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Abstract

We prove a strong law of large numbers and an annealed invariance principle for
a random walk in a one-dimensional dynamic random environment evolving as the
simple exclusion process with jump parameter γ. First, we establish that if the
asymptotic velocity of the walker is non-zero in the limiting case “γ = ∞", where
the environment gets fully refreshed between each step of the walker, then, for γ
large enough, the walker still has a non-zero asymptotic velocity in the same direction.
Second, we establish that if the walker is transient in the limiting case γ = 0, then,
for γ small enough but positive, the walker has a non-zero asymptotic velocity in the
direction of the transience. These two limiting velocities can sometimes be of opposite
sign. In all cases, we show that the fluctuations are normal.
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1 Introduction

The question of the evolution of a random walk in a disordered environment has
attracted a lot of attention in both the mathematical and the physical communities over
the past few decades. The first studies were concerned with static random environments.
In this set-up, anomalous slowdowns are expected in comparison with the homogeneous
case, as the environment may create traps where the walker gets stuck for long times.
This effect is particularly strong in one dimension, where it is by now well understood
(see [24] for background). In dynamical random environments instead, the transition
probabilities of the walker evolve with time too. If the environment has good space-time
mixing properties, one expects the trapping phenomenon to disappear, and the walker
to behave very much as if the medium was homogeneous. The study of this case has
recently led to intense researches; see for example [13, 21] and references therein, as
well as [2] for an overview and further references.

However, examples of dynamical environments with slow relaxation times occur natu-
rally. Indeed, in the presence of a macroscopically conserved quantity, the environment
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may evolve diffusively. Time correlations then only decay as t−d/2 in dimension d. Espe-
cially for d = 1, correlations decay so slowly that the results developed for fast mixing
environments do not apply (see e.g. [3, 10, 13, 20, 21]). Slowly mixing environments
form an intermediate class of models, which is still far for being well understood at the
present time [2, 5].

In this paper, we are interested in the asymptotic behavior as t→∞ of Xt/t, where
Xt denotes the position at time t of a walker driven by the one-dimensional simple
exclusion process, at equilibrium with density 0 < ρ < 1. The walker evolves in discrete
time: if he sits on a particle at the moment of jumping, he moves to the right with
probability α and to the left with probability 1− α for some 0 < α < 1, while, if he sits on
a vacant site, these probabilities become respectively β and 1 − β for some 0 < β < 1

(see Figure 1, as well as Section 1.1 below for a more rigorous description). Of particular
interest is the case α < 1

2 < β or vice versa, as we then see reappearing the possibility
of trapping mechanisms.

Z

α1− α β1− β

Figure 1: Transition probabilities for the walker (red) evolving on top of the particles of
the simple exclusion process (blue).

Let γ be the jump rate of the particles of the exclusion dynamics. Two regimes,
depending on the value of γ, are considered in this article. We first deal with the fluid
regime γ � 1. In the formal limit “γ = ∞", the walker evolves as in an homogeneous
medium: he jumps to the right with the homogenized probability p̃ = ρα+ (1− ρ)β and
to the left with probability 1 − p̃. We assume p̃ 6= 1

2 , and say p̃ > 1
2 to fix things. The

walker drifts thus to the right in the limiting case “γ = ∞" and the fluctuations are
normal. Let us now take 1� γ <∞. In the time interval left between each step of the
walker, the exclusion process mixes the particles in boxes of size γ1/2. Therefore, most
of the time, the walk will behave in the same way as the limiting homogeneous walk.
However, the walker will eventually enter some regions where the density of particles
is anomalously high or small, and behave then differently. But regions of size l with an
anomalous density of particles (with respect to the equilibrium measure) are typically at
distance ecl from the origin for some c > 0, while only a time of order l2 is needed for the
dynamics to disaggregate them. Therefore, these regions do not act as efficient barriers
to the evolution of the walker, which exhibits thus a positive asymptotic velocity. This is
made precise in Theorem 1.1, where it is also shown that fluctuations are normal.

We next deal with the quasi-static regime γ � 1. The dynamics is then no longer
dominated by the homogenized probability p̃. Instead of the condition p̃ 6= 1

2 , we now
assume that, in the limiting static case γ = 0, the walk is transient, say to the right (see
the criterium (1.9) below, as well as Chapter 2.1 in [24]). Under this hypothesis, when
γ = 0, it is known that Xt behaves as tδ as t→∞ for some 0 < δ ≤ 1. The sub-ballistic
behavior corresponding to cases where δ < 1 appears when ρ 1−α

α + (1 − ρ) 1−β
β > 1

and is due to the fluctuations of the environment (see [18] for precise results on this
regime). Let us now take γ > 0. The environment does not evolve significantly over
a time t = τγ−1 for some small τ > 0. Therefore, taking γ small enough, the walker
will move to the right by an amount of order tδ if started in a typical environment with
respect to the Gibbs measure. Thus, as long as the walk evolves in such configurations of
the environment, it drifts to the right. Nevertheless, when entering a region where the
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density of particles is anomalous, its progression may be greatly slowed. However, since
γ is positive, we may just reuse the argument developed for large γ and show that traps
are irrelevant: large traps (of size l) disappear on much shorter time scales (γ−1l2) than
the time needed for the walker to see a next trap of that size (a time at least of order lK

for some K � 1, see Section 4). We conclude that the walker has a positive velocity to
the right, as stated in Theorem 1.2. Again, we show also that fluctuations are normal.

From these two results, we conclude that the value of the limiting velocity v(γ) may
change drastically between the large an small γ regimes. Indeed, for some values ρ, α
and β, the walk is transient to the right in a static environment while the homogenized
drift 2p̃− 1 is negative (take e.g. ρ = 9/10, α = 1/4 and β = 1− ε with ε small enough in
(1.9) and (1.8) below). In this case, the asymptotic velocity in a static environment is
necessarily zero (Jensen’s inequality implies ρ 1−α

α + (1− ρ) 1−β
β > 1). Therefore, it holds

that v(0) = 0, v(γ) > 0 for small enough γ > 0, and v(γ) < 0 for large enough γ.

We did not show that v(γ) converges to v(0) as γ goes to 0, nor to 2p̃− 1 as γ goes to
∞, but we expect both of these limits to hold. While the latter could be shown using the
techniques of the present article, at the cost of slightly more involved estimates (control
on both excess and shortage of particles), some more work should be needed to check
the continuity at 0.

Theorems 1.1 and 1.2 are shown in essentially the same way. In a first step, by means
of a multi-scale analysis, we show recursively that the walker can pass larger and larger
traps, allowing for a set of initial environments of larger and larger measure. The intro-
duction of renormalization techniques to study random walks in random environments
goes back to [8] and [10], from where our strategy is inspired. A similar method is used
in [16] (see also [12] and [14] for a slightly different approach). From this first step, one
concludes that the walker drifts almost surely to the left or to the right.

The law of large numbers and the invariance principle are deduced in a second step.
As the environment evolves only on diffusive time scales, a ballistic walker discovers fresh
randomness most of the time. From this observation, it is possible to build up a renewal
structure, allowing to cut the full trajectory into pieces that are mutually independent.
This idea was first introduced in [23] for the case of a static i.i.d. environment, and further
adapted by [11] to deal with the case of static environments with good mixing properties.
It was exploited in [3] to obtain a law of large numbers for dynamic environments with
good mixing rates, and then in [4, 9, 16] for a one-dimensional diffusive environment.
As this method is rather delicate and model dependent, we had to perform specific
constructions and estimates (see Section 5).

Let us now discuss some existing works that are directly related to our results. A
rather comprehensive study of the model studied here was initiated in [5], where several
conjectures, based on numerical computations and some heuristics, were presented.
Our Theorem 1.2 answers negatively one of the “key open questions" asked in (3.8)
in [5] (for β = 1 − α and ρ 6= 1/2, the velocity of the walker is non-zero for all γ > 0

small enough). Moreover, two dimensional analogs of our model have been studied in
the physics literature. In [6], the differential mobility of a tagged particle driven by an
external field is shown, by means of numerical computations, to undergo a transition
from a quasi-static to a fluid regime as γ is increased. These two regimes are somehow
analogous to the ones described by our Theorem 1.2 and Theorem 1.1 respectively. In
addition, the same model was studied in [7] as a way to probe the glassy transition in
liquids, and the possibility of anomalous fluctuations was alluded. Our results suggest
that no anomalous fluctuation should be observed.

Finally, in a recent work [16], a law of large numbers and an invariance principle for
the fluctuations of a walker were obtained in a set-up close to ours. The authors consider
indeed a random walk driven by a set of non-interacting particles at equilibrium with

EJP 20 (2015), paper 105.
Page 3/42

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3906
http://ejp.ejpecp.org/


Random walk driven by the simple exclusion process

density 0 < ρ < +∞. The transition probability of the walker differs if he sits on a vacant
site or on a site occupied by at least one particle. Their results hold then for all ρ large
enough, assuming that the limiting velocity is non-zero in the limiting case “ρ =∞". This
is thus a situation analogous to the one described by our Theorem 1.1, which proof is
moreover based on a similar architecture as their. Nevertheless, we stress that, even
for Theorem 1.1, we developed our strategy independently, and that a closer look at the
details shows that many steps cannot be simply taken over.

1.1 Model

An environment is a function (ω(t, x))t≥0,x∈Z with values in the interval ]0, 1[; we refer
to t ∈ R+ as the (continuous) time, and to x ∈ Z as the position. Given such a function ω
we define, for any space-time point (n, x) ∈ N × Z, the Markovian (discrete time) law
Pωn,x by

Pωn,x(X0 = x) = 1 and, for all k ≥ 0 and z ∈ Z, (1.1)

Pωn,x(Xk+1 = z + 1|Xk = z) = ω(n+ k, z), (1.2)

Pωn,x(Xk+1 = z − 1|Xk = z) = 1− ω(n+ k, z). (1.3)

Given the discrete time process (Xn)n∈N, we also define, with a slight abuse of notation,
the continuous time process (Xt)t≥0 := (Xbtc)t≥0 with t ∈ R+.

Consider the simple exclusion process on Z ,

(η(t))t≥0 = (ηx(t))t≥0,x∈Z ∈ {0, 1}Z,

defined by its generator
Lf = γ

∑
x∈Z

(
f ◦ σx,x+1 − f

)
, (1.4)

where γ > 0 is the jump rate of the particles (the intensity of the process), and where
σx,y is defined for any x, y ∈ Z by

σx,y(η) = (. . . , ηy, . . . , ηx, . . . ) if η = (. . . , ηx, . . . , ηy, . . . ).

If ηx(t) = 1, the site x is said to be occupied by a particle at time t, while it is said to be
vacant if ηx(t) = 0. For any 0 ≤ ρ ≤ 1, the probability measure πρ = (ρδ1 + (1− ρ)δ0)⊗Z

is invariant for the simple exclusion process. Remark that for any x, πρ(ηx = 1) = ρ. We
denote by Pρ the law of the process with initial condition distributed according to πρ.

Let 0 ≤ α, β ≤ 1. Given a realization of η we define an environment ω as a function of
η by

ω(η)(t, x) =

{
α if ηx(t) = 1,

β if ηx(t) = 0.
(1.5)

We define P, a law on the space of environments, as the push-forward of Pρ through this
function. To fix the ideas, we will from now on assume that the drift corresponding to
empty sites is larger than the drift corresponding to occupied sites:

0 ≤ α < β ≤ 1.

