariance principle are deduced in a second step. As the environment

evolves only on diffusive time scales, a ballistic walker discovers fresh randomness most of the time. From

this observation, it is possible to build up a renewal structure, allowing to cut the full trajectory into

pieces that are mutually independent. This idea was first introduced in [18] for the case of a static i.i.d.

environment, and further adapted by [10] to deal with the case of static environments with good mixing

properties. It was exploited in [2] to obtain a law of large numbers for dynamic environments with good

mixing rates, and then in [8, 14]. As this method is rather delicate and model dependent, we had to

perform specific constructions and estimates.

Let us now discuss some existing works that are directly related to our results. A rather comprehensive

study of the model studied here was initiated in [4], where several conjectures, based on numerical

computations and some heuristics, were presented. Partial mathematical results have been obtained in

[13] and [3]. Our Theorem 2 answers negatively one of the “key open question” asked in (3.8) in [4]: Is

γ1(ρ) > 0? Moreover, two dimensional analogs of our model have been studied in the physics literature.

In [5], the differential mobility of a tagged particle driven by an external field is shown, by means of

numerical computations, to undergo a transition from a quasi-static to a fluid regime as γ is increased.

These two regimes are somehow analogous to the ones described by our Theorem 2 and Theorem 1

respectively. In addition, the same model was studied in [6] as a way to probe the glassy transition in

liquids, and the possibility of anomalous fluctuations was alluded. Our results suggest that this is not

the case.

Finally, in a recent work [14], a law of large numbers and an invariance principle for the fluctuations

of a walker were obtained, in a set-up close to ours. The authors consider indeed a random walk driven

by a set of non-interacting particles at equilibrium with density 0 < ρ < +∞. The transition probability

of the walker differs if he sits on a vacant site or on a site occupied by at least one particle. Their

results hold then for all ρ large enough, assuming that the limiting velocity is non-zero in the limiting

case “ρ = ∞”. This is thus a situation analogous to that described by our Theorem 1, which proof is

moreover based on a similar architecture as their. We stress nevertheless that, even when restricting the

attention to Theorem 1, we developed our strategy independently and that a closer look at the details

shows that many steps cannot be simply adapted.
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1.1 Model

An environment is a function (ω(t, x))t≥0,x∈Z with value in the interval (0, 1), the time indexed by t is

continuous and the space is indexed by x ∈ Z. Given such a function ω we define for any space time

point (n, x) the markovian (discrete time) law Pω
n,x by

Pω
n,x(X0 = x) = 1 and, for all k ≥ 0, z ∈ Z (1.1)

Pω
n,x(Xk+1 = z + 1|Xk = z) = ω(n+ k, z) (1.2)

Pω
n,x(Xk+1 = z − 1|Xk = z) = 1− ω(n+ k, z). (1.3)

Given a discrete time process (Xn)n≥0 we also define with a slight abuse of notation the continuous time

process (Xt)t≥0 := (X⌊t⌋)t≥0.

Consider the simple exclusion process on Z

(η(t))t≥0 = (ηx(t))x∈Z,t≥0 ∈ {0, 1}Z

defined by its generator

Lf = γ
∑

x∈Z

(

f ◦ σx,x+1 − f
)

(1.4)

where γ > 0 is the jump rate of the particles (the intensity of the process) and σx,y is defined for any

x, y ∈ Z by,

σx,y(η) = (. . . , ηy, . . . , ηx, . . . ) if η = (. . . , ηx, . . . , ηy, . . . ).

If ηx(t) = 1, site x is said to be occupied by a particle at time t, while it is said to be vacant if ηx(t) = 0.

For any 0 ≤ ρ ≤ 1, the probability measure πρ = (ρδ1 + (1− ρ)δ0)
⊗Z is invariant for the simple exclusion

process. Remark that for any x, πρ(ηx = 1) = ρ. We denote by Pρ the law of the process with initial

condition distributed according to πρ.

Let 0 ≤ α, β ≤ 1. Given a realization of η we define an environment ω as a function of η by

ω(η)(t, x) =











α if η(t, x) = 1

β if η(t, x) = 0

(1.5)

We define P, a law on the space of environments, as the push-forward of Pρ through this function. To

fix ideas we will from now on assume that the drift corresponding to empty sites is larger than the drift

corresponding to occupied sites that is

0 ≤ α < β ≤ 1.

We define for any space-time point (n, x) the annealed law by

Pn,x = P× Pω
n,x (1.6)

Remark that the law of (Xk − x)k≥0 under Pn,x is the same as the one of (Xk)k≥0 under P0,0, that we

will often denote simply by P0.
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1.2 Results

We assume that the environment is uniformly elliptic:

0 < α, β < 1. (1.7)

For our first result, we assume that the walker would be drifted to the right if, at each step, the

environment would be entirely refreshed according to the equilibrium measure (limiting case “γ = ∞”).

We assume thus that ρ, α and β are such that

E0(X1 −X0) = E(2ω − 1) = ρ(2α− 1) + (1− ρ)(2β − 1) > 0 (1.8)

where E0 is the expectation with respect to P0 and E the expectation with respect to P. We show that

the drift to the right will still be observed if, instead of refreshing the environment at each step of the

walker, it evolves according to the dynamics generated by (1.4) with initial condition distributed as Pρ,

provided that γ is taken large enough once the parameters ρ, α and β have been fixed. The following

theorem may therefore be seen as a perturbative result around the trivial case “γ = ∞”:

Theorem 1. Assume that the uniform ellipticity condition (1.7) and the drift condition (1.8) hold. There

exists v∗ > 0 so that, for γ large enough,

1. there exists v(γ) ≥ v∗ so that

lim
t→∞

Xt

t
= v(γ) P0 − a.s.

2. the annealed central limit theorem holds that is, under P0

(

Xnt − ntv(γ)√
n

)

t≥0

=⇒ (Bt)t≥0

where (Bt)t≥0 is a non degenerated brownian motion and the convergence in law is considered under

Skorohod topology.

For our second result, we assume that the walker is transient to the right in a static environment

(γ = 0) that is the parameters ρ, α and β are such that

E

(

ln
1− ω

ω

)

= ρ ln
1− α

α
+ (1− ρ) ln

1− β

β
< 0. (1.9)

For background about static random walks in random environments, see e.g. [19]. We show that, for

strictly positive and small enough γ, the walker has a positive velocity:

Theorem 2. Assume that condition (1.7) and condition (1.9) for transience to the right in a static

environment holds. Then for γ small enough

1. there exists v(γ) > 0 such that

lim
t→∞

Xt

t
= v(γ) P0 − a.s.
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2. the annealed central limit theorem holds that is, under P0

(

Xnt − ntv(γ)√
n

)

t≥0

=⇒ (Bt)t≥0

where (Bt)t≥0 is a non degenerated brownian motion and the convergence in law is considered under

Skorohod topology.

We stress that in the case where (1.8) holds while the left hand side of (1.9) is strictly positive, the

velocity can be either positive or negative according of the value of γ. We can thus exclude that any of

our two theorems could be valid for all strictly positive γ.

1.3 Outline of the paper

The rest of the article is organized in four sections. In Section 2, we control the time of dissipation of

zones with high density of particles. In Section 3, we use these results on the environment together with

a renormalization procedure to derive that, if the assumption (1.8) holds and if γ is large enough, the

walk is ballistic to the right. In Section 4, the same ideas are used to prove that the walk is ballistic to

the right if the assumption (1.9) holds and if γ > 0 is small enough. Finally, in Section 5, we build a

renewal structure to precise the results of Sections 3 and 4, i.e. to derive the law of large numbers and

the annealed invariance principle stated in Theorems 1 and 2.

2 Dissipation of traps

The walker can be slowed down in these places where the concentration of particles is too high with

respect to the expected density ρ. These locally anomalous configuration of the environment are called

traps. Here we make precise the idea that traps disappear on diffusive time scales. Concretely, we

establish that, if in a box of size L around a point x, the density of particles is very close to the density

ρ for a given initial profile η ∈ {0, 1}Z, then, waiting a time bigger than L2, the density in smaller boxes

around x becomes close to ρ as well, with high probability with respect to the evolution of the process.

The section is divided into three parts: we first state our results, then show some technical lemmas, and

finally give the proof of our propositions. The technical estimates in 2.2 are very close to some results

obtained in [13] (see Lemma 5.3 there).

Before starting, let us introduce an extra notation, to be in use mainly in Sections 2-4. We define for

η ∈ {0, 1}Z the law P
η of the simple exclusion process defined by (1.4) and deterministic initial condition

η. We define then

P η = P
η × Pω

0,0, (2.1)

where ω is the environment built from (η(t, x))t≥0,x∈Z (see (1.5)).
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2.1 Statement of the results

Given x ∈ Z, L ∈ N and η ∈ N
Z, let

〈η〉x,L =
1

|B(x, L)|
∑

y∈B(x,L)

ηy (2.2)

be the empirical density of particles in a box of radius L around the point x. In (2.2), we have used the

notations

B(x, L) = [x− L, x+ L] ∩ Z and |B(x, L)| = 2L+ 1.

Let (ǫL)L≥0 be some decreasing sequence of numbers in ]0, 1]. The numbers ǫL will serve to control the

difference between the density ρ and the empirical density in a box of size L. Given η ∈ {0, 1}Z and

L ∈ N, we define the set of good sites G(η, L) ⊂ Z as follows: we say that x ∈ G(η, L) if

〈η〉x,L′ ≤ (1 + ǫL)ρ for all L′ ≥ L. (2.3)

The main result of this section is contained in the following proposition, where we use the assumption

γt ≥ L3 instead of the more natural assumption γt ≥ CL2 for some large constant C, in order to avoid

the introduction of too many constants.

Proposition 1. There exist constants C < +∞ and c > 0 such that, given an initial profile η ∈ {0, 1}Z,
and given x ∈ Z, t ≥ 0 and J, L ∈ N, the conditions

x ∈ G
(

η, L
)

, γt ≥ L3, J ≤ L, L(ǫJ − ǫL) ≥ C,

imply that

P η
(

x /∈ G
(

η(t), J
)

)

≤ C
exp

(

− cJρ2(ǫJ − ǫL)
2
)

ρ2(ǫJ − ǫL)2
.

This proposition can only be applied if, given a profile η, one waits a time γt ≥ L3. The next proposition

furnishes a control that holds for short times too,

Proposition 2. There exist a constant c > 0 such that, given an initial profile η ∈ {0, 1}Z, and given

ǫ > 0, t ≥ 0, x ∈ Z and L ∈ N, it holds that if

y ∈ G
(

η, L
)

∀y ∈ B(x, L) and ǫ ≥ ǫL,

then

P η
(

〈η(t)〉x,L ≥ (1 + ǫ)ρ
)

≤ exp
(

− cLρ2(ǫ− ǫL)
2
)

.

It is observed that this last Proposition is independent of γ.

2.2 Some lemmas : heat equation properties and concentration

We let

η(t) = Eη
(

η(t)
)

(2.4)
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be the mean value of the field after a time t, starting from the initial field η, where we have used Eη for the

expectation with respect to P η. The mean evolution η(t) solves the discrete heat equation ∂tη = γ∆η

with initial condition η(0) = η. The operator ∆ appearing here is the discrete Laplacian defined by

∆u(x) = u(x+ 1)− 2u(x) + u(x− 1) for u : Z → R.

We find it convenient to introduce three closely related kernels. Let first p : Z×R+ → R be the heat

kernel associated to the Laplacian γ∆: p solves the initial value problem

p(·, 0) = δ0(·), ∂tp = γ∆p. (2.5)

So, for x ∈ Z and t ≥ 0, p(x, t) represents the probability that a free particle jumping with rate γ starting

at origin sits on site x at time t. Given L ∈ N, let then pL and pL be given by

pL(x, t) =
∑

y∈B(0,L)

p(x+ y, t) and pL(x, t) =
1

|B(0, L)|pL(x, t) (2.6)

for (x, t) ∈ Z × R+. The quantity pL(x, t) represents the probability that a free particle starting from

origin lies in the box of size L centered at x at time t.

Our first lemma furnishes a concentration bound: with high probability, the empirical density of η(t)

in a box of size L does not deviate too much from the empirical density of the mean evolution η(t) in the

same box. This result does not depend on γ.

Lemma 1. There exists a constant c > 0 such that, given η ∈ {0, 1}Z, L ∈ N, x ∈ Z, t ≥ 0 and a ≥ 0,

P η
(

〈η(t)− η(t)〉x,L ≥ a
)

≤ e−ca2L.

Proof. Given δ ≥ 0, it follows from Markov inequality that

P η
(

〈η(t)− η(t)〉x,L ≥ a
)

≤ e−δa · e−δ〈η(t)〉x,L · Eη
(

eδ〈η(t)〉x,L

)

. (2.7)

We compute

〈η(t)〉x,L =
1

2L+ 1

∑

y∈B(0,L)

η(x+ y, t) =
1

2L+ 1

∑

y∈B(0,L)

∑

z∈Z

p(x+ y − z, t)ηz

=
∑

z∈Z

pL(x− z, t)ηz, (2.8)

as is seen from the definition (2.6) of pL.