We define for any space-time point (n, x) ∈ N×Z the annealed law by

Pn,x = P× Pωn,x. (1.6)

Remark that the law of (Xk − x)k≥0 under Pn,x is the same as the law of (Xk)k≥0 under
P0,0, that we will often denote simply by P0.
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1.2 Results

We assume that the environment is elliptic:

0 < α, β < 1. (1.7)

For our first result, we assume that the walker would drift to the right if, at each
of his step, the environment would be entirely refreshed according to the equilibrium
measure (the limiting case “γ =∞"). We assume thus that ρ, α and β are such that

E0(X1) = E(2ω − 1) = ρ(2α− 1) + (1− ρ)(2β − 1) > 0, (1.8)

where E0 is the expectation with respect to P0 and E the expectation with respect to
P. We show that the drift to the right will still be observed if, instead of refreshing the
environment at each step of the walker, it evolves according to the dynamics generated
by (1.4) with initial condition distributed as Pρ, provided that γ is taken large enough
once the parameters ρ, α and β have been fixed. The following theorem may therefore
be seen as a perturbative result around the trivial case “γ =∞":

Theorem 1.1. Assume that the ellipticity condition (1.7) and the drift condition (1.8)
hold. There exists v∗ > 0 so that, for γ large enough,

1. there exists v(γ) ≥ v∗ so that

lim
t→∞

Xt

t
= v(γ) P0 − a.s.,

2. the annealed central limit theorem holds: under P0(
Xnt − ntv(γ)√

n

)
t≥0

=⇒ (Bt)t≥0,

where (Bt)t≥0 is a non-degenerate Brownian motion, and where the convergence
in law is in the Skorohod topology.

For our second result, we assume that the walker is transient to the right in a static
environment (γ = 0), i.e. that the parameters ρ, α and β are such that

E

(
ln

1− ω
ω

)
= ρ ln

1− α
α

+ (1− ρ) ln
1− β
β

< 0. (1.9)

For background about static random walks in random environments, see e.g. [24]. We
show that, for strictly positive and small enough γ, the walker has a positive velocity:

Theorem 1.2. Assume that the ellipticity condition (1.7), as well as the condition (1.9)
for transience to the right in a static environment, hold. Then, for γ > 0 small enough,

1. there exists v(γ) > 0 such that

lim
t→∞

Xt

t
= v(γ) P0 − a.s.,

2. the annealed central limit theorem holds: under P0(
Xnt − ntv(γ)√

n

)
t≥0

=⇒ (Bt)t≥0,

where (Bt)t≥0 is a non-degenerate Brownian motion, and where the convergence
in law is in the Skorohod topology.

We stress that in the case where (1.8) holds while the left hand side of (1.9) is
strictly positive, the asymptotic velocity of the walker can be either positive or negative
according of the value of γ. We can thus exclude that any of our two theorems can be
valid as such for all strictly positive γ.
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1.3 Outline of the paper

The rest of the article is organized in four sections. In Section 2, we control the
time of dissipation of zones with high density of particles. In Section 3, we use these
results on the environment together with a renormalization procedure to derive that,
if the assumption (1.8) holds and if γ is large enough, the walk is ballistic to the right.
In Section 4, the same ideas are used to prove that the walk is ballistic to the right if
the assumption (1.9) holds and if γ > 0 is small enough. Finally, in Section 5, we build a
renewal structure to show that the bounds obtained in Sections 3 and 4 imply the law of
large numbers and the annealed invariance principle stated in Theorems 1.1 and 1.2.

2 Dissipation of traps

The walker can be slowed in the places where the concentration of particles is too
high with respect to the expected density ρ. These locally anomalous configurations of
the environment are called traps. Here we make precise the idea that traps disappear
on diffusive time scales. Concretely, we establish that, if in a box of size L around a
point x, the density of particles is very close to the density ρ for a given initial profile
η ∈ {0, 1}Z, then, waiting a time bigger than L2, the density in smaller boxes around x
becomes close to ρ as well, with high probability with respect to the evolution of the
process. The section is divided into three parts: we first state our results, then show
some technical lemmas, and finally give the proof of our propositions. The technical
estimates in Section 2.2 are very close to some results obtained in [14] (see Lemma 5.3
there).

Before starting, let us introduce an extra notation, to be in use mainly in Sections 2-4.
For η ∈ {0, 1}Z, we define the law Pη of the simple exclusion process, defined by (1.4),
for the deterministic initial condition η. We define then

P η = Pη × Pω0,0, (2.1)

where ω is the environment built from (η(t, x))t≥0,x∈Z (see (1.5)).

2.1 Statement of the results

Given x ∈ Z, L ∈ N and η ∈ NZ, let

〈η〉x,L =
1

|B(x, L)|
∑

y∈B(x,L)

ηy (2.2)

be the empirical density of particles in a box of radius L around the point x. In (2.2), we
have used the notations

B(x, L) = [x− L, x+ L] ∩Z and |B(x, L)| = 2L+ 1.

Let (εL)L≥0 be some decreasing sequence of numbers in ]0, 1]. The numbers εL will serve
to control the difference between the density ρ and the empirical density in a box of size
L. Given η ∈ {0, 1}Z and L ∈ N, we define the set of good sites G(η, L) ⊂ Z as follows:
we say that x ∈ G(η, L) if

〈η〉x,L′ ≤ (1 + εL)ρ for all L′ ≥ L. (2.3)

The main result of this section is contained in the following proposition, where we
use the assumption γt ≥ L3 instead of the more natural assumption γt ≥ CL2 for some
large constant C, in order to avoid the introduction of too many constants.
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Proposition 2.1. There exist some constants C < +∞ and c > 0 such that, given an
initial profile η ∈ {0, 1}Z, and given x ∈ Z, t ≥ 0 and J, L ∈ N, the conditions

x ∈ G
(
η, L

)
, γt ≥ L3, J ≤ L, L(εJ − εL) ≥ C,

imply that

P η
(
x /∈ G

(
η(t), J

))
≤ C

exp
(
− cJρ2(εJ − εL)2

)
ρ2(εJ − εL)2

. (2.4)

This proposition can only be applied if, given a profile η, one waits a time γt ≥ L3. The
next proposition furnishes a control that holds for short times too,

Proposition 2.2. There exist a constant c > 0 such that, given an initial profile η ∈
{0, 1}Z, and given ε > 0, t ≥ 0, x ∈ Z and L ∈ N, it holds that, if

y ∈ G
(
η, L

)
∀y ∈ B(x, L) and ε ≥ εL,

then
P η
(
〈η(t)〉x,L ≥ (1 + ε)ρ

)
≤ exp

(
− cLρ2(ε− εL)2

)
.

One observes that γ plays no role in Proposition 2.2.

2.2 Some lemmas: heat equation properties and concentration

We let
η(t) = Eη

(
η(t)

)
(2.5)

be the mean value of the field after a time t, starting from the initial field η, where we
have used Eη for the expectation with respect to P η. The mean evolution η(t) solves
the discrete heat equation ∂tη = γ∆η with initial condition η(0) = η. The operator ∆

appearing here is the discrete Laplacian defined by ∆u(x) = u(x+ 1)− 2u(x) + u(x− 1)

for u : Z→ R.
We find it convenient to introduce three closely related kernels. Let first p : R+×Z→

R be the heat kernel associated to the Laplacian γ∆: p solves the initial value problem

p(0, ·) = δ0(·), ∂tp = γ∆p. (2.6)

So, for x ∈ Z and t ≥ 0, p(t, x) represents the probability that a free particle jumping
with rate γ starting at origin sits on site x at time t. Given L ∈ N, let then pL and pL be
given by

pL(t, x) =
∑

y∈B(0,L)

p(t, x+ y) and pL(t, x) =
1

|B(0, L)|pL(t, x) (2.7)

for (t, x) ∈ R+ ×Z. The quantity pL(t, x) represents the probability that a free particle
starting from the origin lies in the box of size L centered at x at time t.

Our first lemma furnishes a concentration bound: with high probability, the empirical
density of η(t) in a box of size L does not deviate too much from the empirical density of
the mean evolution η(t) in the same box. This result does not depend on γ.

Lemma 2.3. There exists a constant c > 0 such that, given η ∈ {0, 1}Z, L ∈ N, x ∈ Z,
t ≥ 0 and a ≥ 0,

P η
(
〈η(t)− η(t)〉x,L ≥ a

)
≤ e−ca

2L.

Proof. Given δ ≥ 0, it follows from Markov’s inequality that

P η
(
〈η(t)− η(t)〉x,L ≥ a

)
≤ e−δa · e−δ〈η(t)〉x,L · Eη

(
eδ〈η(t)〉x,L

)
. (2.8)
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Let us first give an expression for 〈η(t)〉x,L. For x ∈ Z, ηx(t) = P η (ηx(t) = 1). Note that
{ηx(t) = 1} =

⋃
z∈Z,ηz=1Az(t, x), where Az(t, x) is the event that a particle initially at z,

sits at x at time t. As these events are mutually disjoint due to the exclusion constraint,
ηx(t) =

∑
z∈Z p(t, x− z)ηz, and we compute

〈η(t)〉x,L =
1

2L+ 1

∑
y∈B(0,L)

ηx+y(t) =
1

2L+ 1

∑
y∈B(0,L)

∑
z∈Z

p(t, x+ y − z)ηz

=
∑
z∈Z

pL(t, x− z)ηz, (2.9)

as is seen from the definition (2.7) of pL.
Let us then work out the third factor in (2.8). We will use Liggett’s inequality to

get rid of the exclusion constraint (see Proposition 1.7 p.366 in [19]). Let us define the
process θ that represents the collective motion of independent particles evolving on Z.
So, let θ = (θ(t))t≥0 be the process on NZ defined by the generator

Lf(θ) =
∑
x∈Z

θx
(
f(θx,x+1)− 2f(θ) + f(θx,x−1)

)
,

with θx,y = (. . . , θx− 1, . . . , θy + 1 . . . ) if θ = (. . . , θx, . . . , θy, . . . ). We assume that θ(0) = η.
It is convenient to adopt the following interpretation: we say that there are n ∈ N
particles at x ∈ Z at time t ≥ 0 if and only if θx(t) = n. Let us label all the particles, in
an arbitrary way, by k ∈ N∗. Let Xk(t) be their position at time t. At any time t ≥ 0, the
variables (Xk(t))k≥1 are independent.

While Liggett’s inequality is stated for a finite number of particles, it is possible to use
it here for the whole infinite system. Indeed, we can use it first for any truncated initial
condition ηN , N ≥ 1, where ηNi = 0 if |i| > N and ηNi = ηi if |i| ≤ N . We then couple these
various initial conditions using the Harris graphical construction (see [15]), and finally
use the monotone convergence theorem to extend Liggett’s comparaison inequality
to the whole system starting from η (see for example [1] for a similar generalization).
Remembering the definition (2.7) of pL, we get

Eη
(

eδ〈η(t)〉x,L
)
≤ Eη

(
eδ〈θ(t)〉x,L

)
= Eη

(
e

δ
2L+1

∑
k≥1 1B(x,L)(Xk(t))

)
=
∏
k≥1

Eη
(

e
δ

2L+11B(x,L)(Xk(t))
)

=
∏
k≥1

(
e

δ
2L+1pL(t,Xk(0)− x) +

(
1− pL(t,Xk(0)− x)

))
=
∏
z∈Z

(
e

δ
2L+1pL(t, z − x) +

(
1− pL(t, z − x)

))ηz
≤ exp

((
eδ/(2L+1) − 1

)∑
z∈Z

pL(t, z − x)ηz

)
= exp

((
eδ/(2L+1) − 1

)
(2L+ 1)〈η(t)〉x,L

)
, (2.10)

where the last expression follows from (2.9).
Let us now come back to (2.8). Assuming that δ/(2L + 1) ≤ 1, we conclude, using

(2.10) and expanding eδ/(2L+1)− 1 in first order in δ/(2L+ 1), that we can find a constant
C < +∞ such that

e−δ〈η(t)〉x,L · Eη
(

eδ〈η(t)〉x,L
)
≤ e

Cδ2

2L+1 〈η(t)〉x,L .