Let us then work out the third factor. We use Ligett’s inequality to get rid of the exclusion constraint

(see [13]). Let us define the process θ that represents the collective motion of independent particles

evolving on Z. So let θ = (θ(t))t≥0 be the process on N
Z defined by the generator

Lf(θ) =
∑

x∈Z

θx
(

f(θx,x+1)− 2f(θ) + f(θx,x−1)
)

with θx,y = (. . . , θx − 1, . . . , θy + 1 . . . ) if θ = (. . . , θx, . . . , θy, . . . ). We assume that θ(0) = η. It is

convenient to adopt the following interpretation: we say that there are n ∈ N particles at x ∈ Z at time

t ≥ 0 if and only if θx(t) = n. Let us label all the particles, in an arbitrary way, by k ∈ N
∗. Let Xk(t)
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be their position at time t. At any time t ≥ 0, the variables (Xk(t))k≥1 are independent. By Ligett’s

inequality, and remembering the definition (2.6) of pL, we get

Eη
(

eδ〈η(t)〉x,L

)

≤ Eη
(

eδ〈θ(t)〉x,L

)

= Eη
(

e
δ

2L+1

∑
k≥1 1B(x,L)(Xk(t))

)

=
∏

k≥1

Eη
(

e
δ

2L+11B(x,L)(Xk(t))
)

=
∏

k≥1

(

e
δ

2L+1pL(Xk(0)− x, t) +
(

1− pL(Xk(0)− x, t)
)

)

=
∏

z∈Z

(

e
δ

2L+1pL(z − x, t) +
(

1− pL(z − x, t)
)

)ηz

≤ exp
(

(

eδ/(2L+1) − 1
)

∑

z∈Z

pL(z − x, t)ηz

)

= exp
(

(

eδ/(2L+1) − 1
)

(2L+ 1)〈η(t)〉x,L
)

, (2.9)

where the last expression follows from (2.8).

Let us now come back to (2.7). Assuming that δ/(2L+ 1) ≤ 1, we conclude using (2.9) that we can

find a constant C < +∞ such that

e−δ〈η(t)〉x,L · Eη
(

eδ〈η(t)〉x,L

)

≤ e
Cδ2

2L+1 〈η〉x,t .

Therefore

P η
(

〈η(t)− η(t)〉x,L ≥ a
)

≤ e−aδ+
C〈η(t)〉x,t

2L+1 δ2 for 0 ≤ δ ≤ 2L+ 1.

This inequality is optimized for δ = min{ a(2L+1)
2C〈η(t)〉x,L

, 2L+ 1}. If δ = a(2L+1)
2C〈η(t)〉x,L

, we find

P η
(

〈η(t)− η(t)〉x,L ≥ a
)

≤ e
− a2(2L+1)

4C〈η(t)〉x,L ≤ e−
a2(2L+1)

4C , (2.10)

as 〈η(t)〉x,L ≤ 1 for the simple exclusion process. If instead δ = 2L+ 1, we obtain

P η
(

〈η(t)− η(t)〉x,L ≥ a
)

≤ e−a(2L+1)(1−C〈η(t)〉x,L
a ).

Because in this case 2L+ 1 ≤ a(2L+1)
2C〈η(t)〉x,L

, this implies

P η
(

〈η(t)− η(t)〉x,L ≥ a
)

≤ e−a(2L+1)/2. (2.11)

The Lemma is obvious for a > 1 and, for a ≤ 1, (2.10) is always larger than (2.11) as soon as C ≥ 1/2.

This gives the claim.

The next two lemmas furnish a control on the solution of the heat equation. The first of these makes

precise the fact that, after a time t, the solution at x is well approximated by the empirical density of

the initial profile in a box of size (γt)1/2 around x.

Lemma 2. There exists a constant C < +∞ such that, given η ∈ {0, 1}Z, M,L ∈ N, x ∈ Z and t ≥ 0,

〈η(t)〉x,M ≤
(

1 +
CL2

γt

)

sup
{

〈η〉x,r : r ≥ L
}

.
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Proof. Let us start by quoting a property of the heat equation. Let f : Z 7→ R be such that f(x) = f(−x)
for all x ∈ Z, and such that, for all x ≥ 0, it holds that f(x)− f(x+1) ≥ 0. For x ∈ Z and t ≥ 0, let also

f(x, t) the solution of the initial value problem f(x, 0) = f(x) and ∂tf(x, t) = γ∆f(x, t). It is checked

that, for all t > 0, we still have f(x, t) = f(−x, t) for all x ∈ Z, and f(x, t)− f(x+1, t) ≥ 0 for all x ≥ 0.

This has the following consequence. It is seen from the definition (2.6) of pM that pM (x, 0) =

pM (−x, 0) for all x ∈ Z, that pM (x, 0) − pM (x + 1, 0) ≥ 0 for all x ≥ 0, and that pM solves the heat

equation ∂tpM (x, t) = γ∆pM (x, t) for x ∈ Z and t ≥ 0. Therefore, for any function u : Z → R, it holds

that
∑

z∈Z

pM (z − x, t)u(z) =
∑

z≥0

(

pM (z, t)− pM (z + 1, t)
)

(2z + 1)〈u〉x,z, (2.12)

where pM (z, t)− pM (z + 1, t) ≥ 0 for all z ≥ 0.

Let us now write for simplicity

R := sup
{

〈η〉x,r : r ≥ L
}

.

As shown in (2.8), it holds that 〈η(t)〉x,M =
∑

z∈Z
pM (z − x, t)ηz, so that, using (2.12), we find

〈η(t)〉x,M = 〈η(t)〉x,M −R+R =
∑

z≥0

(

pM (z, t)− pM (z + 1, t)
)

(2z + 1)
(

〈η〉x,z −R
)

+ R. (2.13)

If z ≥ L, then

〈η〉x,z −R = 〈η〉x,z − sup
{

〈η〉x,r : r ≥ L
}

≤ 0,

while, if z < L, then still

(2z + 1)
(

〈η〉x,z −R
)

≤ (2z + 1)〈η〉x,z =
∑

y∈B(0,z)

ηx+y ≤ (2L+ 1)R.

We see that we already obtain the result if L = 0, so that we can further assume L ≥ 1. Inserting these

two estimates in (2.13), we find

〈η(t)〉x,L ≤ (2L+1)R

L−1
∑

z=0

(

pM (z, t)−pM (z+1, t)
)

+ R =
{

1+(2L+1)
(

pM (0, t)−pM (L, t)
)

}

R. (2.14)

A direct computation in Fourier space shows that there exists a constant C < +∞ such that, for any

z ∈ Z, we have

|p(z, t)− p(z + 1, t)| ≤ C

γt
.

Therefore

pM (0, t)− pM (L, t) ≤ CL

γt
.

Inserting this estimate in (2.14) furnishes the claim.

Our last lemma gives a bound that does not require to wait a time γt ≥ L3 to hold:

Lemma 3. Given η ∈ {0, 1}Z, x ∈ Z, t ≥ 0 and L ∈ N, it holds that

〈η(t)〉x,L ≤ sup
{

〈η〉y,r : r ≥ L, y ∈ B(x, L)
}

.
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Proof. For L = 0, the lemma follows from Lemma 2. We assume L ≥ 1. To simplify writings, let us write

R := sup
{

〈η〉y,r : r ≥ L, y ∈ B(x, L)
}

.

We decompose

p(·, t) = p̃(·, t) +
∑

k≥L

pk(·, t)

with

pk(·, t) =
(

p(k, t)− p(k + 1, t)
)

IB(0,k)(·), k ≥ L

and

p̃(z, t) = p(z, t)−
∑

k≥L

pk(z, t) if z ∈ B(0, L− 1) and p̃(z, t) = 0 otherwise.

Let y ∈ B(x, L). It holds that

η(y, t) =
∑

z∈Z

p(y − z, t)ηz =
∑

z∈Z

p̃(y − z, t)ηz +
∑

k≥L

∑

z∈Z

pk(y − z, t)ηz.

Since, for k ≥ L,

∑

z∈Z

pk(y − z, t)ηz =
(

p(k, t)− p(k + 1, t)
)

∑

z∈B(0,k)

ηy+z =
(

p(k, t)− p(k + 1, t)
)

(2k + 1)〈η〉y,k,

and since we assume y ∈ B(x, L), our hypotheses imply 〈η〉y,k ≤ R, so that

η(y, t) ≤
∑

z∈B(0,L−1)

p̃(z, t)ηz+y +
∑

k≥L

(

p(k, t)− p(k + 1, t)
)

(2k + 1)R

Therefore

〈η(t)〉x,L =
1

|B(x, L)|
∑

y∈B(x,L)

η(y, t)

≤
∑

z∈B(0,L−1)

p̃(z, t)
1

|B(x, L)|
∑

y∈B(x,L)

ηz+y +
∑

k≥L

(

p(k, t)− p(k + 1, t)
)

(2k + 1)R.

If z ∈ B(0, L− 1), we have x+ z ∈ B(x, L), and so by hypothesis,

1

|B(x, L)|
∑

y∈B(x,L)

ηz+y =
1

|B(0, L)|
∑

w∈B(0,L)

ηx+z+w ≤ R.

We thus conclude that

〈η(t)〉x,L ≤
{

∑

z∈B(0,L−1)

p̃(z, t) +
∑

k≥L

(

p(k, t)− p(k + 1, t)
)

(2k + 1)
}

R = R,

which is the claim.
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2.3 Proof of Propositions 1 and 2

Proof of Proposition 1. We have

P η
(

x /∈ G(η(t), J)
)

≤
∑

J′≥J

P η
(

〈η(t)〉x,J ′ > (1 + ǫJ)ρ
)

. (2.15)

By Lemma 2, and since by hypothesis γt ≥ L3 and x ∈ G(η, L), we find for all J ′ ∈ N that

〈η(t)〉x,J ′ ≤
(

1 + C/L
)

sup
{

〈η〉x,r : r ≥ L
}

≤
(

1 + C/L
)

(1 + ǫL)ρ.

Therefore, thanks to the hypothesis that L(ǫJ − ǫL) is large enough, we get

(1 + ǫJ)ρ− 〈η(t)〉x,J ′ ≥
(

ǫJ − ǫL − 2C/L
)

ρ ≥ ρ

2
(ǫJ − ǫL) ≥ 0. (2.16)

This last inequality allows us to use the concentration estimate stated in Lemma 1:

P η
(

〈η(t)〉x,J ′ ≥ (1 + ǫJ)ρ
)

= P η
(

〈

η(t)− η(t)
〉

x,J ′ ≥ (1 + ǫJ)ρ− 〈η(t)〉x,J ′

)

≤ P η
(

〈

η(t)− η(t)
〉

x,J ′ ≥ ρ

2
(ǫJ − ǫL)

)

≤ exp
(

− cJ ′ρ2(ǫJ − ǫL)
2
)

, (2.17)

where we have used (2.16) to get the first inequality. Inserting (2.17) in (2.15), we obtain

P η
(

x /∈ G(η(t), J)
)

≤
∑

J′≥J

e−cJ ′ρ2(ǫJ−ǫL)2 ≤ C
e−cJρ2(ǫJ−ǫL)2

ρ2(ǫJ − ǫL)2
,

since ρ2(ǫJ − ǫL)
2 ≤ 1. This is the claim.

Proof of Proposition 2. We write

P η
(

〈η(t)〉x,L ≥ (1 + ǫ)ρ
)

= P η
(

〈η(t)〉x,L − 〈η(t)〉x,L ≥ (1 + ǫ)ρ− 〈η(t)〉x,L
)

.

It follows from the hypotheses and from Lemma 3 that

(1 + ǫ)ρ− 〈η(t)〉x,L ≥ (1 + ǫ)ρ− (1 + ǫL)ρ = (ǫ− ǫL)ρ,

so that, by Lemma 1, we find indeed P η
(

〈η(t)〉x,L ≥ (1 + ǫ)ρ
)

≤ exp(−cLρ2(ǫ− ǫL)
2).

3 Drift for large γ

We here prove

Theorem 3. Assume that the drift to the right condition (1.8) holds. Then there exists v∗ > 0 so that,

for γ large enough, there exists v(γ) ≥ v∗ so that

lim inf
t→∞

Xt

t
= v(γ) P0 − a.s.
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We observe that the uniform ellipticity condition (1.7) is not required. The work is divided into three

parts. We first prove that, given an arbitrary large time T , we can find γ large enough so that the walker

is drifted to the right, for a set of initial conditions on the environment that has large probability with

respect to the Gibbs state (see Lemma 4 below). Next, thanks to a renormalization procedure, we show

that this preliminary result can be extended to arbitrary long times, and to larger and larger sets of

initial conditions (see Proposition 3 below). Our scheme is eventually inspired by a method developed in

[7] (see also [9] for a dynamical uniformly mixing environment). In the case at hand however, we get off

the hook by means of a much more simple iteration than what was needed there. Theorem 3 is finally

established thanks to a Borel-Cantelli argument.

For the whole section we assume that α, β and ρ are fixed such that the drift condition (1.8) holds.

Let us still fix some parameters. First, we assume from now on that the sequence (ǫL)L≥0, introduced in

Section 2 to control the excess of density in boxes of size L, is explicitly given by

ǫL =
1

1 + ln(L+ 1)
for L ∈ N. (3.1)

This choice is motivated by the following facts. In view of the definition (2.3) of good sites, we see that

ǫL >> 1/L1/2 (that is much larger than the standard deviation of the exclusion process) is needed to

ensure that a given site is typically good for large L. Moreover, we will need to apply Proposition 1 with

J and L going to infinity in a certain ratio (L ∼ J2 actually) and we want to keep ǫJ − ǫL as large as

possible. The sequence (ǫL)L≥0 defined by (3.1) converges very slowly to zero, satisfying thus these two

requirements.

Second, we define also a sequence (φL)L≥0 that will serve to quantify the size of the traps in a box

of size L. Intuitively, typical regions of anomalous density in a box of size L are of size lnL. For our

estimates, we nevertheless found it convenient to overestimate their size. We set

φL = L1/100 for L ∈ N. (3.2)

In the sequel, we will tacitly use the bound |Xt −Xs| ≤ t− s, valid for all 0 ≤ s ≤ t.

3.1 Initial step

Lemma 4. Let T ∈ N be large enough, and let γ ≥ φ3T . There exists a constant v > 0 (that depends only

on α, β and ρ) such that, given η ∈ {0, 1}Z and x ∈ Z such that

∀y ∈ B(x, T ), y ∈ G(η, φT ).

It holds

P η(XT −X0 ≤ vT ) ≤ e−φ
1/4
T .

Proof. Letting v > 0 be a constant that we will determine later, we first write

P η(XT −X0 ≤ vT ) ≤ P η(XT −X1 ≤ vT + 1), (3.3)
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as the hypotheses do not allow to determine whether the site x is initially occupied or not.

Let us define a few objects. Since we assume α ≤ β, there exists δ > 0 small enough so that (1.8)

will still be satisfied with any ρ′ ∈ [0, ρ + δ] instead of ρ. Let δ > 0 be such that this holds. Up to

an enlargement of the probability space we define a sequence of i.i.d. random variables (Yk)k≥1 that are

independent from both the exclusion process and the walker with distribution

P η(Yk = 1) = β + (α− β)(ρ+ δ), P η(Yk = −1) = 1− P η(Yk = 1). (3.4)

Thanks to (1.8) and our choice of δ, it holds that P η(Yk = 1) > 1/2. For m ≥ 2, we define the events

Em−1 = {y ∈ G(η(m− 1), J), ∀y ∈ B(x,m)} with J = ⌊φ1/2T ⌋, (3.5)

and E0 = {y ∈ G(η(0), φT ), ∀y ∈ B(x, 1)}. By hypothesis, P η(E0) = 1.

We aim to show that

P η(XT −X1 ≤ vT + 1) ≤ P η
(

T−1
∑

k=1

Yk ≤ vT + 1
)

+

T−1
∑

k=1

P η(Ec
k−1). (3.6)

Before deriving this expression, let us see that it implies the lemma for v small enough depending on the

values of α, β and ρ. Indeed for such a v, by (3.4), the first term in the right hand side of (3.6) is seen

to be bounded as

P η
(

T−1
∑

k=1

Yk ≤ vT + 1
)

≤ e−cT (3.7)

for some constant c > 0. The second term in the right hand side of (3.6) is then bounded by means of

Proposition 1. Since T is assumed to be large enough, and since γ ≥ φ3T , we deduce that

T−1
∑

k=1

P η(Ec
k−1) ≤

∑

y∈B(x,T ),

s∈{1,...,T−2}

P η
(

y /∈ G(η(s), J)
)

≤ C
∑

y,s

exp
(

− cJρ2(ǫJ − ǫφT
)2
)

ρ2(ǫJ − ǫφT
)2

≤ C T 2 exp
(

− cJρ2(ǫJ − ǫφT
)2
)

ρ2(ǫJ − ǫφT
)2

≤ e−φ
1/3
T , (3.8)

where, to get the last inequality, we have used the explicit expressions (3.1) and (3.2) and (3.5), as well

as the fact that T is large enough. We obtain the lemma by inserting the bounds (3.7) and (3.8) in (3.6),

and then (3.6) in (3.3).

We are thus left with the proof of (3.6). For this, we show that, for any m ≥ 1 and any a ∈ R,

P η
(

X1+m −X1 ≤ a
)

≤ P η
(

X1+(m−1) + Ym −X1 ≤ a
)

+ P η(Ec
m−1), (3.9)

from which (3.6) follows by iteration using Fubini.

Let us first deal with the case m = 1. We need to show that P η(X2 −X1 ≤ a) ≤ P η(Y1 ≤ a), but for

this it is enough to establish that P η(X2 −X1 = −1) ≤ P η(Y1 = −1). It holds that

P η(X2 −X1 = −1) =
∑

z∈Z

∑

σ=0,1

P η(X2 −X1 = −1|X1 = z, ηz(1) = σ)P η(X1 = z, ηz(1) = σ)

=
∑

z∈Z

P η(X1 = z)
∑

σ=0,1

P η(X2 −X1 = −1|X1 = z, ηz(1) = σ)P η(ηz(1) = σ)

=
∑

z∈B(x,1)

P η(X1 = z)
(

1− β + (β − α)P η(ηz(1) = 1)
)

.
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Since, by (3.4), we have P η(Y1 = −1) = 1 − β + (β − α)(ρ + δ), we will conclude by showing that

P η(ηz(1) = 1) ≤ ρ+ δ for any z ∈ B(x, 1). Let z ∈ B(x, 1). It holds that

P η
(

ηz(1) = 1
)

=
∑

w∈Z

ηwp(w − z, 1) = ηz(1), (3.10)

where, as in Section 2, η(1) denotes the solution to the heat equation, with Laplacian γ∆, after a time

1, starting from η. We can use Lemma 2, with M = 0, L = φT , t = 1 and x = z, to estimate the right

hand side of (3.10). Since γ ≥ φ3T and z ∈ G(η, φT ) by hypothesis, we conclude that if T is large enough,

P η
(

ηz(1) = 1
)

≤
(

1 +
Cφ2T
γ

)

sup{〈η〉z,r : r ≥ φT } ≤
(

1 +
Cφ2T
φ3T

)

(1 + ǫφT
)ρ < ρ+ δ. (3.11)

Let us next consider the case m > 1 in (3.9):

P η(X1+m −X1 ≤ a) = P η(X1+m −Xm +Xm −X1 ≤ a)

≤ P η(Ec
m−1)+

∑

z1,zm∈Z

P η
(

X1+m−Xm ≤ a−(zm−z1)
∣

∣X1 = z1, Xm = zm, Em−1

)

P η(X1 = z1, Xm = zm, Em−1).

For each term of the sum, we proceed with the first factor exactly as for m = 1. Replacing L = φT by

L = J in (3.11), we find

P η
(

X1+m −Xm ≤ a− (zm − z1)
∣

∣X1 = z1, Xm = zm, Em−1

)

≤ P η
(

Ym ≤ a− (zm − z1)
)

.

Altogether, we obtain

P η(X1+m −X1 ≤ a) ≤
∑

z1,zm∈Z

P η(Ym ≤ a− (zm − z1))P
η(X1 = z1, Xm = zm) + P η(Ec

m−1)

= P η(X1+(m−1) + Ym −X1 ≤ a) + P η(Ec
m−1),

as desired.

3.2 Renormalization procedure

We let v the constant appearing in Lemma 4.

Proposition 3. Let T be large enough and let γ ≥ φ3T . Given η ∈ {0, 1}Z, x ∈ Z and t ≥ T such that

∀y ∈ B(x, t), y ∈ G(η, φt),

it holds that

P η
(

Xt −X0 ≤ v

2
t
)

≤ e−φ
1/4
t . (3.12)

Proof of Proposition 3. We consider T large enough so that conclusions of Lemma 4 hold for the time

T 1/3. We then define a sequence (tn)n≥0 with t0 ∈ [T 1/3, T ] and

for n ≥ 0, tn+1 ∈ [t2n, (tn + 1)2] (3.13)
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such that for some N ≥ 0, tN = t (for example define recursively, from tN = t with some suitable N ,

tk−1 = ⌊√tk⌋ until reaching the interval [T 1/3, T ]). We define also a sequence (cn)n≥0 ⊂ R+ by

v ≥ cn =

(

3−
n
∑

k=0

1

2k

)

v

2
≥ v

2
(n ≥ 0). (3.14)

We prove by recurrence on n ≥ 0 that, given η ∈ {0, 1}Z, x ∈ Z and n ≥ n0, if, for any y ∈ B(x, tn), it

holds that y ∈ G(η, φtn), then

P η(Xtn −X0 ≤ cntn) ≤ e−φ
1/4
tn . (3.15)

This will imply the claim.

By Lemma 4 and the hypotheses, (3.15) holds true for n = 0 since γ ≥ φ3T . We now assume that

(3.15) holds for some n ≥ 0, and we show that it implies it for n + 1. We follow the same steps as

in the proof of Lemma 4. To simplify notations, let us write tn = t and tn+1 = t′, as well as cn = c

and cn+1 = c′. As in Lemma 4, we first need to wait an initial step, as the information on the initial

environment does not allow us to use our inductive hypothesis. It follows from the definition (3.13) of

(tn)n≥1 that t′ = r + (t− 1)t for some t ≤ r < 4t. We write

P η(Xt′ −X0 ≤ c′t′) ≤ P η(Xt′ −Xr ≤ c′t′ + r). (3.16)

If n0 is large enough, waiting this time r will suffice to dissipate possible traps with high probability.

As in the proof of Lemma 4 we define on the same probability space (enlarged if necessary) a sequence

(Yk)k≥1 of i.i.d. random variables independent from both the exclusion process and the walker with

distribution

P η(Yk = ct) = 1− e−φ
1/4
t , P η(Yk = −t) = e−φ

1/4
t .

Using our inductive hypothesis, we aim to show that

P η(Xt′ −Xr ≤ c′t′ + r) ≤ P η
(

t−1
∑

k=1

Yk ≤ c′t′ + r
)

+
∑

y∈B(x,t′),
r≤s≤t

′

P η
(

y /∈ G(η(s), φt)
)

. (3.17)

To see this, we show that, for any m ≥ 1 and any a ∈ R, we have

P η(Xr+mt −Xr ≤ a) ≤ P η(Xr+(m−1)t + Ym −Xr ≤ a) + P η(Ec
m−1) (3.18)

where

Em−1 =
{

∀y ∈ B(x, r +mt), y ∈ G(η(r + (m− 1)t), φt)
}

.

Since t′ = r + (t− 1)t, (3.17) follows from (3.18) by iteration.

We prove now (3.18). For any m ≥ 1,

P η(Xr+mt −Xr ≤ a) = P η(Xr+mt −Xr+(m−1)t +Xr+(m−1)t −Xr ≤ a)

≤ P η(Ec
m−1)+

∑

z0,zm−1∈Z

P η
(

Xr+mt−Xr+(m−1)t ≤ a−(zm−1−z0)
∣

∣Az0,zm−1

)

P η(Xr+(m−1)t = zm−1, Xr = z0).
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with

Az0,zm−1 = {Xr+(m−1)t = zm−1, Xr = z0, Em−1}.

Using the inductive hypothesis each term of the sum can be controlled by

P η
(

Xr+mt −Xr+(m−1)t ≤ a− (zm−1 − z0)
∣

∣Az0,zm−1

)

≤ P η
(

Ym ≤ a− (zm−1 − z0)
)

.

Therefore indeed P η(Xr+mt −Xr ≤ a) ≤ P η(Ym +Xr+(m−1)t −Xr ≤ a) + P η(Ec
m−1). So (3.18) and

hence (3.17) are shown.

We now proceed to bound each term in the right hand side of (3.17) separately. First, it follows from

the definition (3.13) of (tn)n≥0 and the definition (3.14) of (cn)n≥0 that, if T is large enough,

mt := Eη(Yk) = ct
(

1− e−φ
1/4
t

)

− te−φ
1/4
t ≥ c+ c′

2
t. (3.19)

Therefore

P η

( t−1
∑

k=1

Yk ≤ c′t′ + r

)

≤ P η

( t−1
∑

k=1

(

Yk −mt
)

≤ (c′ −m)(t− 1)t+ 8t

)

≤ P η

( t−1
∑

k=1

(

Yk −mt
)

≤ −c− c′

2
(t− 1)t+ 8t

)

≤ P η

( t−1
∑

k=1

(

Yk −mt
)

≤ −t3/4t

)

≤ e−ct1/2 , (3.20)

where we have used the decomposition t′ = r + (t − 1)t, as well as the bounds r ≤ 4t and c′ ≤ 1 to

get the first inequality, the estimate (3.19) to get the second one, the definitions (3.13) of (tn)n≥0 and

(3.14) of (cn)n≥0 to get the third one, and finally a classical concentration bound for sum of independent

bounded variables (|Yk| ≤ t a.s.) to obtain the last one.

We then use Proposition 1 to get a bound on the second term in the right hand side of (3.17). By

assumption, y ∈ G(η, φt′) as soon as y ∈ B(x, t′), while, by the definition (3.2) of the sequence (φL), we

have γr ≥ γt ≥ φ3
t′
. Therefore

∑

y∈B(x,t′),
r≤s≤t

′

P η
(

y /∈ G(η(s), φt)
)

≤ Ct′2
exp

(

− cφtρ
2(ǫφt

− ǫφ
t′
)2
)

ρ2(ǫφt
− ǫφ

t′
)2

≤ e−φ
1/3
t , (3.21)

where the last bound is obtained using the explicit expressions (3.1) for (ǫL), (3.2) for (φL), and (3.13)

for (tn)n≥1.

The result is obtained by inserting (3.20) and (3.21) in (3.17), and then (3.17) in (3.16).

3.3 Proof of Theorem 3

Proof of Theorem 3. Given η ∈ {0, 1}Z and t ∈ N, we define a subset A(η, t) ⊂ Z of admissible points as

follows: x ∈ A(η, t) if and only if for all y ∈ B(x, t), it holds that y ∈ G(η, φt). Let us first show that

there exists a constant C < +∞ and α > 0 such that

Pρ(x /∈ A(η, t)) ≤ C e−tα . (3.22)
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Indeed, because the equilibrium measure is a Bernoulli product measure, we find

Pρ(x /∈ A(η, t)) ≤
∑

y∈B(x,t)

Pρ(y /∈ G(η, φt)) ≤
∑

y∈B(x,t)

∑

L≥φt

Pρ

(

〈η〉y,L > (1 + ǫφt
)ρ
)

≤ 2
∑

y∈B(x,t)

∑

L≥φt

e−cLǫ2φt
ρ ≤ Ct

e−cρφtǫ
2
φt

ǫ2φt
ρ

.