Therefore

P η
(
〈η(t)− η(t)〉x,L ≥ a

)
≤ e−aδ+

C〈η(t)〉x,L
2L+1 δ2

for 0 ≤ δ ≤ 2L+ 1.
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This inequality is optimized for δ = min{ a(2L+1)
2C〈η(t)〉x,L , 2L+ 1}. If δ = a(2L+1)

2C〈η(t)〉x,L , we find

P η
(
〈η(t)− η(t)〉x,L ≥ a

)
≤ e

− a2(2L+1)
4C〈η(t)〉x,L ≤ e−

a2(2L+1)
4C , (2.11)

as 〈η(t)〉x,L ≤ 1 for the simple exclusion process. If instead δ = 2L+ 1, we obtain

P η
(
〈η(t)− η(t)〉x,L ≥ a

)
≤ e−a(2L+1)(1−

C〈η(t)〉x,L
a ).

Because in this case 2L+ 1 ≤ a(2L+1)
2C〈η(t)〉x,L , this implies

P η
(
〈η(t)− η(t)〉x,L ≥ a

)
≤ e−a(2L+1)/2. (2.12)

The Lemma is obvious for a > 1 and, for a ≤ 1, (2.11) is always larger than (2.12) as
soon as C ≥ 1/2. This gives the claim.

The next two lemmas furnish a control on the solution of the heat equation. The first
of these makes precise the fact that, after a time t, the solution at x is well approximated
by the empirical density of the initial profile in a box of size (γt)1/2 around x.

Lemma 2.4. There exists a constant C < +∞ such that, given η ∈ {0, 1}Z, M,L ∈ N,
x ∈ Z and t ≥ 0,

〈η(t)〉x,M ≤
(

1 +
CL2

γt

)
sup

{
〈η〉x,r : r ≥ L

}
.

Proof. Let us start by quoting a property of the heat equation. Let f : Z 7→ R be such that
f(x) = f(−x) for all x ∈ Z, and such that, for all x ≥ 0, it holds that f(x)−f(x+1) ≥ 0. For
x ∈ Z and t ≥ 0, let also f(t, x) be the solution of the initial value problem f(0, x) = f(x)

and ∂tf(t, x) = γ∆f(t, x). It is verified that, for all t > 0, we still have f(t, x) = f(t,−x)

for all x ∈ Z, and f(t, x)− f(t, x+ 1) ≥ 0 for all x ≥ 0.
This has the following consequence. It is seen from the definition (2.7) of pM that

pM (0, x) = pM (0,−x) for all x ∈ Z, that pM (0, x)− pM (0, x+ 1) ≥ 0 for all x ≥ 0, and that
pM solves the heat equation ∂tpM (t, x) = γ∆pM (t, x) for x ∈ Z and t ≥ 0. Therefore, for
any function u : Z→ R, it holds that∑

z∈Z
pM (t, z − x)u(z) =

∑
z≥0

(
pM (t, z)− pM (t, z + 1)

)
(2z + 1)〈u〉x,z, (2.13)

where pM (t, z)− pM (t, z + 1) ≥ 0 for all z ≥ 0.
Let us now write for simplicity

R := sup
{
〈η〉x,r : r ≥ L

}
.

As shown in (2.9), it holds that 〈η(t)〉x,M =
∑
z∈Z pM (t, z − x)ηz, so that, using (2.13), we

find

〈η(t)〉x,M = 〈η(t)〉x,M −R+R =
∑
z≥0

(
pM (t, z)− pM (t, z + 1)

)
(2z + 1)

(
〈η〉x,z −R

)
+ R.

(2.14)
If z ≥ L, then

〈η〉x,z −R = 〈η〉x,z − sup
{
〈η〉x,r : r ≥ L

}
≤ 0,

while, if z < L, then still

(2z + 1)
(
〈η〉x,z −R

)
≤ (2z + 1)〈η〉x,z =

∑
y∈B(0,z)

ηx+y ≤ (2L+ 1)R.
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We see that we already obtain the result if L = 0, so that we can further assume L ≥ 1.
Inserting these two estimates in (2.14), we find

〈η(t)〉x,L ≤ (2L+1)R

L−1∑
z=0

(
pM (t, z)−pM (t, z+1)

)
+ R =

{
1+(2L+1)

(
pM (t, 0)−pM (t, L)

)}
R.

(2.15)
For any z ∈ Z and t > 0, expanding p(t, z) = eγ∆tδ0(z) in the Fourier variables, and

writing ω(ξ) = 2(1− cos ξ), we find

|p(t, z)− p(t, z + 1)| =
∣∣∣ ∫ π

−π
e−ω(ξ)γt

(
eiξz − eiξ(z+1)

) dξ

2π

∣∣∣ ≤ C

∫
R

e−cξ
2γt|ξ|dξ ≤ C ′

γt
,

for some c > 0 and C < C ′ < +∞. Therefore

pM (t, 0)− pM (t, L) ≤ CL

γt
.

Inserting this estimate in (2.15) furnishes the claim.

Our last lemma gives a bound that does not require to wait a time γt ≥ L3 to hold:

Lemma 2.5. Given η ∈ {0, 1}Z, x ∈ Z, t ≥ 0 and L ∈ N, it holds that

〈η(t)〉x,L ≤ sup
{
〈η〉y,r : r ≥ L, y ∈ B(x, L)

}
.

Proof. For L = 0, the lemma follows from Lemma 2.4. We assume L ≥ 1. To simplify
writings, let us write

R := sup
{
〈η〉y,r : r ≥ L, y ∈ B(x, L)

}
.

We decompose
p(t, ·) = p̃(t, ·) +

∑
k≥L

pk(t, ·),

with
pk(t, ·) =

(
p(t, k)− p(t, k + 1)

)
IB(0,k)(·), k ≥ L,

and

p̃(t, z) = p(t, z)−
∑
k≥L

pk(t, z) if z ∈ B(0, L− 1) and p̃(t, z) = 0 otherwise.

Let y ∈ B(x, L). It holds that

ηy(t) =
∑
z∈Z

p(t, y − z)ηz =
∑
z∈Z

p̃(t, y − z)ηz +
∑
k≥L

∑
z∈Z

pk(t, y − z)ηz.

Since, for k ≥ L,∑
z∈Z

pk(t, y−z)ηz =
(
p(t, k)−p(t, k+1)

) ∑
z∈B(0,k)

ηy+z =
(
p(t, k)−p(t, k+1)

)
(2k+1)〈η〉y,k,

and since we assume y ∈ B(x, L), our hypotheses imply 〈η〉y,k ≤ R, so that

ηy(t) ≤
∑

z∈B(0,L−1)

p̃(t, z)ηz+y +
∑
k≥L

(
p(t, k)− p(t, k + 1)

)
(2k + 1)R.

Therefore

〈η(t)〉x,L =
1

|B(x, L)|
∑

y∈B(x,L)

ηy(t)

≤
∑

z∈B(0,L−1)

p̃(t, z)
1

|B(x, L)|
∑

y∈B(x,L)

ηz+y +
∑
k≥L

(
p(t, k)− p(t, k + 1)

)
(2k + 1)R.
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If z ∈ B(0, L− 1), we have x+ z ∈ B(x, L), and so by hypothesis,

1

|B(x, L)|
∑

y∈B(x,L)

ηz+y =
1

|B(0, L)|
∑

w∈B(0,L)

ηx+z+w ≤ R.

We thus conclude that

〈η(t)〉x,L ≤
{ ∑
z∈B(0,L−1)

p̃(t, z) +
∑
k≥L

(
p(t, k)− p(t, k + 1)

)
(2k + 1)

}
R = R,

which is the claim.

2.3 Proof of Propositions 2.1 and 2.2

Proof of Proposition 2.1. We have

P η
(
x /∈ G(η(t), J)

)
≤
∑
J′≥J

P η
(
〈η(t)〉x,J′ > (1 + εJ)ρ

)
. (2.16)

By Lemma 2.4, and since by hypothesis γt ≥ L3 and x ∈ G(η, L), we find for all J ′ ∈ N
that

〈η(t)〉x,J′ ≤
(
1 + C/L

)
sup

{
〈η〉x,r : r ≥ L

}
≤
(
1 + C/L

)
(1 + εL)ρ.

Therefore, thanks to the hypothesis that L(εJ − εL) is large enough, we get

(1 + εJ)ρ− 〈η(t)〉x,J′ ≥
(
εJ − εL − 2C/L

)
ρ ≥ ρ

2
(εJ − εL) ≥ 0. (2.17)

This last inequality allows us to use the concentration estimate stated in Lemma 2.3:

P η
(
〈η(t)〉x,J′ ≥ (1 + εJ)ρ

)
= P η

(〈
η(t)− η(t)

〉
x,J′
≥ (1 + εJ)ρ− 〈η(t)〉x,J′

)
≤ P η

(〈
η(t)− η(t)

〉
x,J′
≥ ρ

2
(εJ − εL)

)
≤ exp

(
− cJ ′ρ2(εJ − εL)2

)
, (2.18)

where we have used (2.17) to get the first inequality. Inserting (2.18) in (2.16), we obtain

P η
(
x /∈ G(η(t), J)

)
≤
∑
J′≥J

e−cJ
′ρ2(εJ−εL)2 ≤ C

e−cJρ
2(εJ−εL)2

ρ2(εJ − εL)2
,

since ρ2(εJ − εL)2 ≤ 1. This is the claim.

Proof of Proposition 2.2. We write

P η
(
〈η(t)〉x,L ≥ (1 + ε)ρ

)
= P η

(
〈η(t)〉x,L − 〈η(t)〉x,L ≥ (1 + ε)ρ− 〈η(t)〉x,L

)
.

It follows from the hypotheses and from Lemma 2.5 that

(1 + ε)ρ− 〈η(t)〉x,L ≥ (1 + ε)ρ− (1 + εL)ρ = (ε− εL)ρ,

so that, by Lemma 2.3, we find indeed P η
(
〈η(t)〉x,L ≥ (1+ε)ρ

)
≤ exp(−cLρ2(ε−εL)2).
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3 Drift for large γ

We here prove

Theorem 3.1. Assume that the drift condition (1.8) holds. Then, there exists v∗ > 0 so
that, for γ large enough, there exists v(γ) ≥ v∗ so that

lim inf
t→∞

Xt

t
= v(γ) P0 − a.s.