Relation (3.22) is then obtained by inserting the values of φt and ǫφt given by (3.1) and (3.2).

By Borel-Cantelli lemma, it then follows from Proposition 3 and (3.22) that lim inft→∞Xt−x ≥ vt/2

P0 − a.s., where v is the constant appearing in Lemma 4.

4 Drift for small γ

We here prove

Theorem 4. Assume that the condition (1.9) for transience to the right in a static environment holds.

Then for γ small enough there exists v(γ) > 0 such that

lim inf
t→∞

Xt

t
= v(γ) P0 − a.s.

We observe that the uniform ellipticity condition (1.7) is not required. The cases where (1.9) holds while

(1.7) is violated correspond to the cases (α = 1, β > 0) or (α > 0, β = 1). Since then (1.9) will still hold

if the values or α or β are lowered by a sufficiently small amount, we conclude by a coupling argument

that the hypothesis (1.7) can be added without loss of generality. We will thus assume that (1.7) holds.

Several constants and parameter will appear in this section. Since it matters to select them in a given

order, we introduce all of them (at least informally in some cases) already now:

1. We let as before the sequence (ǫL)L be given by (3.1).

2. We fix the parameters of the model, α, β and ρ, so that (1.7) and (1.9) hold.

3. We fix a number q ≥ 2 that will serve to bound the probability that the walker deviates to much

to the left, in Lemma 6 and Proposition 4.

4. We will take τ > 0 small enough so that the environment can be approximated with high enough

accuracy by a static environment on time intervals of length γ−1τ , in the proofs of Lemmas 6 and

7.

5. We will take K > 0 large enough so that environments with no trap of size larger or equal to

K lnL in a given region of size L, are typical with respect to the equilibrium measure, in Lemmas

6 and 7 and in Proposition 4. Incidentally, taking K large enough allows also to successfully apply

Propositions 1 and 2.

6. We will take δ > 0 small enough so that, in a static environment, the walker drifts a distance tδ to

the right in a time t with high probability, in Lemmas 6 and 7 and in Proposition 4.

7. We will finally take γ > 0 small enough.
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4.1 Static environment

In this section we consider random walks in static random environment. We refer to [19] for background

on this topic. Given an environment ω ∈ [0, 1]Z we define Sω
x to be the law of the walker starting at

time 0 in x ∈ Z and evolving in the static environment ω. We use Sω for Sω
0 . Given η ∈ {0, 1}Z, we

can define via (1.5) an environment ω(η). To simplify notation we may use Sη instead of Sω(η). Given a

static environment ω, we define the associated potential V by

V (0) = 0 and ∀i ∈ Z, V (i+ 1)− V (i) = ln
1− ωi+1

ωi+1
.

Lemma 5. Let K, and δ be positive numbers. Let ρ̃ ∈ [ρ, 1[ be small enough so that

E
ρ̃

(

ln
1− ω

ω

)

<
1

2
E
ρ

(

ln
1− ω

ω

)

,

where E
ρ denotes the expectation with respect to Pρ.

1. There exists C > 0 so that for t large enough (depending on δ), if the environment satisfies

〈η〉−tδ/2,tδ/2 ≤ ρ̃, then

Sη

(

inf
0≤s≤t

Xs ≤ −tδ
)

≤ e−Ctδ (4.1)

2. For t large enough (depending on δ and K), if the environment satisfies

∀x ∈ B(0, 2tδ), 〈η〉x,K ln tδ ≤ ρ̃,

then there exists CK > 0 such that

Sη(Xt ≤ tδ) ≤ t−(1−CKδ) (4.2)

Note that the assumption of point 2. implies the assumption of point 1.

Proof. We assume for simplicity and avoid integer parts that tδ is an integer.

We start with point 1. Under assumption 〈η〉−tδ/2,tδ/2 ≤ ρ̃

V (−tδ) ≥ −tδEρ̃

(

ln
1− ω

ω

)

≥ −tδE
ρ(ln 1−ω

ω )

2

We remind that (see [19] for example)

Sη(T−tδ < T1) =
1

∑0
i=−tδ e

V (i)
≤ et

δ E
ρ(ln 1−ω

ω
)

2 .

Finally using Markov property at successive return times in 0 we obtain

Sη

(

inf
0≤s≤t

Xs ≤ −tδ
)

≤ tet
δ E

ρ(ln 1−ω
ω

)

2

and that concludes the proof of (4.1).

We turn to point 2. and first control the probability that the walker has not exited the interval

[−2tδ, 2tδ] at time t. Let T := min{k ≥ 0, Xk /∈ [−2tδ, 2tδ]}. Define the environment ω̃ for i ∈ Z by

ω̃i =











ωi if i ≥ −2tδ

0 if i < −2tδ
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Considering an obvious coupling of Sη and Sω̃,

Sη(T ≥ t) ≤ Sω̃(T2tδ ≥ t)

where Tx denotes the hitting time of x ∈ Z. Using a classical recurrence (see [19] p.59 for example) it

holds that

ESω̃ (T2tδ) ≤
1

α
(4tδ)2e[V ]

−tδ,tδ

where for a, b ∈ Z, [V ]a,b = max{V (j) − V (i), 1 ≤ i ≤ j ≤ b}. Assumption of point 2. implies that

any excursion above a minimum of V has length at most K ln tδ and thus [V ]−2tδ,2tδ ≤ K ln(tδ) ln( 1−α
α ).

Finally using Markov inequality

Sη(T ≥ t) ≤ 16

α
t2δ−1+δK ln( 1−α

α )

We turn to the probability that the walker is at the left of tδ at time t.

Sη(Xt ≤ tδ) ≤ Sη(T ≥ t) + Sη( inf
0≤s≤t

Xs ≤ −2tδ) + Sη(T2tδ < t,Xt ≤ tδ)

We have already controlled the first two terms. For the last one, we apply Markov property at time Ttδ

and then use (4.1) to derive :

Sη(T2tδ < t,Xt ≤ tδ) ≤ te
tδ

4 E
ρ(ln 1−ω

ω ) ≤ e−Ctδ

The largest of the three terms is thus the first one at least for t large enough. That concludes the proof

of (4.2).

4.2 Initial step

The assumption in Proposition 1 will read t ≥ K3 ln3(γ−δt), once applied at a time γ−1t and for a length

K ln(γ−δt) in the renormalization procedure in Section 4.4 below. Therefore, this procedure can only be

initiated for times satisfying this bound, hence the choice of a window ln4(γ−1) ≤ T ≤ ln9(γ−1) in the

next lemma:

Lemma 6. Let q ≥ 2. Let K > 0 large enough then δ > 0 small enough and then γ > 0 small enough.

Let ln4(γ−1) ≤ T ≤ ln9(γ−1). Assume that the initial environment η ∈ {0, 1}Z is such that

∀x ∈ B
(

0, (γ−δT )2
)

, x ∈ G
(

η,K ln(γ−δT )
)

.

Then,

P η(Xγ−1T ≤ γ−δT ) ≤ 1

T q
.

Proof. Let τ > 0 be a real number that we will fix later. Let us first define an event E relative to the

exclusion process alone. We set

E =

T/τ−1
⋂

j=0

(Aj ∩Bj)

with, for j = 0, · · · , T/τ − 1
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• (η(t))t≥0 ∈ Aj if and only if

∀x ∈ B
(

0, (γ−δT )2
)

, 〈η(tj)〉x,L ≤ (1 + ǫL1/2)ρ where tj = jτ, L = K ln(γ−δT ),

• (η(t))t≥0 ∈ Bj, if and only if, for all x ∈ B(0, (γ−δT )2), the number of jumps of the exclusion

process that moves particles in the time-space window [γ−1tj , γ
−1tj+1]× [x−L, x+L] is bounded

by τ1/2(2L).

We then decompose

P η(Xγ−1T ≤ γ−δT ) ≤ P η(Xγ−1T ≤ γ−δT |E) + P η(Ec). (4.3)

Let us estimate the first term in the right hand side of (4.3). Let ω be an environment such that the

corresponding (η(t))t≥0 satisfies (η(t))t≥0 ∈ E. Let xj = jγ−δτ (0 ≤ j ≤ T/τ − 1). A coupling argument

shows that

Pω
0,0(Xγ−1T > γ−δT ) ≥

T/τ−1
∏

j=0

Pω
γ−1tj ,xj

(

Xγ−1tj+1
−Xγ−1tj > γ−δτ

)

. (4.4)

For any 0 ≤ j ≤ T/τ − 1, we define η̃ by

η̃j = max
tj≤s≤tj+1

η(γ−1s).

On Aj ∩Bj , it holds that

〈η̃j〉xj ,L ≤ (1 + ǫL1/2 + τ1/2)ρ := ρ̃.

For τ and γ small enough, it holds that Eρ̃((1−ω)/ω) < 1
2E

ρ((1−ω)/ω). It then follows from the second

part of Lemma 5 with t = γ−1τ , that for γ small enough :

Pω
γ−1tj ,xj

(

Xγ−1tj+1
−Xγ−1tj > γ−δτ

)

≥ Sη̃j
xj

(

Xγ−1τ − xj > γ−δτ
)

≥ Sη̃j
xj

(

Xγ−1τ − xj > (γ−1τ)δ
)

≥ 1− γ1−CKδ. (4.5)

Inserting this estimate in (4.4), we find that, for δ > 0 small enough and γ > 0 small enough,

Pω
0,0(Xγ−1T > γ−δT ) ≥

(

1− γ1−CKδ
)T/τ ≥ exp

(

−(T/τ)γ1−CKδ/2
)

.

Therefore, thanks to the hypothesis ln4(γ−1) ≤ T ≤ ln9(γ−1), it also holds that

P η(Xγ−1T ≤ γ−δT |E) ≤ 1− exp
(

−(T/τ)γ1−CKδ/2
)

≤ T−(q+1). (4.6)

We next come to the second term in the right hand side of (4.3):

P η(Ec) ≤
T/τ−1
∑

j=0

P η ((Aj ∩Bj)
c) ≤

T/τ−1
∑

j=0

(

P η(Ac
j) + P η(Bc

j |Aj)
)

. (4.7)

First, applying Proposition 2 we find that for γ small enough and j = 0, · · · , T/τ − 1

P η(Ac
j) ≤

∑

x∈B(0,(γ−δT )2)

P η(〈η(tj)〉x,L > (1 + ǫL1/2)ρ) ≤ C(γ−δT )2e−cL(ǫ
L1/2−ǫL)2 ≤ (γ−δT )2−cK .
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Next, applying a classical concentration bound, for τ small enough there exists c(τ) > 0 so that for

j = 0, · · · , T/τ − 1

P η(Bc
j |Aj) ≤ C(γ−δT )2e−c(τ)L ≤ (γ−δT )2−cK .

Inserting these two last bounds in (4.7), we conclude that, if K is large enough,

P η(Ec) ≤ T−(q+1). (4.8)

The result is obtained by inserting (4.6) and (4.8) in (4.3).

4.3 Rough lower bound for intermediate times

Lemma 6 derived above does not yet allow to initiate the renormalization procedure described in the

proof of Proposition 4 below. Indeed, while on a time γ−1t the walker moves a distance γ−δt to the right

with probability 1 − 1/tq for good environments, it could a priori move a distance γ−1t to the left with

probability 1/tq. Therefore, as long as roughly t < γ−1/q, we could not exclude that the drift is actually

to the left. Conclusions of Lemma 6 are however valid only for t ≤ ln9(γ−1) and we can not expect,

using the same proof, to generalize this result to times t close to γ−1, see (4.6). For intermediate times t

such that ln4(γ−1) ≤ t ≤ ln9(γ−1), the next lemma furnishes a better lower bound than the deterministic

bound Xs ≥ −s (s ≥ 0), so as to make sure that the walker is drifted to the right.

Lemma 7. Let K > 0 large enough then δ > 0 small enough and then γ > 0 small enough. Assume T

is chosen as in Lemma 6, that is ln4(γ−1) ≤ T ≤ ln9(γ−1), and let T ≤ t ≤ γ−1. Assume that the initial

state η ∈ {0, 1}Z is such that

∀x ∈ B
(

0, (γ−δt)2
)

, x ∈ G
(

η,K ln(γ−δt)
)

. (4.9)

Then for all 1 ≤ s ≤ t,

P η
(

Xγ−1s ≤ −γ−δs
)

≤ e−sδ/2 .

Proof. We first notice that the hypothesis (4.9) implies

∀x ∈ B
(

0, (γ−δt)2
)

, x ∈ G
(

η, (τγ−1)δ/2
)

, (4.10)

provided that (ǫL)L≥0 is no longer given by (3.1), but is such that

ǫ(τγ−1)δ/2 =
1

1 + ln (1 + ln(γ−δt))
. (4.11)

For the present proof, we assume that (4.11) holds instead of (3.1), and we use directly the hypothesis

(4.10) instead of (4.9).

Fix 1 ≤ s ≤ t and define an event E relative to the exclusion process alone. We set

E =

s/τ−1
⋂

j=0

(Aj ∩Bj)

with
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• (η(t))t≥0 ∈ Aj if and only if

〈η(γ−1tj)〉xj−L,L ≤ (1 + ǫL1/2)ρ where tj = jτ, xj = −k(τγ−1)δ, L = (τγ−1)δ/2,

• (η(t))t≥0 ∈ Bj if and only if the number of jumps of the exclusion process that moves particles in

the time-space window [xj − 2L, xj ]× [γ−1tj , γ
−1tj+1] is bounded by τ1/2(2L).

We then decompose

P η
(

Xγ−1s ≤ −γ−δs
)

≤ P η
(

Xγ−1s ≤ −γ−δs|E
)

+ P η(Ec). (4.12)

Let us estimate the first term in the right hand side of (4.12). Let ω be an environment such that the

corresponding (η(t))t≥0 satisfies (η(t))t≥0 ∈ E. A coupling argument shows that

Pω
0,0

(

Xγ−1s ≤ −γ−δs
)

≤
s/τ−1
∑

j=0

Pω
γ−1tj ,xj

(

Xγ−1tj+1
−Xγ−1tj ≤ −2L

)

. (4.13)

For any 0 ≤ j ≤ s/τ − 1, we define η̃ by

η̃j = max
tj≤r≤tj+1

η(γ−1r).

It holds that

〈η̃j〉xj−L,L ≤ (1 + ǫL1/2 + τ1/2)ρ := ρ̃.

For τ small enough and γ small enough, it holds that Eρ̃((1 − ω)/ω) < 1
2E

ρ((1 − ω)/ω). By a coupling

argument and the first part of Lemma 5, we obtain for some c > 0,

Pω
γ−1tj ,xj

(

Xγ−1tj+1
−Xγ−1tj ≤ −2L

)

≤ Sη̃j
xj

(

Xγ−1τ − xj ≤ −2L
)

≤ e−cL.

Therefore, inserting this estimate in (4.13), it holds that Pω
0,0

(

Xγ−1s ≤ −γ−δs
)

≤ (s/τ)e−cL so that

P η
(

Xγ−1s ≤ −γ−δs|E
)

≤ s

τ
e−cL. (4.14)

For the second term in the right hand side of (4.12), we have too

P η(Ec) ≤
s/τ−1
∑

j=0

P η ((Aj ∩Bj)
c) ≤

s/τ−1
∑

j=0

(

P η(Ac
j) + P η(Bc

j |Aj)
)

≤ s

τ
e−cL, (4.15)

since, applying Proposition 2 we find P η(Ac
j) ≤ e−cL if K is large enough, while, if τ is chosen small

enough, a classical concentration bound furnishes P η(Bc
j |Aj) ≤ e−cL.

Inserting (4.14) and (4.15) into (4.12), we obtain for γ large enough,

P η
(

Xγ−1s ≤ −γ−δs
)

≤ Cγ−1τ−1e−cL ≤ e−γ−δ/2 ≤ e−sδ/2 .

since s ≤ γ−1.
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4.4 Renormalization procedure

We use Lemma 6 as initial step, Proposition 1 to guarantee the dissipation of possible traps with high

probability, and Lemma 7 as lower bound for intermediate times, to derive

Proposition 4. Let q ≥ 2. Let K be large enough, then δ > 0 small enough and finally γ > 0 small

enough. Fix t ≥ ln9(γ−1) and assume that the initial environment η ∈ {0, 1}Z is such that

∀x ∈ B
(

0, (γ−δt)2
)

, x ∈ G
(

η,K ln(γ−δt)
)

.

Then,

P η(Xγ−1t ≤ γ−δt/2) ≤ 1/tq.

Proof. We take K < +∞, δ > 0 and γ > 0 such that Lemmas 6 and 7 hold. Given t ≥ ln9(γ−1), we define

a sequence (tn)n≥0 with t0 ∈ [ln4 γ−1, ln9 γ−1] and for n ≥ 0, tn+1 ∈ [t2n, (tn + 1)2], such that for some

N ≥ 0, tN = t. Remind the definition of (cn)n≥0 in (3.14) with v = 1 so that the sequence is decreasing

from 1 to 1/2. We prove by recurrence that, given η ∈ {0, 1}Z and n ≥ 0, if, for any x ∈ B(0, (γ−δtn)
2),

it holds that x ∈ G(η,K ln γ−δtn), then

P η(Xγ−1tn ≤ cnγ
−δtn) ≤ t−q

n . (4.16)

This will imply the claim.

By Lemma 6 and by the hypotheses, (4.16) holds true for n = 0. We now assume that (4.16) holds

for some n ≥ 0, and we show that it implies it for n + 1. To simplify notations, let us write tn = t and

tn+1 = t′, as well as cn = c and cn+1 = c′. It holds that t′ = r+ (t− 1)t for some t ≤ r < 4t. The cases

t′ ≤ γ−1 and t′ > γ−1 are treated differently. We first write a bound analogous to (3.16) in the proof of

Proposition 3:

P η(Xγ−1t′ ≤ c′γ−δt′) ≤ P η
(

Xγ−1t′ −Xγ−1r ≤ c′γ−δt′ + γ−δr
)

+ e−t
δ/2

if t′ ≤ γ−1, (4.17)

P η(Xγ−1t′ ≤ c′γ−δt′) ≤ P η
(

Xγ−1t′ −Xγ−1r ≤ c′γ−δt′ + γ−1r
)

if t′ > γ−1, (4.18)

where (4.17) is derived from Lemma 7 while the bound Xγ−1r ≥ −γ−1r in (4.18) is deterministic.

We need to evaluate the the right hand side of either of these bounds. For this, we define on the same

probability space (enlarged if necessary) a sequence (Yk)k≥1 of i.i.d. random variables independent from

both the exclusion process and the walker with distribution:

P η
(

Yk = cγ−δt
)

= 1− t−q, P η
(

Yk = −γ−δt
)

= t−q if t′ ≤ γ−1, (4.19)

P η
(

Yk = cγ−δt
)

= 1− t−q, P η
(

Yk = −γ−1t
)

= t−q if t′ > γ−1. (4.20)

For any integer m ≥ 0, let us also define the events

Dm =
{

Xγ−1(r+mt) ≥ −γ−δt′
}

,

Em =
{

∀x ∈ B
(

0, (γ−δt′)2
)

, x ∈ G
(

η
(

γ−1(r +mt)
)

,K ln(γ−δt)
)}

.
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Using our inductive hypothesis, we aim to show that, for t′ ≤ γ−1,

P η
(

Xγ−1t′ −Xγ−1r ≤ c′γ−δt′ + γ−δr
)

≤ P η

(

t−1
∑

k=1

Yk ≤ c′γ−δt′ + γ−δr

)

+
∑

1≤m≤t−1

P η
(

Xγ−1(r+mt) −Xγ−1(r+(m−1)t) ≤ −γ−δt
∣

∣Dm−1, Em−1

)

+
∑

1≤m≤t−1

(

P η(Dc
m−1) + P η(Ec

m−1)
)

(4.21)

with (Yk)k≥1 given by (4.19), and for t′ > γ−1,

P η
(

Xγ−1t′ −Xγ−1r ≤ c′γ−δt′ + γ−1r
)

≤ P η

(

t−1
∑

k=1

Yk ≤ c′γ−δt′ + γ−1r

)

+
∑

1≤m≤t−1

P η(Ec
m−1) (4.22)

with (Yk)k≥1 given by (4.20). One sees that the first of these bounds, valid for t′ ≤ γ−1, involves two

extra terms in comparison with the second one, valid for t′ > γ−1. This comes form the fact that, in the

first case, it is not always so that, after a time γ−1(r+ (m− 1)t) (for some 1 ≤ m ≤ t− 1), the walker is

on a site where we have a control on the environment, while it is always so in the second case (the initial

environment is controlled in a box of size (γ−δt′)2).

The bounds (4.21) and (4.22) are shown in an analogous way; as the latter is easier, we focus on the

derivation of (4.21). Let us thus assume t′ ≤ γ−1. Let us establish that, for any m ≥ 1 and any a ∈ R,

we have

P η(Xγ−1(r+mt) −Xγ−1r ≤ a) ≤ P η(Xγ−1(r+(m−1)t) + Ym −Xγ−1r ≤ a)

+ P η
(

Xγ−1(r+mt) −Xγ−1(r+(m−1)t) ≤ −γ−δt
∣

∣Dm−1, Em−1

)

+ P η(Dc
m−1) + P η(Ec

m−1). (4.23)

Since t′ = r + (t− 1)t, (4.21) follows from (4.23) by iteration and Fubini theorem. For m ≥ 1:

P η(Xγ−1(r+mt) −Xγ−1r ≤ a) ≤

P η(Xγ−1(r+mt)−Xγ−1(r+(m−1)t)+Xγ−1(r+(m−1)t)−Xγ−1r ≤ a|Dm−1, Em−1) + P η(Dc
m−1)+P

η(Ec
m−1).

(4.24)

The first term in the right hand side is expressed as

∑

z≥−γ−δt′

P η
(

Xγ−1(r+mt) −Xγ−1(r+(m−1)t) ≤ a− z +Xγ−1r

∣

∣Dm−1, Em−1, Xγ−1(r+(m−1)t) = z
)

P η(Xγ−1(r+(m−1)t) = z|Dm−1, Em−1). (4.25)

Our inductive hypothesis at scale n and Markov property imply that

P η
(

Xγ−1(r+mt) −Xγ−1(r+(m−1)t) ≤ a− z +Xγ−1r

∣

∣Dm−1, Em−1, Xγ−1(r+(m−1)t) = z
)

≤

P η(Ym ≤ a−z+Xγ−1r)+P η(Xγ−1(r+mt)−Xγ−1(r+(m−1)t) ≤ −γ−δt|Dm−1, Em−1, Xγ−1(r+(m−1)t) = z).

(4.26)

Inserting (4.26) into (4.25), and then (4.25) into (4.24) leads to (4.23), hence to (4.21).
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We now proceed to bound each term in the right hand side of (4.21) and (4.22) separately. Let us

start with (4.21). To deal with the first term in the right hand side of (4.21), we define for any integer

1 ≤ p ≤ t− 1, the event

Ap = {∃ 1 ≤ k1 < · · · < kp ≤ t− 1 : Ykj
< 0 for all 1 ≤ j ≤ p}.

We have

P η(Ap) ≤
( t

t2

)p

=
1

tp
.

We take p = 3(q + 1) and we show that

P η

(

t−1
∑

k=1

Yk ≤ c′γ−δt′ + γ−δr

)

≤ P η

(

t−1
∑

k=1

Yk ≤ c′γ−δt′ + γ−δr, Ac
p

)

+ P η(Ap) ≤ 1

tp
≤ 1

(t
′
)(q+1)

,

(4.27)

provided that γ was taken small enough. Indeed, the first term in the right hand side of (4.27) vanishes

since, on Ac
p, it holds that

t−1
∑

k=1

Yk ≥ cγ−δt(t− 1− p)− pγ−δt > c′γ−δt′ + γ−δr,

as indeed the last inequality reads (c−c′)t > C(p) (which holds true since c−c′ = 2−(n+2) while t ≥ ec2
n

for some c > 0). To deal with the second term in the right hand side of (4.21), we apply Lemma 7:

∑

1≤m≤t−1

P η
(

Xγ−1(r+mt) −Xγ−1(r+(m−1)t) ≤ −γ−δt
∣

∣Dm−1, Em−1

)

≤ (t− 1)e−t
δ/2 ≤ 1

(t′)q+1
. (4.28)

Similarly,
∑

1≤m≤t−1

P η(Dc
m−1) ≤ (t− 1)e−t

δ/2 ≤ 1

(t′)q+1
. (4.29)

Finally, to bound for any m ≥ 0, P η(Ec
m), we apply Proposition 1. The hypothesis reads here γ(γ−1(r+

mt)) ≥ (K ln(γ−δt))3, and is satisfied since, for γ smal enough, r +mt ≥ t ≥ ln4 γ−1. Therefore, taking

K large enough,

∑

1≤m≤t−1

P η(Ec
m−1) ≤

∑

x∈B(0,(γ−δ
t
′)2),

1≤m≤t−1

P η
(

x /∈ G(η(γ−1(r +mt)),K ln γ−δt)
)

≤ (t− 1)(γ−δt′)2e−cK ln γ−δ
t ≤ 1

(t′)q+1
. (4.30)

For (4.22), both the equivalent of (4.27) and of (4.30) remain valid.Inserting (4.27-4.30) into (4.21) and

then (4.21) into (4.17) for t′ ≤ γ−1, or inserting the equivalent of (4.27) and (4.30) into (4.22) and then

(4.22) into (4.18) for t′ > γ−1, yields the result.
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4.5 Conclusion of the proof

Proof of Theorem 4. If K is large enough, we have, writing simply ǫ for ǫK ln γ−δt,

Pρ

(

∃x ∈ B
(

0, (γ−δt)2
)

: x /∈ G
(

η,K ln(γ−δt)
))

≤
∑

x∈B(0,(γ−δt)2)

Pρ

(

x /∈ G
(

η,K ln(γ−δt)
))

≤
∑

x∈B(0,(γ−δt)2)

∑

L≥K ln(γ−δt)

Pρ (〈η〉x,L > (1 + ǫ)ρ) ≤
∑

x∈B(0,(γ−δt)2)

∑

L≥K ln(γ−δt)

e−cLǫ2

≤ C(γ−δt)2ǫ−2e−cK ln(γ−δt)ǫ2 ≤ C ′(γ−δt)2(γ−δt)−c′K ≤ t3−c′K (4.31)

once t is large enough. This last term can be bounded by 1/t2 that is summable for K large enough.

Therefore, since

P0(Xt < γ−δt/2) ≤ P0

(

∃x ∈ B(0, (γ−δt)2) : x /∈ G(η,K ln(γ−δt)
)

+ P0

(

Xt < γ−δt/2
∣

∣ ∀x ∈ B(0, (γ−δt)2) : x ∈ G(η,K ln(γ−δt)
)

,

it follows from Borel-Cantelli lemma, from Proposition 4 and from (4.31) that, for K large enough, δ > 0

small enough and γ > 0 small enough,

lim inf
t→∞

Xt ≥ γ−δt

2
P0 − a.s.

5 Proof of Theorem 1 and Theorem 2

Theorem 1 is deduced from Proposition 3 and Theorem 3 exactly in the same way as Theorem 2 is

deduced from Proposition 4 and Theorem 4. We only show Theorem 1, and so we fix γ large enough so

that the conclusions of Proposition 3 and Theorem 3 are in force.