Remark that the ellipticity condition (1.7) is not required.
Before we proceed to prove Theorem 3.1, let us fix some parameters. First, for the

whole section, we assume that α, β and ρ are chosen so that the drift condition (1.8)
holds. Next, from now on, we assume that the sequence (εL)L≥0 introduced in Section 2
to control the excess of density in boxes of size L, is given by

εL =
1

1 + ln(L+ 1)
for L ∈ N. (3.1)

With this choice, the sequence (εL)L≥0 satisfies two useful requirements: First, in view
of the definition (2.3) of good sites, εL � L−1/2 is needed for a given site to be good
with high probability for large L; this is the case with (3.1), and the probability that
x /∈ G(η, L) decays faster with L than e−cτL

τ

for any τ < 1. Second, we will apply
Proposition 2.1 with J and L going together to infinity, in the ratio L ∼ J2. The bound
(2.4) in Proposition 2.1 is only meaningful for (εJ − εL)2 � J−1; again (εL)L≥0 defined
by (3.1) satisfies this condition, and the bound (2.4) becomes O(e−cτJ

τ

) for any τ < 1.
Finally, we define a sequence (φL)L≥0, where φL will represent the size of the traps

in a box of size L. Intuitively, typical regions of anomalous density in a box of size L
are of size lnL. Nevertheless, for our estimates, we found it convenient to overestimate
their size; we set

φL = L1/100 for L ∈ N. (3.2)

In the sequel, we will tacitly use the bound |Xt −Xs| ≤ t− s, valid for all 0 ≤ s ≤ t.

3.1 Outline of the proof

The proof of Theorem 3.1 is divided into three steps.
First, we show that, given any (arbitrarily large) time T , there exists γ large enough so

that the walker drifts to the right, for a large set of initial conditions on the environment.
This is the content of Lemma 3.2 below. This is an easy result as we first fix T , and then
chose γ large enough so that the law of XT is well approximated by the law of a walk in
a homogeneous environment, with drift given by (1.8).

Second, we keep γ fixed, and we use a renormalization procedure to extend the
previous result to arbitrarily long times t, and for a set of initial conditions which
probability converges quickly to 1 as t → ∞. This is done in Proposition 3.3 below, at
the cost of reducing slightly our lower bound on the drift (v in (3.3) becomes v/2 in
(3.13)). Our scheme is eventually inspired by a method developed in [8] (see also [10]
for a dynamical uniformly mixing environment), though our problem requires much
less involved estimates. As we cannot go at once to arbitrarily long times, let us first
consider the special case t = T ′ with T ′ = T (T + 1) ∼ T 2, as will be done in the proof
of Proposition 3.3 (the choice T ′ ∼ T 2 is arbitrary to a large extend). Once this will be
understood, the procedure will just be iterated to reach all times T 2k for any k ≥ 1 (it is
then not hard to see that all intermediate times can be reached as well).

Over a time T ′, the walker will evolve in the ball B(0, T ′) if it starts initially at the
origin. Therefore, up to a small extra boundary of size

√
T ′, we need to control the initial

environment in B(0, T ′). In the box B(0, T ′), we allow for an initial environment η such
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that all traps are of size no larger than φT ′ (see (3.2)), i.e. such that B(0, T ′) ⊂ G(η, φT ′)

(see (2.3)). Incidentally, we notice that we already achieved one of our goals: the
measure of the set of initial configurations that we need to exclude when we observe the
walker over a time T ′, is smaller than it was over a time T (this set was the set of η such
that B(0, T ) 6⊂ G(η, φT ), see Lemma 3.2 below).

We then decompose XT ′ as XT ′ =
∑T
k=1(XkT−X(k−1)T ) (see Figure 2 with tn = r = T

and tn+1 = T ′). We would like to use our knowledge on the behavior of the walk over a
time T to control the behavior of each increment XkT −X(k−1)T . This is not possible for
the first term XT −X0 though, since we only know that B(0, T ′) ⊂ G(η, φT ′), while we
would need B(0, T ) ⊂ G(η, φT ) (see Lemma 3.2 below); therefore, we just use the trivial
bound XT −X0 ≥ −T (this is still fine since T � T ′). However, with high probability
with respect to the evolution of the environment, all points y ∈ B(0, T ) are such that
y ∈ G(ηkT , φT ) for all 1 ≤ k ≤ T − 1, so that we do have a good control on all the steps
XkT −X(k−1)T with 2 ≤ k ≤ T . This is actually the main point of the argument; it is a
consequence of the relaxation of traps as expressed by Proposition 2.1 and of the choice
of suitable sequence (εL)L≥1 (see the comments after (3.1)). Thanks to the quantitative
estimate (3.3) in Lemma 3.2 below, we deduce then a lower bound on the drift of XT ′ by
reducing a bit the bound v in (3.3) (see (3.15)). The iteration of this procedure to larger
scales is straightforward.

Finally, Theorem 3.1 is established thanks to a Borel-Cantelli type of argument.

3.2 Initial step

In the next Lemma, T is both a time and spatial scale; the condition γ ≥ φ3
T and the

bound (3.3) turn out to be convenient but are not optimal.

Lemma 3.2. Let T ∈ N be large enough, and let γ ≥ φ3
T . There exists a constant v > 0

(that depends only on α, β and ρ) such that, given η ∈ {0, 1}Z such that

∀y ∈ B(0, T ), y ∈ G(η, φT ),

it holds that

P η(XT ≤ vT ) ≤ e−φ
1/4
T . (3.3)

Proof. Letting v > 0 be a constant that we will determine later, we first write

P η(XT ≤ vT ) ≤ P η(XT −X1 ≤ vT + 1), (3.4)

as the hypotheses do not allow to determine whether the site 0 is initially occupied or
not.

Let us define a few objects. Since we assume α ≤ β, there exists δ > 0 small enough
so that (1.8) will still be satisfied with any ρ′ ∈ [0, ρ+ δ] instead of ρ. Let δ > 0 be such
that this holds. Up to an enlargement of the probability space we define a sequence of
i.i.d. random variables (Yk)k≥1 that are independent from both the exclusion process and
the walker with distribution

P η(Yk = 1) = β + (α− β)(ρ+ δ), P η(Yk = −1) = 1− P η(Yk = 1). (3.5)

Thanks to (1.8) and our choice of δ, it holds that P η(Yk = 1) > 1/2. For m ≥ 2, we define
the events

Em−1 = {y ∈ G(η(m− 1), J),∀y ∈ B(0,m)} with J = bφ1/2
T c, (3.6)

and E0 = {y ∈ G(η(0), φT ),∀y ∈ B(0, 1)}. By hypothesis, P η(E0) = 1.
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We aim to show that

P η(XT −X1 ≤ vT + 1) ≤ P η
( T−1∑
k=1

Yk ≤ vT + 1
)

+

T−1∑
k=1

P η(Eck−1). (3.7)

Before deriving this expression, let us see that it implies the lemma for v small enough
depending on the values of α, β and ρ. Indeed for such a v, by (3.5), the first term in the
right hand side of (3.7) is seen to be bounded as

P η
( T−1∑
k=1

Yk ≤ vT + 1
)
≤ e−cT (3.8)

for some constant c > 0. The second term in the right hand side of (3.7) is then bounded
by means of Proposition 2.1. Since T is assumed to be large enough, and since γ ≥ φ3

T ,
we deduce that

T−1∑
k=1

P η(Eck−1) ≤
∑

y∈B(0,T ),

s∈{1,...,T−2}

P η
(
y /∈ G(η(s), J)

)
≤ C

∑
y,s

exp
(
− cJρ2(εJ − εφT )2

)
ρ2(εJ − εφT )2

≤ C T 2 exp
(
− cJρ2(εJ − εφT )2

)
ρ2(εJ − εφT )2

≤ e−φ
1/3
T , (3.9)

where, to get the last inequality, we have used the explicit expressions (3.1) and (3.2)
and (3.6), as well as the fact that T is large enough. We obtain the lemma by inserting
the bounds (3.8) and (3.9) in (3.7), and then (3.7) in (3.4).

We are thus left with the proof of (3.7). For this, we show that, for any m ≥ 1 and any
a ∈ R,

P η
(
X1+m −X1 ≤ a

)
≤ P η

(
X1+(m−1) + Ym −X1 ≤ a

)
+ P η(Ecm−1), (3.10)

from which (3.7) follows by iteration using Fubini.
Let us first deal with the case m = 1. We need to show that P η(X2 − X1 ≤ a) ≤

P η(Y1 ≤ a), but for this it is enough to establish that P η(X2 −X1 = −1) ≤ P η(Y1 = −1).
It holds that

P η(X2 −X1 = −1) =
∑
z∈Z

∑
σ=0,1

P η(X2 −X1 = −1|X1 = z, ηz(1) = σ)P η(X1 = z, ηz(1) = σ)

=
∑
z∈Z

P η(X1 = z)
∑
σ=0,1

P η(X2 −X1 = −1|X1 = z, ηz(1) = σ)P η(ηz(1) = σ)

=
∑

z∈B(0,1)

P η(X1 = z)
(

1− β + (β − α)P η(ηz(1) = 1)
)
.

Since, by (3.5), we have P η(Y1 = −1) = 1 − β + (β − α)(ρ + δ), we will conclude by
showing that P η(ηz(1) = 1) ≤ ρ+ δ for any z ∈ B(0, 1). Let z ∈ B(0, 1). It holds that

P η
(
ηz(1) = 1

)
=
∑
w∈Z

ηwp(1, w − z) = ηz(1), (3.11)

with η(t) defined in (2.5). We can use Lemma 2.4, with M = 0, L = φT , t = 1 and x = z,
to estimate the right hand side of (3.11). Since γ ≥ φ3

T and z ∈ G(η, φT ) by hypothesis,
we conclude that if T is large enough,

P η
(
ηz(1) = 1

)
≤
(

1 +
Cφ2

T

γ

)
sup{〈η〉z,r : r ≥ φT } ≤

(
1 +

Cφ2
T

φ3
T

)
(1 + εφT )ρ < ρ+ δ.

(3.12)
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Let us next consider the case m > 1 in (3.10):

P η(X1+m −X1 ≤ a) = P η(X1+m −Xm +Xm −X1 ≤ a)

≤ P η(Ecm−1)+
∑

z1,zm∈Z
P η
(
X1+m−Xm ≤ a−(zm−z1)

∣∣X1 = z1, Xm = zm, Em−1

)
P η(X1 = z1, Xm = zm, Em−1).

For each term of the sum, we proceed with the first factor exactly as for m = 1. Replacing
L = φT by L = J in (3.12), we find

P η
(
X1+m −Xm ≤ a− (zm − z1)

∣∣X1 = z1, Xm = zm, Em−1

)
≤ P η

(
Ym ≤ a− (zm − z1)

)
.

Altogether, we obtain

P η(X1+m −X1 ≤ a) ≤
∑

z1,zm∈Z
P η(Ym ≤ a− (zm − z1))P η(X1 = z1, Xm = zm) + P η(Ecm−1)

= P η(X1+(m−1) + Ym −X1 ≤ a) + P η(Ecm−1),

as desired.

3.3 Renormalization procedure

Let v be as in Lemma 3.2.