The key point to prove Theorem 1 is the construction of a renewal structure, that is to cut the random

path used by the walker into pieces that are independent under P0. As mentioned in the introduction, a

similar construction was already used several times to study various models involving dynamical environ-

ments, and again recently in [8, 14]. However, the construction is very model-dependent, leading us to

develop our own version in order to overcome the specific difficulties we had to face. This is in particular

the case for Proposition 5, where we show that there exists P0 − a.s. a positive asymptotic density of

times where the walker sits in front of all particles visited until that time. This result constitutes the

main technical part of our proof.

In Section 1.1 the law P of the environment was built from the exclusion process. In this section we

build it from the interchange process on Z together with an independent collection of particles of two

different types, so that each site is occupied by exactly one particle. We use the following definitions:

1. For i ∈ Z and t ≥ 0, ξ(t, i) denotes the position at time t of the i-th particle, that is the particle

that was in i at time 0. Let P1 be the law of this process.
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2. For t ≥ 0 and x ∈ Z, µ(t, x) is the unique i such that ξ(t, i) = x that is the label of the particle

that is in x at time t. Note that µ is a function of ξ.

3. The process ξ is build with a collection of space independent Poisson clocks (U(t, x))t∈R,x∈Z with

parameter γ, called updates: if the clock x rings at time t then ξ exchanges the particle that is at

x− 1 at time t− with the one that is at x. Remark that the time is indexed by R : it is convenient

for technical reason although not necessary to define the model, see Lemma 8 for example.

4. We consider also a family of type of particles (ν(i))i∈Z that is just a product of independent Bernoulli

with parameter ρ and let P2 be its law.

The environment ω is viewed as a function of ξ and ν:

ω(ξ, ν)(t, i) =











α if ν(µ(t, i)) = 1

β if ν(µ(t, i)) = 0.

We let the reader check that the law of the environment P defined in Section 1.1 is the push forward

probability of P1 ⊗P2 through this function. We denote the space where lives ξ by Ξ and the set of path

that supports the process X by P.

We will use the uniform ellipticity of the environment to control the probability that the walker

executes some displacements independently from any information we could have about the environment.

Define this minimal probability by

κ = min{α, 1− α, β, 1− β}. (5.1)

By assumption (1.7), we have κ > 0. For any time-space point (t, x) ∈ R× Z, we define

T+
t,x = {(s, y), s ≤ t, y ≤ x+

v

4
(s− t)} (5.2)

T−
t,x = {(s, y), t ≤ s, y ≥ x+

v

4
(s− t)} (5.3)

where v is the constant appearing in Proposition 3. The position of the rightest visited particle at time

n ≥ 0 isM(n) := sup{ξ(n, µ), µ ∈ Vn} with Vn = {µ(i,Xi), i ≤ n−1} the set of label of visited particles

at time n. Our goal is to define a sequence of random times, called renewal times that satisfy

∀n ≤ τ, (n,Xn) ∈ T+
τ,Xτ

(5.4)

M(τ) < Xτ (5.5)

∀n ≥ τ, (n,Xn) ∈ T−
τ,Xτ

(5.6)

∀(n, x) ∈ T−
τ,Xτ

, ξ(τ, µ(n, x)) ≥ Xτ . (5.7)

The meaning of (5.4) and (5.6) is clear. Condition (5.5) means that at time τ , all particles visited by the

walker before time τ , are behind the walker. Finally, (5.7) means that all the particles at the left of Xτ

at time τ will never enter into the cone T−
τ,Xτ

. These four conditions together imply in particular that

after the time τ , the walker will only visits particles that have not yet been visited at time τ . Our goal

is to prove that P0 − a.s., there are an infinity of renewal times, and to obtain a bound on the first and

second moments of τ .
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5.1 Existence of a density of points (n,Xn) satisfying (5.4-5.5)

A time-space point (n,Xn) is said to be a candidate if it satisfies (5.4) and (5.5):

∀m ≤ n, (m,Xm) ∈ T+
n,Xn

,

M(n) < Xn.

We prove here that, under P0, eventually there is a density of candidates:

Proposition 5. Let q ≥ 2. There exists some c > 0 such that, for n large enough,

P0(♯{i ≤ n, (i,Xi) is a candidate} ≤ cn) ≤ 1

nq
. (5.8)

In particular, by Borel-Cantelli lemma,

lim inf
n→+∞

♯{i ≤ n, (i,Xi) is a candidate }
n

> c, P0 − a.s. (5.9)

To describe the idea of the proof, let us first introduce a notion that is slightly weaker than that of

being candidate. Given l ≥ 1 and n ∈ N, a time-space point (n,Xn) is said to be good (for l) if

∀m ≤ n, (m,Xm) ∈ T+
n,Xn

(5.10)

M(n) < Xn + l. (5.11)

We will prove Proposition 5 in two steps: we first establish the result with “candidate” replaced by

“good”, and then show that Proposition 5 follows from this intermediate statement.

Let us take some large integer n. On the one hand, by Proposition 3, it holds that Xn ≥ vn/2 with

high probability, for some v > 0. Therefore, it follows from basic geometric considerations that, with

the same probability, there is a density of points (k,Xk) satisfying (5.10). On the other hand, given a

deterministic path (j, Yj)j≥0 with Yj+1 − Yj = ±1, it holds that any given point (k, Yk) satisfying (5.10),

satisfies also (5.11) with a probability bounded by 1− e−cl, where c is some constant independent from

the path and the point (see Lemma 8 bellow). One may therefore try to establish that, with very high

probability, any given path (j, Yj)j≥0 independent of the environment and having a density of points

satisfying (5.10), has also a density of good points. More precisely, since the number of such paths that

differ from one another before the time n is roughly bounded by 2n, we would need to establish that the

probability that a given such path has less than cn good points decays faster to 0 than 2−n, provided

that c has been chosen small enough. If the events that different points on the path are good were

independent, we would indeed conclude by the above that this probability decays like e−I(l)n, where I(l)

grows to infinity as l grows to infinity, so that the result would follow by taking l large enough.

The lack of independence forces us to adapt this strategy. Let us assume that a point (k, Yk) satisfies

(5.10) but not (5.11), and let us denote by d the minimum over the maximal distances to the right

of Yk + l travelled by the particles ensuring that (5.11) fails (see (5.13) for a precise definition). The

main observation is that, when considering a next point (k′, Yk′) satisfying (5.10), with k′ > k, then, if

(k, Yk + d) ∈ T+
k′,Yk′

, we can estimate the probability that (5.11) is satisfied for (k′, Yk′), independently
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of our knowledge about (k, Yk). This observation is made useful thanks to the two following ingredients.

First, in order to decrease the cardinal of possible paths, we consider paths of blocks of size l instead of

paths of points. While the number of such paths is now bounded by 2n/l, the probability that a given

block is bad (see the precise definition just below) still behaves like 1− l2e−cl ∼ 1− e−c′l. Second, each

time a bad block is seen, we estimate how bad it was, i.e. we estimate E, as defined in (5.17). The

probability that E exceeds a certain amount k ≥ 0 decays exponentially with k (see Lemma 8 bellow).

Before starting the proof of Proposition 5, let us state an elementary result relative to the updates

of the environment alone (remind that the updates U(t, x) are defined for all t ∈ R). We say that a

time-space point (t, x) is bad if there exists a particle i ∈ Z and a time s ≤ t such that

ξ(s, i) ∈ T+
t,x and ξ(t, i) ≥ l + x. (5.12)

Given (t, x) a bad point, At,x denotes the set of particles satisfying (5.12). Given a particle i ∈ At,x we

define

s(i) = max{s ≤ t, ξ(s, i) ∈ T+
t,x}

λ(i) = min{k, for all s(i) ≤ s ≤ t, ξ(s, i) ∈ T+
t,x+k}.

Finally we define the variable dt,x by

dt,x = inf{λ(i), i ∈ At,x} (5.13)

if (t, x) is bad, and dt,x = 0 if (t, x) is not bad. We stress that the variables dt,x are deterministically

equal at 0 or larger than l, measurable with respect to ξ and identically distributed (but off course not

independent).

Lemma 8. There exists c > 0 so that for any k ≥ l

P1(d0,0 ≥ k) ≤ e−ck. (5.14)

Proof. We first establish the exponential decay for large k. For k ≥ l, using a union bound,

P1(d0,0 ≥ k) ≤
∑

i≥l

P1(∃s ≤ 0 s.t. ξ(s, i) /∈ T+
0,k−1, ∃t ≤ s s.t. ξ(t, i) ∈ T+

0,0) (5.15)

For each i ≥ l, (ξ(s, i))s≤0 is a simple continuous time random walk so that there exists some constant

c1 > 0 so that P1(∃ t ≤ 0 s.t. ξ(t, i) ∈ T+
0,0) ≤ e−c1i. The sum (5.15) is decomposed in two parts. First,

there exists c2 > 0 such that, for k large enough,

∑

i≥k

P1(∃s ≤ 0 s.t. ξ(s, i) /∈ T+
0,k−1, ∃t ≤ s s.t. ξ(t, i) ∈ T+

0,0) ≤
∑

i≥k

P1(∃t ≤ 0 s.t. ξ(t, i) ∈ T+
0,0) ≤ e−c2k.

Second, let us consider an index l ≤ i ≤ k − 1. Using Markov property at the hitting time of the

complementary of T+
0,k−1 together with the fact the interchange process is considered under its invariant

measure we obtain

P1(∃s ≤ 0 s.t. ξ(s, i) /∈ T+
0,k−1, ∃t ≤ s s.t. ξ(t, i) ∈ T+

0,0) ≤ P1(∃t ≤ 0 s.t. ξ(t, k − 1) ∈ T+
0,0)
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so that

∑

l≤i≤k−1

P1(∃s ≤ 0 s.t. ξ(s, i) /∈ T+
0,k−1, ∃t ≤ s s.t. ξ(t, i) ∈ T+

0,0) ≤ ke−c1k.

We thus obtain (5.14) for k large enough.

As P1(d0,0 ≥ k) is non-increasing with k ≥ l, it remains to prove that P1(d0,0 ≥ l) < 1 to complete

the proof, or equivalently that P1(d0,0 = 0) > 0. We already know that for some K large enough
∑

i≥K P1(∃t ≤ 0 s.t. ξ(t, i) ∈ T+
0,0) < 1. We consider a time s < 0 so that − v

4s > K. Using Markov

property at time s together with the fact the interchange process is considered under its invariant measure

we obtain that

P1(d0,0 = 0) ≥ P1

(

U(s, l) = U(0, l), {∃i ≥ l ∃t ≤ s s.t. ξ(s, i) ≥ l and ξ(t, i) ∈ T+
0,0}c

)

≥ P1 (U(s, l) = U(0, l))
(

1− P1(∃i ≥ K ∃t ≤ 0 s.t. ξ(t, i) ∈ T+
0,0)
)

> 0,

where U(s, l) = U(0, l) means that the clock between the sites l− 1 and l has not ringed during the time

interval [0, s]. That concludes the proof.

Proof of Proposition 5. The proof is made of two steps.

In a first step, we fix l ≥ 1 large enough, and we prove that there exists some constant c0 > 0 such

that, for all n large enough,

P0(♯{i ≤ n, (i,Xi) is good (for l)} < c0n) ≤ 1

nq+1
, (5.16)

where “good (for l)” is defined by (5.10-5.11). We observe that

P0(♯{i ≤ n, (i,Xi) is good} ≤ c0n) ≤ P0

(

♯{i ≤ n, (i,Xi) is good} ≤ c0n,Xn ≥ v

2
n
)

+P0

(

Xn ≤ v

2
n
)

.

By Proposition 3, the second term is bounded by P0(Xn ≤ v

2n) ≤ e−φ1/4
n ≤ 1/nq+2, where the second

inequality is valid for n large enough. We thus need a bound on the first term.

Let us assume that Xn ≥ v

2n. We first describe how to create a trajectory of boxes of size l starting

from the trajectory of points (j,Xj)0≤j≤n. For j ≥ 0, we define

tj = inf
{

k ≥ 0 s.t. Xk ≥ j +
v

4
k
}

,

and we remark that, on the event {Xn ≥ v

2n}, ti ≤ n for all i ≤ v

4n. We cut the time-space parallelogram

defined by its opposite sides

[

(0, 0),
(

n,
v

4
n
)]

and
[(

0,
v

4
n
)

,
(

n,
v

2
n
)]

into boxes (parallelograms) of size l : writing T = ⌊n
l ⌋ and K = ⌊ vn

4l ⌋, we consider T ×K boxes C(i, j),

with i ∈ {1, . . . , T} and j ∈ {1, . . . ,K}, where C(i, j) is the parallelogram defined by the two opposite

sides

[(

(i− 1)l, (j − 1)l +
v

4
(i− 1)l

)

,
(

il, (j − 1)l +
v

4
il
)]

and
[(

(i− 1)l, jl +
v

4
(i− 1)l

)

,
(

il, jl +
v

4
il
)]

.

We denote by I ⊂ {1, . . . , T} × {1, . . . ,K} the subset of indices (i, j), such that (i, j) ∈ I if and only if

the box C(i, j) contains at least one point (tk, Xtk) for some k ≤ v

4n. We observe the following:
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1. For any 1 ≤ j ≤ K, there exists at least one i ∈ {1, . . . , T} such that C(i, j) ∈ I.

2. For any 1 ≤ i ≤ T , there are at most two j ∈ {1, . . . ,K} such that C(i, j) ∈ I, and in that case the

two indices j are consecutive.

It makes thus sense to consider the subset J ⊂ I such that (i, j) ∈ J if j is odd and if i is the smallest

number so that (i, j) ∈ I. The cardinal of J is K/2 (assuming K even, the other case being analogous)

and the set J can be described as

J =
{

(i1, 1), (i2, 3), . . . , (iK/2,K/2)
}

with 1 ≤ i1 < i2 < · · · < iK/2 ≤ T.

In the sequel, we will say that a subset J̃ ⊂ I is admissible if it can be constructed as above starting from

some trajectory (k, Yk)0≤k≤n that satisfies Y0 = 0, Yk+1 − Yk = ±1 for all 0 ≤ k ≤ n− 1, and Yn ≥ v

2n).

Remind now the definition (5.12) of bad points. A block C(i, j) is said to be bad if at least one point

in C(i, j) is bad. For any block C(i, j), we define the variable E(i, j) by E(i, j) = 0 if the block is not

bad, and by

E(i, j) = inf{m ≥ 1 : ∃(t, x) ∈ C(i, j) bad s.t. ∃p ∈ At,x s.t. x+ λ(p) ∈ T̃+
i,j+m} (5.17)

if the block is bad, where

T̃+
i,j = T+

il,jl+ v

4 il
.

We note that E(i, j) ≥ 1 if and only if the block C(i, j) is bad. The crucial observation is that, for any

m ≥ 1, the event {E(i, j) = m} is measurable with respect to

σ
(

U(t, x) : (t, x) ∈ T̃+
i,j+m \ T̃+

i,j−1

)

. (5.18)

Moreover using a union bound together with (5.14) we get that there exists c1 > 0 such that for any

m ≥ 1

P(E(i, j) ≥ m) ≤ e−c1ml. (5.19)

Let us now assume that 0 < c0 ≤ v

16l . We have then

{

♯{i ≤ n, (i,Xi) is good} ≤ c0n,Xn ≥ v

2
n
}

⊂
{

♯{(i, j) ∈ I s.t. C(i, j) is bad} ≥ K

4

}

.

For some c2 > 0 we can bound for every n the number of admissible subsets J by ec2
n
l so that

P0

({

♯{i ≤ n, (i,Xi) is good} ≤ c0n,Xn ≥ v

2
n
})

≤ ec2
n
l max
J admissible

P0

(

♯{(i, j) ∈ I s.t. C(i, j) is bad} ≥ K

4

)

.

Moreover, since for any admissible J there are also at most ec3
n
l ways to extract half of the blocks of J ,

P0

(

♯{(i, j) ∈ I s.t. C(i, j) is bad} ≥ K

4

)

≤ ec3
n
l max
J ′⊂J,♯J ′=K/4

P0 (∀(i, j) ∈ J ′, C(i, j) is bad)

(wae assume that K/4 is an integer for the ease of notation, the other cases are analogous).
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To get a bound on the maximum appearing in this last expression, we need some extra notations. Let

j1 < · · · < jK/4 be the set of points such that (i, jk) ∈ J ′ for some unique i. We denote by Φ a partition of

{j1, . . . , jK/4} in non-empty intervals, by which we mean non-empty sets of the type [a, b]∩{j1, . . . , jK/4},
for [a, b] an interval of R. We denote by |Φ| the number of sets in Φ, by φk the sets of Φ, by |φk| ≥ 1

the cardinal of each set, by lk the smallest integer in the set φk, by rk the largest integer in the set

φk. Moreover, to lighten the notations, let us simply write C(jk) (resp. E(jk)) for C(i(jk), jk) (resp.

E(i(jk), jk)), where i(jk) is the number such that (i(jk), jk) ∈ J ′ for a given jk ∈ {j1, . . . , jK/4}. Then

P (∀(i, j) ∈ J ′, C(i, j) is bad) = P
(

C(j1), . . . , C(jK/4) are bad
)

≤
∑

Φ

P
(

r1 − l1 + 1 ≤ E(l1) ≤ l2 − l1 − 1, r2 − l2 + 1 ≤ E(l2) ≤ l3 − l2 − 1, . . . , E(l|Φ|) ≥ r|Φ| − l|Φ| + 1
)

=
∑

Φ

P (r1 − l1 + 1 ≤ E(l1) ≤ l2 − l1 − 1)P (r2 − l2 + 1 ≤ E(l2) ≤ l3 − l2 − 1) · · ·P
(

E(l|Φ|)) ≥ r|Φ| − l|Φ| + 1
)

≤
∑

Φ

P (r1 − l1 + 1 ≤ E(l1))P (r2 − l2 + 1 ≤ E(l2)) · · ·P
(

E(l|Φ|)) ≥ r|Φ| − l|Φ| + 1
)

≤
∑

Φ

e−c1l
∑|Φ|

i=1 |φi| ≤ 2K/4e−c1lK/4,

where the equality in front of the third line follows from (5.18), where the inequality in front of the fourth

line follows from (5.19) together with the rough estimates |rk − lk + 1| ≥ |φk| for any 0 ≤ k ≤ |Φ|, and
where the last estimates follows from the fact that the number of partitions Φ in intervals is bounded by

2K/4. Since K ≥ c5n/l, we obtain finally that, for some constant c6 < +∞,

P0

(

♯{i ≤ n, (i,Xi) is good } ≤ c0n,Xn ≥ v

2
n}
)

≤ ec6
n
l e−c5n.

By taking l large enough, this is bounded by 1/nq+2 for n large enough, from where (5.16) follows.

We now turn to the second step of the proof, and derive the result from (5.16). Let g1 be the first

good time, i.e. the first time such that (g1, Xg1) is good, and define then, by iteration on i ≥ 1, gi+1 as

the first good time after gi + l. By (5.16), the sequence (gi)i≥1 is almost surely infinite. Remark that

(gi)i≥1 are stopping times with respect to the filtration

Fk = σ((Xi)i≤k, (ξ(u, x))u≤k,x∈Z), k ≥ 1. (5.20)

There exists a constant ǫ > 0 such that, for any i ≥ 1,

P0(gi + l is a candidate|Fgi−1+l)

≥ P0(U(gi + l,Xgi + l) = U(gi, Xgi + l), Xgi+1 −Xgi = 1, · · · = Xgi+l+1 −Xgi+l = 1|Fgi−1+l)

≥ κl+1P0(U(l, 0) = U(0, 0)) ≥ ǫ

where we have used the uniform ellipticity to bound the conditional probability that the walker does

l + 1 steps to the right. Let us denote by (Zi)i≥1 a sequence of variables with values in {0, 1} such that

Zi = 1 if gi + l is candidate, and Zi = 0 otherwise. The above implies that P0(Zk = 1|Z1, . . . , Zk−1) ≥ ǫ.

Therefore, for c7 > 0 small enough, there exists c8 > 0 so that

P0 (♯{n ≤ gi + l : (n,Xn) is candidate} ≤ c7i) ≤ P0

(

i
∑

k=1

Zk ≤ c7i

)

≤ e−c8i. (5.21)
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We now compute

P0 (♯{i ≤ n : (i,Xi) candidate} ≤ cn) ≤

P0 (♯{i ≤ n : (i,Xi) candidate} ≤ cn, ♯{i ≤ n : (i,Xi) good} ≥ c0n)+P0 (♯{i ≤ n : (i,Xi) good} < c0n) .

The second term is bounded by 1/nq+1 thanks to (5.16). For the first one, we observe that on the event

{♯{i ≤ n : (i,Xi) good} ≥ c0n}, there exists c9 > 0 such that gc9n ≤ n. Therefore, if c > 0 is taken so

that c ≤ c7c9, we obtain

P0 (♯{i ≤ n : (i,Xi) candidate} ≤ cn, ♯{i ≤ n : (i,Xi) good} ≥ c0n) ≤

P0(♯{i ≤ gc9n : (i,Xi) candidate} ≤ cn) ≤ e−c8c9n

thanks to (5.21).

5.2 Proof that (0, X0) satisfies (5.6-5.7) with positive probability

We prove here that with positive probability the walker lives in T− and does not visit any of the particles

that were behind it at initial time. We introduce

D = inf
{

n ≥ 0 s.t. Xn < X0 +
v

4
n
}

, (5.22)

F = inf
{

n ≥ 0, s.t. ∃ x ≥ X0 +
v

4
n, ξ(0, µ(n, x)) < X0

}

, (5.23)

with the convention that inf ∅ = +∞. Remark that F is defined as a discrete time and that D, F are

stopping times with respect to the filtration (Fk)k≥0 defined in (5.20). The variable D can be considered

as a function of X and F as a function of ξ and X0 only. Let H be the infimum of these two stopping

times

H = D ∧ F.

We claim that

P0(H = +∞) = P0(D = F = +∞) > 0. (5.24)

Proof of (5.24). In this proof, as X0 = 0 a.s., we consider F as a function of ξ only that is F = F (ξ, 0).

As P0−a.s. lim infXn/n > v we deduce by monotonicity that

lim
L→+∞

P0

(

Xn ≥ v

4
(n− L), ∀n ≥ 0

)

= 1. (5.25)

Using the same type of computation as for (5.14) we obtain that

P1(F = +∞) > 0,

and we choose L large enough so that (remind (5.25))

P0

(

Xn ≥ v

4
(n− L), ∀n ≥ 0

)

> 1− P1(F = +∞)

2
. (5.26)
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Finally for L′ large enough so that L′ − v/4L′ ≥ L

P0(H = +∞) ≥ P× Pω
0,0(F = +∞, X1 −X0 = 1, · · · = XL′ −XL′−1 = 1, Xn ≥ v

4
n, ∀n ≥ L′)

≥ E

(

F = +∞ , Pω
0,0(X1 −X0 = 1, · · · = XL′ −XL′−1 = 1)Pω

L′,L′(Xn ≥ v

4
(n− L), ∀n ≥ 0)

)

≥ κL
′

E

(

F = +∞ , Pω
L′,L′(Xn ≥ v

4
(n− L), ∀n ≥ 0)

)

where we have used uniform ellipticity to get the last line and κ is defined in (5.1). As the law of the

environment is invariant by translation, P × Pω
L′,L′(Xn ≥ v

4 (n − L), ∀n ≥ 0)) is equal to P0(Xn ≥
v

4 (n− L), ∀n ≥ 0) so that finally using (5.26)

P0(H = +∞) ≥ κL
′ P1(F = +∞)

2
> 0.

5.3 Building the first renewal point

We define for n ≥ 0 the shift θn on the space Ξ× P by θn(ξ, x) = (ξ′, x′) where

ξ′(t, y) = ξ(t+ n, y), (t, y) ∈ R
+ × Z

x′i = xn+i, i ≥ 0

and consider the increasing sequence of stopping times with respect to the filtration (Fk)k≥1 (see (5.20))

defined by :

S0 = 1, and for k ≥ 1,

Rk = inf{n ≥ Sk−1 s.t. (n,Xn) is a candidate}

Sk = H ◦ θRk
+Rk

Define

K = inf{k ≥ 1 s.t. Rk < +∞ and Sk = +∞}. (5.27)

We claim that

P0 − a.s., K < +∞ (5.28)

so that τ := RK is well defined and moreover τ is a renewal time in the sense that it satisfies (5.4)-(5.7).

Proof of (5.28). We first deduce from Lemma 5 that

P0 − a.s. ∀k ≥ 0 {Sk < +∞} ⊂ {Rk+1 < +∞}.

So that

P0(Rk+1 < +∞) = P0(Rk < +∞)− P0(Rk < +∞, Sk = +∞). (5.29)

35



To compute the last term of (5.29) we use first that Pω is markovian

P0(Rk < +∞, Sk = +∞) =
∑

x∈Z,i≥0

P0(Rk = i,XRk
= x, Sk = +∞) (5.30)

=
∑

x∈Z,i≥0

E1

(

E2

(

Pω
0,0(Rk = i,XRk

= x)Pω
i,x(H(θiξ,X) = +∞)

))

,

where E1 (resp. E2) denote the expectation with respect to P1 (resp. P2). For any fixed ξ, let Vi,x be

the set of label of particles that are strictly behind x at time i that is

Vi,x = {µ(i, y), y < x}.

Note that given ξ, Pω
0,0(Rk = i,XRk

= x)) is measurable with respect to σ(ν(µ), µ ∈ Vi,x) while

Pω
i,x(H(θiξ,X) = +∞) is measurable with respect to σ(ν(µ), µ /∈ Vi,x)). These two variables are thus

independent under P2

E2

(

Pω
0,0(Rk = i,XRk

= x)Pω
i,x(H = +∞)

)

= E2

(

Pω
0,0 (Rk = i,XRk

= x)
)

E2

(

Pω
i,x (H(θiξ,X) = +∞)

)

.

Finally E2

(

Pω
0,0(Rk = i,XRk

= x)
)

is measurable with respect to σ(U(s, y), s ≤ i, y ∈ Z) and E2

(

Pω
i,x(H(θiξ,X) = +∞)

)

is measurable with respect to σ(U(s, y), s ≥ i, y ∈ Z). These two variables are thus independent under

P1 and finally

P0(Rk < +∞, Sk = +∞) =
∑

x∈Z,i≥0

P0(Rk = i,XRk
= x)Pi,x(H(θiξ,X) = +∞).

As the law of environment is invariant by space-time translation, for all x ∈ Z and i ≥ 0, Pi,x(H(θiξ,X) =

+∞) = P0(H = +∞) so that

P0(Rk < +∞, Sk = +∞) = P0(Rk < +∞)P0(H = +∞)

and going back to (5.29)

P0(Rk+1 < +∞) ≤ P0(Rk < +∞)(1− P0(H = +∞)). (5.31)

By iteration we conclude the proof of (5.28).