Proposition 3.3. Let T be large enough and let γ ≥ φ3
T . Given η ∈ {0, 1}Z and t ≥ T

such that
∀y ∈ B(0, t), y ∈ G(η, φt),

it holds that
P η
(
Xt ≤

v

2
t
)
≤ e−φ

1/4
t . (3.13)

Proof of Proposition 3.3. The main construction of the proof is illustrated on Figure 2.
We consider T large enough so that the conclusions of Lemma 3.2 hold for the time T 1/3.
We then define a sequence (tn)n≥0 with t0 ∈ [T 1/3, T ] and

for n ≥ 0, tn+1 ∈ [t2n, (tn + 1)2] (3.14)

such that for some N ≥ 0, tN = t (for example define recursively, from tN = t with some
suitable N , tk−1 = b√tkc until reaching the interval [T 1/3, T ]). We define also a sequence
(cn)n≥0 ⊂ R+ by

v ≥ cn =

(
3−

n∑
k=0

1

2k

)
v

2
≥ v

2
(n ≥ 0). (3.15)

We prove by recurrence on n ≥ 0 that, given η ∈ {0, 1}Z and n ≥ n0, if, for any y ∈ B(0, tn),
it holds that y ∈ G(η, φtn), then

P η(Xtn ≤ cntn) ≤ e−φ
1/4
tn . (3.16)

This will imply the claim.
By Lemma 3.2 and the hypotheses, (3.16) holds true for n = 0 since γ ≥ φ3

T . We
now assume that (3.16) holds for some n ≥ 0, and we show that it implies it for n + 1.
We follow the same steps as in the proof of Lemma 3.2. To simplify notations, let us
write tn = t and tn+1 = t′, as well as cn = c and cn+1 = c′. As in Lemma 3.2, we first
need to wait an initial step, as the information on the initial environment does not allow
us to use our inductive hypothesis. It follows from the definition (3.14) of (tn)n≥1 that
t′ = r + (t− 1)t for some t ≤ r < 4t. We write

P η(Xt′ ≤ c′t′) ≤ P η(Xt′ −Xr ≤ c′t′ + r). (3.17)
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Z

r

tn+1

tn

0 Xtn+1

tn+1 = t2n + r

R

Figure 2: Renormalization procedure used in the proof of Proposition 3.3. Up to time r,
we assume the worst case scenario (Xr = −r) since we lack a good control on the initial
environment. With high probability, it is then possible to apply tn times our inductive
hypothesis, providing a lower bound for the drift of the walker. In the rare cases (4th

and 11th space-time blocks from below on the figure) where Xktn −X(k−1)tn < cntn, we
assume again the worst case scenario.

If n0 is large enough, waiting this time r will suffice to dissipate possible traps with high
probability.

As in the proof of Lemma 3.2 we define on the same probability space (enlarged
if necessary) a sequence (Yk)k≥1 of i.i.d. random variables independent from both the
exclusion process and the walker with distribution

P η(Yk = ct) = 1− e−φ
1/4
t , P η(Yk = −t) = e−φ

1/4
t .

Using our inductive hypothesis, we aim to show that

P η(Xt′ −Xr ≤ c′t′ + r) ≤ P η
( t−1∑
k=1

Yk ≤ c′t′ + r
)

+
∑

y∈B(0,t′),
r≤s≤t′

P η
(
y /∈ G(η(s), φt)

)
. (3.18)

To see this, we show that, for any m ≥ 1 and any a ∈ R, we have

P η(Xr+mt −Xr ≤ a) ≤ P η(Xr+(m−1)t + Ym −Xr ≤ a) + P η(Ecm−1) (3.19)

where
Em−1 =

{
∀y ∈ B(0, r +mt), y ∈ G(η(r + (m− 1)t), φt)

}
.

Since t′ = r + (t− 1)t, (3.18) follows from (3.19) by iteration.
We prove now (3.19). For any m ≥ 1,

P η(Xr+mt −Xr ≤ a) = P η(Xr+mt −Xr+(m−1)t +Xr+(m−1)t −Xr ≤ a)

≤ P η(Ecm−1)+
∑

z0,zm−1∈Z
P η
(
Xr+mt−Xr+(m−1)t ≤ a−(zm−1−z0)

∣∣Az0,zm−1

)
P η(Xr+(m−1)t = zm−1, Xr = z0).
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with
Az0,zm−1

= {Xr+(m−1)t = zm−1, Xr = z0, Em−1}.
Using the inductive hypothesis each term of the sum can be controlled by

P η
(
Xr+mt −Xr+(m−1)t ≤ a− (zm−1 − z0)

∣∣Az0,zm−1

)
≤ P η

(
Ym ≤ a− (zm−1 − z0)

)
.

Therefore indeed P η(Xr+mt −Xr ≤ a) ≤ P η(Ym +Xr+(m−1)t −Xr ≤ a) + P η(Ecm−1). So
(3.19) and hence (3.18) are shown.

We now proceed to bound each term in the right hand side of (3.18) separately. First,
it follows from the definition (3.14) of (tn)n≥0 and the definition (3.15) of (cn)n≥0 that, if
T is large enough,

M t := Eη(Yk) = ct
(
1− e−φ

1/4
t
)
− te−φ

1/4
t ≥ c + c′

2
t. (3.20)

Therefore

P η
( t−1∑
k=1

Yk ≤ c′t′ + r

)
≤ P η

( t−1∑
k=1

(
Yk −M t

)
≤ (c′ −M)(t− 1)t + 8t

)

≤ P η
( t−1∑
k=1

(
Yk −M t

)
≤ −c− c′

2
(t− 1)t + 8t

)

≤ P η
( t−1∑
k=1

(
Yk −M t

)
≤ −t3/4(t− 1)

)
≤ e−ct

1/2

, (3.21)

where we have used the decomposition t′ = r + (t − 1)t, as well as the bounds r ≤ 4t
and c′ ≤ 1 to get the first inequality, the estimate (3.20) to get the second one, the
definitions (3.14) of (tn)n≥0 and (3.15) of (cn)n≥0 to get the third one, and finally a
classical concentration bound for sum of independent bounded variables (|Yk| ≤ t a.s.)
to obtain the last one.

We then use Proposition 2.1 to get a bound on the second term in the right hand side
of (3.18). By assumption, y ∈ G(η, φt′) as soon as y ∈ B(0, t′), while, by the definition
(3.2) of the sequence (φL), we have γr ≥ γt ≥ φ3

t′ . Therefore∑
y∈B(0,t′),
r≤s≤t′

P η
(
y /∈ G(η(s), φt)

)
≤ Ct′2

exp
(
− cφtρ2(εφt − εφt′ )

2
)

ρ2(εφt − εφt′ )
2

≤ e−φ
1/3
t , (3.22)

where the last bound is obtained using the explicit expressions (3.1) for (εL), (3.2) for
(φL), and (3.14) for (tn)n≥1.

The result is obtained by inserting (3.21) and (3.22) in (3.18), and then (3.18) in
(3.17).

3.4 Proof of Theorem 3.1

Proof of Theorem 3.1. Let us first show that there exists a constant C < +∞ and α > 0

such that
Pρ (∃y ∈ B(0, t) s.t. y /∈ G(η, φt)) ≤ C e−t

α

. (3.23)

Indeed, because the equilibrium measure is a Bernoulli product measure, we find

Pρ(∃y ∈ B(0, t) s.t. y /∈ G(η, φt)) ≤
∑

y∈B(0,t)

Pρ(y /∈ G(η, φt)) ≤
∑

y∈B(0,t)

∑
L≥φt

Pρ
(
〈η〉y,L > (1 + εφt)ρ

)
≤ 2

∑
y∈B(0,t)

∑
L≥φt

e−cLε
2
φt
ρ ≤ Ct

e−cρφtε
2
φt

ε2φtρ
.
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Relation (3.23) is then obtained by inserting the values of φt and εφt given by (3.1) and
(3.2).

By the Borel-Cantelli lemma, it then follows from Proposition 3.3 and (3.23) that
lim inft→∞Xt ≥ vt/2 P0 − a.s., where v as in Lemma 3.2.

4 Drift for small γ

We here prove

Theorem 4.1. Assume that the condition (1.9) for transience to the right in a static
environment holds. Then, for γ small enough, there exists v(γ) > 0 such that

lim inf
t→∞

Xt

t
= v(γ) P0 − a.s.

Remark that the ellipticity condition (1.7) is not required. The cases where (1.9) holds
while (1.7) is violated correspond to the cases (α = 1, β > 0) or (α > 0, β = 1). Since (1.9)
still holds if the values or α or β are lowered by a small enough amount, we conclude by
a coupling argument that the hypothesis (1.7) can be added without loss of generality.
We will thus assume that (1.7) holds.

4.1 Outline of the proof

The overall strategy to prove Theorem 3.1 and Theorem 4.1 are completely analogous,
but the actual implementation of the proofs differs in several respects.

The main new conceptual difficulty appears when initializing the renormalization
procedure. Indeed, Theorem 3.1 was obviously valid in the formal limit “γ = ∞", and
we could easily provide the initial step in Lemma 3.2. Theorem 4.1 becomes wrong
though, in the limit γ = 0. Two competing factors determine the behavior of the walk
in the regime γ → 0 (γ > 0): though the evolution of the walker is better and better
approximated by its evolution in a static environment as γ → 0, implying transience to
the right, the dissipation of traps gets slower and slower (the asymptotic velocity of the
walker goes to 0 as γ → 0). Quantitative estimates are needed to compute the resulting
effect.

In Lemma 4.2 below, we provide the needed specific estimates expressing that, if
γ = 0, there exists δ > 0 so that Xt ∼ tδ if the hypothesis (1.9) holds. Taking now γ > 0

small enough, we show in Lemma 4.3 below that the behavior of the walker is well
approximated by its behavior in a static environment as long as t ∼ γ−1, so that Xt ∼ tδ
for t ∼ γ−1. It proves convenient to look at the evolution of Yt := Xγ−1t instead of Xt (we
do not use the notation Yt through the proof): First, since the environment evolves over
time scales of order γ−1, corresponding to one “step" Yt − Yt−1, the dissipation of traps
seen by the walker (Yt)t≥0 does not get slowed as γ → 0. Second, the expected drift of
(Yt)t≥0, E0(Y1), does not vanish in the limit γ → 0 (it is actually of order γ−δ). Therefore,
for (Yt)t≥0, we can proceed as in the previous section: Lemma 4.3 will play the role of
Lemma 3.2, to initialize the procedure, and Proposition 4.5 the role of Proposition 3.3,
where the renormalization is worked out. Finally, as γ will eventually be fixed, the result
for (Yt)t≥0 implies the result for (Xt)t≥0.

There is however still one technical problem hidden in the above description. In the
previous section, we used repeatedly the deterministic bound Xt − Xs > −(t − s) for
s ≤ t. However, for (Yt)t≥0, this becomes Yt − Ys > −γ−1(t − s). As this bound clearly
deteriorates as γ → 0, we need to replace it by a probabilistic estimate. This is the aim
of Lemma 4.4 below (see also the comments above this lemma). Unfortunately, the lack
of a simple deterministic bound makes the whole proof considerably more heavy.
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Several constants will appear through the proof. Since it matters to select them in a
given order, we list all of them already now (though some of them will only be formally
introduced later):

1. As before, we let the sequence (εL)L be given by (3.1).

2. We fix the parameters of the model, α, β and ρ, so that (1.7) and (1.9) hold.

3. We fix an exponent q ≥ 2, that appears in Lemma 4.3 and Proposition 4.5 below. It
is used to quantify the probability of the exceptional event where the the walker
does not drift to the right (see (4.16) below)

4. We fix τ > 0 small enough so that the environment can be accurately approximated
by a static environment on time intervals of length γ−1τ . This is used in the proofs
of Lemmas 4.3 and 4.4 below.