5.4 Defining a sequence of renewal points by iteration

Remark that τ1 has to be thought as a function of X and ξ so that, in order to iterate the construction,

we study the law of these two processes after τ1. That is the purpose of the next proposition.

Proposition 6. The process and the environment after the first renewal time (Xτ1+n −Xτ1)n≥0, (ξ(τ1 +

t, x))t≥0,x∈Z are independent from (Xn∧τ1)n≥0, (ξ(t∧τ1, x))t≥0,x∈Z and have same law as (Xn)n≥0, (ξ(t, x))t≥0,x∈Z

under P0(·|H = +∞).

Proof of Proposition 6. The proof is quite usual for this kind of construction (see for example in the

static case [18]). We adapt it explicitly to our case in order to be exhaustive. We define

G1 = σ ((Xn∧τ1)n≥0, (ξ(s, x))s≤τ1,x∈Z) .
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We have to prove that for any bounded φ1, φ2

E0(φ1((Xτ1+n −Xτ1)n≥0)φ2(ξ(τ1 + t, x)x∈Z,t≥0)|G1)

= E0(φ1((Xt)t≥0)φ2((ξ(t, x))x∈Z,t≥0)|H = +∞). (5.32)

Consider the variables ψ1((Xn∧τ1)n≥0) and ψ2((ξ(s, x))s≤τ1,x∈Z) where ψ1 and ψ2 are bounded functions.

If Z is some process and t a time the process stopped at time t (that might be random) is denoted Zt

that is for any s ≥ 0, Zt
s = Zs∧t. Using the same arguments as in the proof (5.30)-(5.31) we deduce that

(we precise the arguments of the function only when they change from line to line)

E0 (φ1φ2ψ1ψ2)

=
∑

k,x,n

E0 (φ1(θnX −Xn)φ2(θnξ)ψ1(X
n)ψ2(ξ

n), Rk = n,XRk
= x,H ◦ θn = +∞)

=
∑

k,x,n

E
1
(

φ2ψ2E
2[Eω

0,0(ψ1, Rk = n,XRk
= x)Eω

n,x(φ1(X), H(θnξ,X) = +∞)]
)

=
∑

k,x,n

E
1
(

ψ2E
2[Eω

0,0(ψ1, Rk = n,XRk
= x)]φ2E

2[Eω
n,x(φ1(X), H(θnξ,X) = +∞)]

)

=
∑

k,x,n

E
1
(

ψ2E
2[Eω

0,0(ψ1, Rk = n,XRk
= x)]

)

E
1
(

φ2E
2[Eω

n,x((φ1(X), H(θnξ,X) = +∞)]
)

=
∑

k,x,n

E
1
(

ψ2E
2[Eω

0,0(ψ1, Rk = n,XRk
= x)]

)

En,x(φ1φ2(θnξ), H(θnξ,X) = +∞)

= E0(φ1φ2|H = +∞)
∑

k,x,n

E
1
(

ψ2E
2[Eω

0,0(ψ1, Rk = n,XRk
= x)]

)

P0(H = +∞)

= E0(φ1φ2|H = +∞)E(ψ1(X
τ1)ψ2(ξ

τ1))

where the last line is obtained from the previous one by taking φ1 = φ2 = 1 in the same computation.

This concludes the proof of (5.32) and thus the one of Proposition 6.

As P0(H = +∞) > 0, τ is also defined and finite a.s. under P0(·|H = +∞). We can thus define τ2

the second renewal time by τ2 = τ1 + τ1((Xn+τ1 − Xτ1)n≥0, (ξ(n + τ1, x))t≥0,x∈Z) and by iteration we

define in the same way an increasing sequence of renewal times (τk)k≥1 that are finite P0−a.s.

The interest of this construction lies in the following

Proposition 7. Under P0,
(

(Xτk+· −Xτk)0≤t≤τk+1−τk , τk+1 − τk
)

k≥1
are i.i.d. with same law as ((Xt)0≤t≤τ1 , τ1)

under P0(·|H = +∞).

The proof follows by induction from Proposition 6.

Corollary 1. Under P0, (Xτk+1
−Xτk , τk+1 − τk)k≥1 are positive i.i.d. random variables with same law

as (Xτ1 , τ1) under P0(·|H = +∞).

5.5 Control on the moments of τ1 and conclusion of the proof

Proposition 8. For n ≥ 0 large enough

P0(τ1 > n) ≤ 1

n3
.
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In particular, as P0(H = +∞) > 0, it implies

E0(τ1|H = +∞) < +∞ and E0(τ
2
1 |H = +∞) < +∞.

Proof. First observe that for any n ∈ N,

P0(τ > n) ≤ P0(τ > n,K < ln2 n) + P0(K ≥ ln2 n). (5.33)

with K defined in (5.27). As K is distributed under P0 like a geometric random variable with success

parameter P0(H = +∞) > 0 ( see (5.24)), we obtain that for n large enough

P0(K ≥ ln2 n) ≤ 1

n4
.

In order to manage with the first term of the sum in (5.33), we decompose

P0(τ > n,K < ln2 t) ≤ P0

(

τ > n, {∀ 1 ≤ k < K,Sk −Rk ≤ √
n},K ≤ ln2 n

)

+ P0

(

τ > n, {∃ 1 ≤ k < K,Sk −Rk >
√
n},K ≤ ln2 n

)

(5.34)

and again we have to control two terms. For the first one, note that

P0

(

τ > n, {∀ 1 ≤ k < K,Sk −Rk ≤ √
n},K ≤ ln2 n

)

≤ P0(♯{i ≤ n, (i,Xi) is a candidate } ≤ √
n ln2 n),

so that using Proposition 5 we obtain that for n large enough

P0

(

τ > n, {∀ 1 ≤ k < K,Sk −Rk ≤ √
n},K ≤ ln2 n

)

≤ 1

n4
.

For the second term in (5.34) we observe that

P0

(

τ > n, {∃ 1 ≤ k < K,Sk −Rk >
√
n},K ≤ ln2 n

)

≤
ln2 n
∑

k=1

P0

(

Rk < +∞,
√
n < Sk −Rk < +∞

)

.

We study each term of the sum in the same way. Fix some integer k such that 1 ≤ k ≤ ln2 n

P0(Rk < +∞,
√
n < Sk −Rk < +∞) =

∑

x∈Z,i≥0

P0(Rk = i,XRk
= x,

√
n < Sk −Rk < +∞)

=
∑

x∈Z,i≥0

E1

(

E2

(

Pω
0,0(Rk = i,XRk

= x)Pω
i,x(

√
n < H(θiξ,X) < +∞)

))

Given ξ and ν, for all i ≥ 0 and x ∈ Z

Pω
i,x(

√
n < H(θiξ,X) < +∞) ≤ Pω

i,x(
√
n < D < +∞)1{F (θiξ,x)=+∞} + 1{√n<F (θiξ,x)<+∞} (5.35)

We consider separately these two terms. For the first one, observe that given ξ, Pω
0,0(Rk = i,XRk

= x)

is measurable with respect to σ(ν(µ), µ ∈ Vi,x) while P
ω
i,x(

√
n < D < +∞) is measurable with respect to

σ(ν(µ), µ /∈ Vi,x). These two variables are thus independent under P2

E2

((

Pω
0,0(Rk = i,XRk

= x)Pω
i,x(

√
n < D < +∞

))

= E2

(

Pω
0,0(Rk = i,XRk

= x)
)

E2

(

Pω
i,x(

√
n < D < +∞)

)

.

38



Observe that E2

(

Pω
0,0(Rk = i,XRk

= x)
)

is measurable with respect to σ(U(s, y), s ≤ i, y ∈ Z) and

E2

(

Pω
i,x(

√
n < D < +∞)

)

1{F (θiξ,x)=+∞} is measurable with respect to σ(U(s, y), s ≥ i, y ∈ Z). These

two variables are thus independent under P1 and

∑

x∈Z,i≥0

E1

(

E2

(

Pω
0,0(Rk = i,XRk

= x)
)

E2

(

Pω
i,x(

√
n < D < +∞)

)

1{F (θiξ,x)=+∞}
)

=
∑

x∈Z,i≥0

P0(Rk = i,XRk
= x)Pi,x(

√
n < D < +∞, F (θiξ, x) = +∞).

As the law of environment is invariant by space-time translation, for all x ∈ Z and i ≥ 0,

Pi,x(
√
n < D < +∞, F (θiξ, x) = +∞) = P0(

√
n < D < +∞, F = +∞)

so that

∑

x∈Z,i≥0

P
(

Pω
0,0(Rk = i,XRk

= x)Pω
i,x(

√
n < H(θiξ,X) < +∞)

)

= P0(Rk < +∞)P0(
√
n < D < +∞, F = +∞)

Using Proposition 3 and (3.22), we obtain that for n large enough

P0(
√
n < D < +∞, F = +∞) ≤ P0(∃k ≥ √

n,Xk ≤ X0 +
v

4
k) ≤

+∞
∑

k=
√
n

Ce−kα

+ e−φ
1/4
k ≤ 1

n4

We turn to the second term in (5.35). As 1{√n<F (θiξ,x)<+∞} is measurable with respect to σ(U(s, y), s ≥
i, y ∈ Z) and E2

(

Pω
0,0(Rk = i,XRk

= x)
)

is measurable with respect to σ(U(s, y), s ≤ i, y ∈ Z), these two

variables are independent. Thus, using also the invariance of P0 via space-time translation

∑

x∈Z,i≥0

E1

(

1{√n<F (θiξ,x)<+∞}E2

(

Pω
0,0(Rk = i,XRk

= x)
))

= P0(Rk <∞)P0(
√
n < F < +∞)

Using the same type of computation as for (5.14), we obtain that for n large enough

P0(
√
n < F < +∞) ≤ 1

n4
.

That concludes the proof.

We are now ready to conclude the proof of Theorem 1. The proofs that a finite second moment for

τ2 − τ1 implies a law of large numbers and an annealed central limit theorem are classical in the context

of random walk in static random environment, see [18] and [17]. We remind here for sake of completeness

the steps of these proofs.

We start with the proof of the law of large numbers, that is point 1. of Theorem 1. For n ≥ 0, k(n)

denotes the label of the ”renewal slab” that contains n that is the unique integer such that τk(n) ≤ n <

τk(n)+1. We can thus control the walker via

Xτk(n)

τk(n)+1
≤ Xn

n
≤
Xτk(n)+1

τk(n)
(5.36)
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Rewrite the right term

Xτk(n)+1

τk(n)
=
Xτ1 +

∑k(n)+1
i=2 ∆i

k(n)

k(n)

τ1 +
∑k(n)

i=2 (τi+1 − τi)
. (5.37)

so that using Proposition 7 and the law of large numbers it converges P0-a.s. to

v(γ) =
E0(Xτ1 |H = +∞)

E0(τ1|H = +∞)
(5.38)

that is always well defined and positive because of (5.24) and Proposition 8. Using the same decomposition

as in (5.37) to study the left term in (5.36), we obtain the law of large numbers that is stated in point 1.

of Theorem 1.

We turn to the proof of point 2. of Theorem 1, mainly following [17]. Define for j ≥ 1

Zj = Xτj+1
−Xτj − (τj+1 − τj)v(γ).

These variables are i.i.d (Proposition 6) centered (5.38) and admit a finite second moment (Proposition

8). It thus follows from Donsker’s theorem that
(

∑⌊nt⌋
i=1 Zj√
n

)

t≥0

(5.39)

converges in law to a brownian motion with variance E0(Z
2
1 ) that is positive as Z1 is not P0−a.s. constant.

As a consequence of Proposition 7, the law of large numbers and Dini’s theorem

P0 − a.s., ∀T > 0, sup
0≤t≤T

∣

∣

∣

∣

k(⌊tn⌋)
n

− t

E0(τ2 − τ1)

∣

∣

∣

∣

so that we deduce from (5.39) that
(

∑k(⌊nt⌋)
i=1 Zj√

n

)

t≥0

(5.40)

converges in law to a brownian motion with variance E0

(

(Z1)
2
)

/E0(τ2 − τ1). Finally observe that

P0 − a.s., for all T > 0,

sup
0≤t≤T

∣

∣

∣

∣

∣

Xnt − ntv(γ)√
n

−
∑k(⌊nt⌋)

j=1 Zj√
n

∣

∣

∣

∣

∣

≤ (v(γ) + 1) max
0≤k≤⌊nT⌋

τk+1 − τk√
n

with the convention τ0 = 0. We prove that the right term converges in probability using Propositions 7

and 8. Indeed for any ǫ > 0

P0

(

max
0≤k≤⌊nT⌋

τk+1 − τk ≥ ǫ
√
n

)

≤ P0

(

τ1 ≥ ǫ
√
n
)

+ (nT + 1)P0

(

τ2 − τ1 ≥ ǫ
√
n
)

≤ P0

(

τ1 ≥ ǫ
√
n
)

+
nT + 1

ǫ3n3/2

and this last term converges to 0 when n goes to +∞. We have thus proven that the Skorohod dis-

tance between
(

Xnt−ntv(γ)√
n

)

t≥0
and

(∑k(⌊nt⌋)
i=1 Zj√

n

)

t≥0

goes to 0 in P0 probability. We deduce from the

convergence in law of the latter one that
(

Xnt − ntv(γ)√
n

)

t≥0

(5.41)

converges in law to a brownian motion with variance σ2 := E0

(

(Xτ2 −Xτ1)
2
)

/E0(τ2 − τ1).
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