5. We fix K > 0 large enough so that environments with no trap of size larger
or equal to K lnL in a given region of size L, are typical with respect to the
equilibrium measure. This is used in Lemmas 4.3 and 4.4 and in Proposition
4.5 below. Incidentally, taking K large enough allows also to successfully apply
Propositions 2.1 and 2.2.

6. We fix δ > 0 small enough so that, in a static environment, the walker drifts a
distance tδ to the right in a time t with high probability. It is used in Lemmas 4.3
and 4.4 and in Proposition 4.5 below.

7. Finally, we take γ > 0 small enough.

4.2 Static environment

In this section, we consider a random walk in a static random environment. We refer
to [24] for background. Given an environment ω ∈ [0, 1]Z, we define Sωx to be the law of
the walker starting at time 0 in x ∈ Z, and evolving in the static environment ω. We write
Sω for Sω0 . Given η ∈ {0, 1}Z, we can define via (1.5) an environment ω(η). To simplify
notations, we write Sη for Sω(η). Given a static environment ω, we define the associated
potential V by

V (0) = 0 and ∀i ∈ Z, V (i+ 1)− V (i) = ln
1− ωi+1

ωi+1
.

Lemma 4.2. Let K, and δ be positive numbers. Let ρ̃ ∈ [ρ, 1[ be small enough so that

Eρ̃
(

ln
1− ω
ω

)
<

1

2
Eρ
(

ln
1− ω
ω

)
,

where Eρ denotes the expectation with respect to Pρ.

1. There exists C > 0 so that, for t large enough (depending on δ), if the environment
satisfies 〈η〉−tδ/2,tδ/2 ≤ ρ̃, then

Sη
(

inf
0≤s≤t

Xs ≤ −tδ
)
≤ e−Ct

δ

. (4.1)

2. For t large enough (depending on δ and K), if the environment satisfies

∀x ∈ B(0, 2tδ), 〈η〉x,K ln tδ ≤ ρ̃,

then, there exists CK > 0 such that

Sη(Xt ≤ tδ) ≤ t−(1−CKδ). (4.2)

EJP 20 (2015), paper 105.
Page 19/42

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3906
http://ejp.ejpecp.org/


Random walk driven by the simple exclusion process

Note that the assumption of point 2 implies the assumption of point 1.

Proof. For simplicity, to avoid the use of integer parts, we assume that tδ is an integer.

We start with point 1. Under the assumption 〈η〉−tδ/2,tδ/2 ≤ ρ̃,

V (−tδ) ≥ −tδEρ̃
(

ln
1− ω
ω

)
≥ −tδE

ρ(ln 1−ω
ω )

2
.

Recall that (see e.g. [24])

Sη(T−tδ < T1) =
1∑0

i=−tδ e
V (i)

≤ etδ
Eρ(ln 1−ω

ω
)

2 .

Therefore, using Markov’s property at successive return times in 0, we obtain

Sη
(

inf
0≤s≤t

Xs ≤ −tδ
)
≤ tetδ

Eρ(ln 1−ω
ω

)

2 .

This concludes the proof of (4.1).

We turn to point 2. We first control the probability that the walker has not exited
the interval [−2tδ, 2tδ] at time t. Let T := min{k ≥ 0, Xk /∈ [−2tδ, 2tδ]}. Define the
environment ω̃ for i ∈ Z by

ω̃i =

{
ωi if i ≥ −2tδ,

0 if i < −2tδ.

By an obvious coupling of Sη and Sω̃,

Sη(T ≥ t) ≤ Sω̃(T2tδ ≥ t),

where Tx denotes the hitting time of x ∈ Z. Using a classical recurrence (see [24] p.59

for example), we find

ESω̃ (T2tδ) ≤
1

α
(4tδ)2e[V ]−tδ,tδ ,

where for a, b ∈ Z, [V ]a,b = max{V (j)− V (i), 1 ≤ i ≤ j ≤ b}. The assumption of point 2

implies that any excursion above a minimum of V has length at most K ln tδ, and thus
[V ]−2tδ,2tδ ≤ K ln(tδ) ln( 1−α

α ). Finally, using Markov’s inequality,

Sη(T ≥ t) ≤ 16

α
t2δ−1+δK ln( 1−α

α ).

We turn to the probability that the walker is at the left of tδ at time t:

Sη(Xt ≤ tδ) ≤ Sη(T ≥ t) + Sη( inf
0≤s≤t

Xs ≤ −2tδ) + Sη(T2tδ < t,Xt ≤ tδ).

We have already controlled the first two terms. For the last one, we apply Markov’s
property at time Ttδ and then we use (4.1) to derive

Sη(T2tδ < t,Xt ≤ tδ) ≤ te
tδ

4 E
ρ(ln 1−ω

ω ) ≤ e−Ct
δ

.

The largest of the three terms is thus the first one, at least for t large enough. This
concludes the proof of (4.2).
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4.3 Initial step

The assumption γt ≥ L3 in Proposition 2.1 will read t ≥ K3 ln3(γ−δt), for t replaced by
γ−1t and L replaced by K ln(γ−δt), as it will be the case in the renormalization procedure
(see Proposition 4.5 below). This procedure can thus only be initiated for times satisfying
this bound, hence the choice of a window ln4(γ−1) ≤ T ≤ ln9(γ−1) in the next lemma:

Lemma 4.3. Let q ≥ 2. Let K > 0 large enough then δ > 0 small enough and then
γ > 0 small enough. Let ln4(γ−1) ≤ T ≤ ln9(γ−1). Assume that the initial environment
η ∈ {0, 1}Z is such that

∀x ∈ B
(
0, (γ−δT )2

)
, x ∈ G

(
η,K ln(γ−δT )

)
.

Then,

P η(Xγ−1T ≤ γ−δT ) ≤ 1

T q
.

Proof. Let τ > 0 be a real number that we will fix later. Let us first define an event E
relative to the exclusion process alone. We set

E =

T/τ−1⋂
j=0

(Aj ∩Bj),

with, for j = 0, · · · , T/τ − 1,

• (η(t))t≥0 ∈ Aj if and only if

∀x ∈ B
(
0, (γ−δT )2

)
, 〈η(tj)〉x,L ≤ (1+εL1/2)ρ where tj = jτ, L = K ln(γ−δT ),

• (η(t))t≥0 ∈ Bj, if and only if, for all x ∈ B(0, (γ−δT )2), the number of jumps of the
exclusion process that moves particles in the time-space window [γ−1tj , γ

−1tj+1]×
[x− L, x+ L] is bounded by τ1/2(2L).

We then decompose

P η(Xγ−1T ≤ γ−δT ) ≤ P η(Xγ−1T ≤ γ−δT |E) + P η(Ec). (4.3)

Let us estimate the first term in the right hand side of (4.3). Let ω be an environment
such that the corresponding (η(t))t≥0 satisfies (η(t))t≥0 ∈ E. Let xj = jγ−δτ (0 ≤ j ≤
T/τ − 1). A coupling argument shows that

Pω0,0(Xγ−1T > γ−δT ) ≥
T/τ−1∏
j=0

Pωγ−1tj ,xj

(
Xγ−1tj+1

−Xγ−1tj > γ−δτ
)
. (4.4)

For any 0 ≤ j ≤ T/τ − 1, we define η̃ by

η̃j = max
tj≤s≤tj+1

η(γ−1s).

On Aj ∩Bj , it holds that

〈η̃j〉xj ,L ≤ (1 + εL1/2 + τ1/2)ρ := ρ̃.

For τ and γ small enough, it holds that Eρ̃((1− ω)/ω) < 1
2E

ρ((1− ω)/ω). It then follows
from the second part of Lemma 4.2 with t = γ−1τ , that for γ small enough,

Pωγ−1tj ,xj

(
Xγ−1tj+1

−Xγ−1tj > γ−δτ
)
≥ Sη̃jxj

(
Xγ−1τ − xj > γ−δτ

)
≥ Sη̃jxj

(
Xγ−1τ − xj > (γ−1τ)δ

)
≥ 1− γ1−CKδ. (4.5)
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Inserting this estimate in (4.4), we find that, for δ > 0 small enough and γ > 0 small
enough,

Pω0,0(Xγ−1T > γ−δT ) ≥
(
1− γ1−CKδ

)T/τ ≥ exp
(
−(T/τ)γ1−CKδ/2

)
.

Therefore, thanks to the hypothesis ln4(γ−1) ≤ T ≤ ln9(γ−1), it also holds that

P η(Xγ−1T ≤ γ−δT |E) ≤ 1− exp
(
−(T/τ)γ1−CKδ/2

)
≤ T−(q+1). (4.6)

We next come to the second term in the right hand side of (4.3):

P η(Ec) ≤
T/τ−1∑
j=0

P η ((Aj ∩Bj)c) ≤
T/τ−1∑
j=0

(
P η(Acj) + P η(Bcj |Aj)

)
. (4.7)

First, applying Proposition 2.2 we find that for γ small enough and j = 0, · · · , T/τ − 1,

P η(Acj) ≤
∑

x∈B(0,(γ−δT )2)

P η(〈η(tj)〉x,L > (1+εL1/2)ρ) ≤ C(γ−δT )2e−cL(ε
L1/2−εL)2 ≤ (γ−δT )2−cK .

Next, by a classical concentration bound, for τ small enough, there exists c(τ) > 0 so
that, for j = 0, · · · , T/τ − 1,

P η(Bcj |Aj) ≤ C(γ−δT )2e−c(τ)L ≤ (γ−δT )2−cK .

Inserting these two last bounds in (4.7), we conclude that, if K is large enough,

P η(Ec) ≤ T−(q+1). (4.8)

The result is obtained by inserting (4.6) and (4.8) in (4.3).

4.4 Rough lower bound for intermediate times

Lemma 4.3 derived above does not yet allow to initiate the renormalization procedure
described in the proof of Proposition 4.5 below. Indeed, while it ensures that the walker
moves a distance γ−δt to the right over a time γ−1t, with probability 1− 1/tq for good
initial environments, we only know that the walker does not move more than a distance
γ−1t to the left, with probability 1/tq for good initial environments. Since Lemma 4.3
is only valid for a time t ≤ ln9(γ−1), we cannot yet exclude that Eη(Xγ−1T ) < 0. For
intermediate times t such that T ≤ t ≤ γ−1, with T as in Lemma 4.3, the next lemma
furnishes a better lower bound than the deterministic bound Xs ≥ −s (s ≥ 0). In
particular, once combined with Lemma 4.4, Lemma 4.3 ensures now that the walker
drifts to the right over a time γ−1T . We will use the full power of Lemma 4.4, i.e. when
T < t ≤ γ−1, for the first iterations in the proof of Proposition 4.5, where the same type
of difficulty shows up.

Lemma 4.4. Let K > 0 large enough, then δ > 0 small enough, and then γ > 0 small
enough. Assume that T is chosen as in Lemma 4.3, i.e. ln4(γ−1) ≤ T ≤ ln9(γ−1), and let
T ≤ t ≤ γ−1. Assume that the initial state η ∈ {0, 1}Z is such that

∀x ∈ B
(
0, (γ−δt)2

)
, x ∈ G

(
η,K ln(γ−δt)

)
. (4.9)

Then for all 1 ≤ s ≤ t,
P η
(
Xγ−1s ≤ −γ−δs

)
≤ e−s

δ/2

.
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Proof. We first notice that the hypothesis (4.9) implies

∀x ∈ B
(
0, (γ−δt)2

)
, x ∈ G

(
η, (τγ−1)δ/2

)
, (4.10)

provided that (εL)L≥0 is no longer given by (3.1), but is such that

ε(τγ−1)δ/2 =
1

1 + ln (1 + ln(γ−δt))
. (4.11)

For the present proof, we assume that (4.11) holds instead of (3.1), and we use directly
the hypothesis (4.10) instead of (4.9).

Fix 1 ≤ s ≤ t and define an event E relative to the exclusion process alone. We set

E =

s/τ−1⋂
j=0

(Aj ∩Bj),

with

• (η(t))t≥0 ∈ Aj if and only if

〈η(γ−1tj)〉xj−L,L ≤ (1+εL1/2)ρ where tj = jτ, xj = −k(τγ−1)δ, L = (τγ−1)δ/2,

• (η(t))t≥0 ∈ Bj if and only if the number of jumps of the exclusion process that
moves particles in the time-space window [xj − 2L, xj ]× [γ−1tj , γ

−1tj+1] is bounded
by τ1/2(2L).

We then decompose

P η
(
Xγ−1s ≤ −γ−δs

)
≤ P η

(
Xγ−1s ≤ −γ−δs|E

)
+ P η(Ec). (4.12)

Let us estimate the first term in the right hand side of (4.12). Let ω be an environment
such that the corresponding (η(t))t≥0 satisfies (η(t))t≥0 ∈ E. A coupling argument shows
that

Pω0,0
(
Xγ−1s ≤ −γ−δs

)
≤

s/τ−1∑
j=0

Pωγ−1tj ,xj

(
Xγ−1tj+1

−Xγ−1tj ≤ −2L
)
. (4.13)

For any 0 ≤ j ≤ s/τ − 1, we define η̃ by

η̃j = max
tj≤r≤tj+1

η(γ−1r).

It holds that
〈η̃j〉xj−L,L ≤ (1 + εL1/2 + τ1/2)ρ := ρ̃.

For τ small enough and γ small enough, it holds that Eρ̃((1 − ω)/ω) < 1
2E

ρ((1 − ω)/ω).
By a coupling argument and the first part of Lemma 4.2, we obtain, for some c > 0,

Pωγ−1tj ,xj

(
Xγ−1tj+1

−Xγ−1tj ≤ −2L
)
≤ Sη̃jxj

(
Xγ−1τ − xj ≤ −2L

)
≤ e−cL.

Therefore, inserting this estimate in (4.13), it holds that Pω0,0
(
Xγ−1s ≤ −γ−δs

)
≤ (s/τ)e−cL,

so that
P η
(
Xγ−1s ≤ −γ−δs|E

)
≤ s

τ
e−cL. (4.14)

For the second term in the right hand side of (4.12), we have too

P η(Ec) ≤
s/τ−1∑
j=0

P η ((Aj ∩Bj)c) ≤
s/τ−1∑
j=0

(
P η(Acj) + P η(Bcj |Aj)

)
≤ s

τ
e−cL, (4.15)
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since, applying Proposition 2.2 we find P η(Acj) ≤ e−cL if K is large enough, while, if τ is
chosen small enough, a classical concentration bound furnishes P η(Bcj |Aj) ≤ e−cL.

Inserting (4.14) and (4.15) into (4.12), we obtain for γ large enough,

P η
(
Xγ−1s ≤ −γ−δs

)
≤ Cγ−1τ−1e−cL ≤ e−γ

−δ/2 ≤ e−s
δ/2

.

since s ≤ γ−1.

4.5 Renormalization procedure

We use Lemma 4.3 as initial step, Proposition 2.1 to guarantee the dissipation of
possible traps with high probability, and Lemma 4.4 as lower bound for intermediate
times, to derive

Proposition 4.5. Let q ≥ 2. Let K be large enough, then δ > 0 small enough and finally
γ > 0 small enough. Fix t ≥ ln9(γ−1) and assume that the initial environment η ∈ {0, 1}Z
is such that

∀x ∈ B
(
0, (γ−δt)2

)
, x ∈ G

(
η,K ln(γ−δt)

)
.

Then,

P η(Xγ−1t ≤ γ−δt/2) ≤ 1/tq. (4.16)

Proof. We take K < +∞, δ > 0 and γ > 0 such that Lemmas 4.3 and 4.4 hold. Given
t ≥ ln9(γ−1), we define a sequence (tn)n≥0 with t0 ∈ [ln4 γ−1, ln9 γ−1] and for n ≥ 0,
tn+1 ∈ [t2n, (tn + 1)2], such that for some N ≥ 0, tN = t. Recall the definition of (cn)n≥0

in (3.15) with v = 1 so that the sequence is decreasing from 1 to 1/2. We prove by
recurrence that, given η ∈ {0, 1}Z and n ≥ 0, if, for any x ∈ B(0, (γ−δtn)2), it holds that
x ∈ G(η,K ln γ−δtn), then

P η(Xγ−1tn ≤ cnγ−δtn) ≤ t−qn . (4.17)

This will imply the claim.

By Lemma 4.3 and by the hypotheses, (4.17) holds true for n = 0. We now assume
that (4.17) holds for some n ≥ 0, and we show that it implies it for n + 1. To simplify
notations, let us write tn = t and tn+1 = t′, as well as cn = c and cn+1 = c′. It holds
that t′ = r + (t − 1)t for some t ≤ r < 4t. The cases t′ ≤ γ−1 and t′ > γ−1 are treated
differently. We first write a bound analogous to (3.17) in the proof of Proposition 3.3:

P η(Xγ−1t′ ≤ c′γ−δt′) ≤ P η
(
Xγ−1t′ −Xγ−1r ≤ c′γ−δt′ + γ−δr

)
+ e−t

δ/2

if t′ ≤ γ−1,

(4.18)

P η(Xγ−1t′ ≤ c′γ−δt′) ≤ P η
(
Xγ−1t′ −Xγ−1r ≤ c′γ−δt′ + γ−1r

)
if t′ > γ−1,

(4.19)

where (4.18) is derived from Lemma 4.4 while the bound Xγ−1r ≥ −γ−1r in (4.19) is
deterministic.

We need to evaluate the the right hand side of either of these bounds. For this, we
define on the same probability space (enlarged if necessary) a sequence (Yk)k≥1 of i.i.d.
random variables independent from both the exclusion process and the walker with
distribution:

P η
(
Yk = cγ−δt

)
= 1− t−q, P η

(
Yk = −γ−δt

)
= t−q if t′ ≤ γ−1, (4.20)

P η
(
Yk = cγ−δt

)
= 1− t−q, P η

(
Yk = −γ−1t

)
= t−q if t′ > γ−1. (4.21)
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For any integer m ≥ 0, let us also define the events

Dm =
{
Xγ−1(r+mt) ≥ −γ−δt′

}
,

Em =
{
∀x ∈ B

(
0, (γ−δt′)2

)
, x ∈ G

(
η
(
γ−1(r +mt)

)
,K ln(γ−δt)

)}
.

Using our inductive hypothesis, we aim to show that, for t′ ≤ γ−1,

P η
(
Xγ−1t′ −Xγ−1r ≤ c′γ−δt′ + γ−δr

)
≤ P η

(
t−1∑
k=1

Yk ≤ c′γ−δt′ + γ−δr

)
+

∑
1≤m≤t−1

P η
(
Xγ−1(r+mt) −Xγ−1(r+(m−1)t) ≤ −γ−δt

∣∣Dm−1, Em−1

)
+

∑
1≤m≤t−1

(
P η(Dcm−1) + P η(Ecm−1)

)
(4.22)

with (Yk)k≥1 given by (4.20), and for t′ > γ−1,

P η
(
Xγ−1t′ −Xγ−1r ≤ c′γ−δt′ + γ−1r

)
≤ P η

(
t−1∑
k=1

Yk ≤ c′γ−δt′ + γ−1r

)
+

∑
1≤m≤t−1

P η(Ecm−1)

(4.23)
with (Yk)k≥1 given by (4.21). One sees that the first of these bounds, valid for t′ ≤
γ−1, involves two extra terms in comparison with the second one, valid for t′ > γ−1.
This comes form the fact that, in the first case, it is not always so that, after a time
γ−1(r+(m−1)t) (for some 1 ≤ m ≤ t−1), the walker is on a site where we have a control
on the environment, while it is always so in the second case (the initial environment is
controlled in a box of size (γ−δt′)2).

The bounds (4.22) and (4.23) are shown in an analogous way; as the latter is easier,
we focus on the derivation of (4.22). Let us thus assume t′ ≤ γ−1. Let us establish that,
for any m ≥ 1 and any a ∈ R, we have

P η(Xγ−1(r+mt) −Xγ−1r ≤ a) ≤ P η(Xγ−1(r+(m−1)t) + Ym −Xγ−1r ≤ a)

+ P η
(
Xγ−1(r+mt) −Xγ−1(r+(m−1)t) ≤ −γ−δt

∣∣Dm−1, Em−1

)
+ P η(Dcm−1) + P η(Ecm−1).

(4.24)

Since t′ = r + (t − 1)t, (4.22) follows from (4.24) by iteration and Fubini theorem. For
m ≥ 1:

P η(Xγ−1(r+mt) −Xγ−1r ≤ a) ≤
P η(Xγ−1(r+mt)−Xγ−1(r+(m−1)t)+Xγ−1(r+(m−1)t)−Xγ−1r ≤ a|Dm−1, Em−1) +P η(Dcm−1)+P η(Ecm−1).

(4.25)

The first term in the right hand side is expressed as∑
z≥−γ−δt′

P η
(
Xγ−1(r+mt) −Xγ−1(r+(m−1)t) ≤ a− z +Xγ−1r

∣∣Dm−1, Em−1, Xγ−1(r+(m−1)t) = z
)

P η(Xγ−1(r+(m−1)t) = z|Dm−1, Em−1). (4.26)

Our inductive hypothesis at scale n and Markov’s property imply that

P η
(
Xγ−1(r+mt) −Xγ−1(r+(m−1)t) ≤ a− z +Xγ−1r

∣∣Dm−1, Em−1, Xγ−1(r+(m−1)t) = z
)
≤

P η(Ym ≤ a−z+Xγ−1r) +P η(Xγ−1(r+mt)−Xγ−1(r+(m−1)t) ≤ −γ−δt|Dm−1, Em−1, Xγ−1(r+(m−1)t) = z).

(4.27)
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Inserting (4.27) into (4.26), and then (4.26) into (4.25) leads to (4.24), hence to (4.22).
We now proceed to bound each term in the right hand side of (4.22) and (4.23)

separately. Let us start with (4.22). To deal with the first term in the right hand side of
(4.22), we define for any integer 1 ≤ p ≤ t− 1, the event

Ap = {∃ 1 ≤ k1 < · · · < kp ≤ t− 1 : Ykj < 0 for all 1 ≤ j ≤ p}.

We have

P η(Ap) ≤
( t

t2

)p
=

1

tp
.

We take p = 3(q + 1) and we show that

P η

(
t−1∑
k=1

Yk ≤ c′γ−δt′ + γ−δr

)
≤ P η

(
t−1∑
k=1

Yk ≤ c′γ−δt′ + γ−δr,Acp

)
+P η(Ap) ≤

1

tp
≤ 1

(t′)(q+1)
,

(4.28)
provided that γ was taken small enough. Indeed, the first term in the right hand side of
(4.28) vanishes since, on Acp, it holds that

t−1∑
k=1

Yk ≥ cγ−δt(t− 1− p)− pγ−δt > c′γ−δt′ + γ−δr,

as indeed the last inequality reads (c−c′)t > C(p) (which holds true since c−c′ = 2−(n+2)

while t ≥ ec2
n

for some c > 0). To deal with the second term in the right hand side of
(4.22), we apply Lemma 4.4:∑
1≤m≤t−1

P η
(
Xγ−1(r+mt) −Xγ−1(r+(m−1)t) ≤ −γ−δt

∣∣Dm−1, Em−1

)
≤ (t−1)e−t

δ/2 ≤ 1

(t′)q+1
.

(4.29)
Similarly, ∑

1≤m≤t−1

P η(Dcm−1) ≤ (t− 1)e−t
δ/2 ≤ 1

(t′)q+1
. (4.30)

Finally, to bound for any m ≥ 0, P η(Ecm), we apply Proposition 2.1. The hypothesis
reads here γ(γ−1(r + mt)) ≥ (K ln(γ−δt))3, and is satisfied since, for γ smal enough,
r +mt ≥ t ≥ ln4 γ−1. Therefore, taking K large enough,∑

1≤m≤t−1

P η(Ecm−1) ≤
∑

x∈B(0,(γ−δt′)2),
1≤m≤t−1

P η
(
x /∈ G(η(γ−1(r +mt)),K ln γ−δt)

)

≤ (t− 1)(γ−δt′)2e−cK ln γ−δt ≤ 1

(t′)q+1
. (4.31)

For (4.23), both the equivalent of (4.28) and of (4.31) remain valid. Inserting (4.28-4.31)
into (4.22) and then (4.22) into (4.18) for t′ ≤ γ−1, or inserting the equivalent of (4.28)
and (4.31) into (4.23) and then (4.23) into (4.19) for t′ > γ−1, yields the result.

4.6 Conclusion of the proof

Proof of Theorem 4.1. If K is large enough, we have, writing simply ε for εK ln γ−δt,

Pρ
(
∃x ∈ B

(
0, (γ−δt)2

)
: x /∈ G

(
η,K ln(γ−δt)

))
≤

∑
x∈B(0,(γ−δt)2)

Pρ
(
x /∈ G

(
η,K ln(γ−δt)

))
≤

∑
x∈B(0,(γ−δt)2)

∑
L≥K ln(γ−δt)

Pρ (〈η〉x,L > (1 + ε)ρ) ≤
∑

x∈B(0,(γ−δt)2)

∑
L≥K ln(γ−δt)

e−cLε
2

≤ C(γ−δt)2ε−2e−cK ln(γ−δt)ε2 ≤ C ′(γ−δt)2(γ−δt)−c
′K ≤ t3−c

′K (4.32)
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once t is large enough. This last term can be bounded by 1/t2 that is summable for K
large enough. Therefore, since

P0(Xt < γ−δt/2) ≤ P0

(
∃x ∈ B(0, (γ−δt)2) : x /∈ G(η,K ln(γ−δt)

)
+ P0

(
Xt < γ−δt/2

∣∣ ∀x ∈ B(0, (γ−δt)2) : x ∈ G(η,K ln(γ−δt)
)
,

it follows from the Borel-Cantelli lemma, from Proposition 4.5 and from (4.32) that, for
K large enough, δ > 0 small enough and γ > 0 small enough,

lim inf
t→∞

Xt ≥
γ−δt

2
P0 − a.s.

5 Proof of Theorem 1.1 and Theorem 1.2

Theorem 1.1 is deduced from Proposition 3.3 and Theorem 3.1 exactly in the same
way as Theorem 1.2 is deduced from Proposition 4.5 and Theorem 4.1. We only show
Theorem 1.1, and so we fix γ large enough so that the conclusions of Proposition 3.3 and
Theorem 3.1 are in force.

Let us first introduce a few definitions and notations. In Section 1.1, the law P of the
environment was built from the exclusion process. In this section, it is more convenient
to build it from the interchange process on Z together with an independent collection of
particles of two different types, so that each site is occupied by exactly one particle. We
use the following definitions:

1. Let us consider a collection of spatially independent Poisson clocks (U(t, x))t∈R,x∈Z
with parameter γ, called updates. We construct a process (ξ(t, i))t∈R,i∈Z, where,
for i ∈ Z and t ∈ R, ξ(t, i) denotes the position at time t of particle i: ξ(0, i) = i

and, if the clock x rings at time t, then the particle at x− 1 and the particle at x
exchange their positions. Remark that the time is indexed by R: it is convenient
for technical reasons, although not necessary to define the model, see Lemma 5.2
for example.

2. For t ≥ 0 and x ∈ Z, µ(t, x) is the unique i such that ξ(t, i) = x that is the label of
the particle that is in x at time t. Note that µ is a function of ξ.

3. We consider also a family of type of particles (ν(i))i∈Z, which is a product of
independent Bernoulli, with parameter ρ. Let P2 be its law.

The environment ω is viewed as a function of ξ and ν:

ω(ξ, ν)(t, i) =

{
α if ν(µ(t, i)) = 1,

β if ν(µ(t, i)) = 0.

We let the reader check that the law of the environment P defined in Section 1.1 is the
push forward probability of P1 ⊗P2 through this function. We denote the space where
lives ξ by Ξ, and the set of path that supports the process X by P.

We will use the ellipticity of the environment to control the probability that the walker
executes some displacements independently from any information we could have about
the environment. Define this minimal probability by

κ = min{α, 1− α, β, 1− β}. (5.1)

By assumption (1.7), we have κ > 0.
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We now start the proof of Theorem 1.1. Our aim is to construct a renewal structure,
i.e. to cut the random path followed by the walker into pieces that are independent under
P0 (see [4] for the first use of this method in a similar context, see also [9, 16]). For any
time-space point (t, x) ∈ R×Z, we define

T−t,x = {(s, y), s ≤ t, y ≤ x+
v

4
(s− t)}, (5.2)

T+
t,x = {(s, y), t ≤ s, y ≥ x+

v

4
(s− t)}, (5.3)

where v is the constant appearing in Proposition 3.3 (see Figure 3). The position of
the rightmost visited particle at time n ≥ 0 is M(n) := sup{ξ(n, µ), µ ∈ Vn}, with
Vn = {µ(i,Xi), i ≤ n− 1} the set of labels of visited particles at time n. Our goal is to
define a sequence of random times, called renewal times, that satisfy

∀n ≤ τ, (n,Xn) ∈ T−τ,Xτ , (5.4)

M(τ) < Xτ , (5.5)

∀n ≥ τ, (n,Xn) ∈ T+
τ,Xτ

, (5.6)

∀(n, x) ∈ T+
τ,Xτ

, ξ(τ, µ(n, x)) ≥ Xτ (5.7)

(see Figure 3). The meaning of (5.4) and (5.6) is clear. Condition (5.5) means that, at
time τ , all particles visited by the walker before time τ , are behind the walker. Finally,
(5.7) means that all the particles at the left of Xτ at time τ will never enter into the cone
T+
τ,Xτ

. These four conditions together imply in particular that after the time τ , the walker
will only visits particles that have not yet been visited at time τ .

Z

R

τ

0

T+
τ,Xτ

T−
τ,Xτ

(τ, Xτ )

Figure 3: Renewal time τ . The slope of the oblique line is (v/4)−1. Conditions (5.4)
and (5.6): the walker (in red) lives in T−τ,Xτ before time τ and in T+

τ,Xτ
after time τ .

Conditions (5.4) and (5.7): all particles visited by the walker before time τ sit at its left
at time τ , and no particle at the left of Xτ at time τ enters T+

τ,Xτ
.
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Our goal is to prove that, P0−a.s., there are infinitely many renewal times, and to
show that the first and second moments of τ are finite, from which Theorem 1.1 is
readily deduced (see Section 5.5). For this, our first step is to show that, almost surly,
there is a positive fraction of the points on the trajectory (n,Xn)n≥0, called candidates,
satisfying the conditions (5.4-5.5) (see Proposition 5.1 below). Since the walker drifts
ballistically in a diffusive environment, this claim is surely very reasonable, but it is
however not straightforward: While it follows directly form the ballistic behavior that a
positive fraction of times satisfy (5.4), it is not obvious to prove that a positive fraction
of these times satisfy (5.5). The proof of Proposition 5.1 constitues the most technical
part of the work (see the heuristic considerations below Proposition 5.1), and we stress
that this problem could not be solved by the methods of [4, 9, 16]. We next turn to
(5.6-5.7). In Section 5.2, we carry over the main computation that allows us to see that
these conditions can be satisfied with positive probability (the ellipticity of the walk,
κ > 0, see (5.1), is used here). We are then able to construct an infinite sequence of
renewal points (see Sections 5.3-5.4) and, along the way, we show the properties that
make the interest of the renewal times (they cut the trajectory into independent pieces).
Finally, the moments of τ are bounded by combining the bounds of Proposition 3.3 and
Proposition 5.1 (see Proposition 5.6 in Section 5.5).

5.1 Existence of a density of points (n,Xn) satisfying (5.4-5.5)

Given an environment, a point (n,Xn) on a trajectory (m,Xm)m≥0 is said to be a
candidate if it satisfies (5.4) and (5.5):

∀m ≤ n, (m,Xm) ∈ T−n,Xn , and M(n) < Xn.

We prove the existence of a positive fraction of candidate points on P0−almost every
trajectory:

Proposition 5.1. Let q ≥ 2. There exists some c > 0 such that, for n large enough,

P0(]{i ≤ n, (i,Xi) is a candidate} ≤ cn) ≤ 1

nq
. (5.8)

In particular, by the Borel-Cantelli lemma,

lim inf
n→+∞

]{i ≤ n, (i,Xi) is a candidate }

n
> c, P0 − a.s. (5.9)

Let us first describe the idea of the proof. For this, we start by introducing a slightly
weaker notion than that of candidate. Let l ≥ 1 and n ∈ N. Given an environment, a
point (n,Xn) on a trajectory (m,Xm)m≥0 is said to be l−good, or simply good, if

∀m ≤ n, (m,Xm) ∈ T−n,Xn (5.10)

M(n) < Xn + l. (5.11)

We will prove Proposition 5.1 in two steps: we first establish the result with “candidate"
replaced by “l−good" (for some large enough l), and then we show that Proposition 5.1
follows from this intermediate statement (this second step is straightforward and we do
not comment upon it here).

Let us take some large integer n. On the one hand, by Proposition 3.3, Xn ≥ vn/2
with high probability, for some v > 0. Therefore, it follows from basic geometric
considerations that, with the same probability, a positive fraction of the points on
the trajectory (m,Xm)0≤m≤n satisfy (5.10). On the other hand, given a deterministic
path (j, Yj)j≥0, with Yj+1 − Yj = ±1, it holds that any given point (k, Yk) satisfying

EJP 20 (2015), paper 105.
Page 29/42

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3906
http://ejp.ejpecp.org/


Random walk driven by the simple exclusion process

(5.10), satisfies also (5.11) with a probability at least 1− e−cl, where c is some constant
independent from the path and the point (see Lemma 5.2 below). One may therefore
try to establish that, with very high probability, any given path (j, Yj)j≥0 independent
of the environment and having a density of points satisfying (5.10), has also a density
of good points. More precisely, since the number of such paths, differing from one
another before the time n, is roughly bounded by 2n, we would need to establish that the
probability that a given such path has less than cn good points decays faster to 0 than
2−n, provided that c has been chosen small enough. If the events that different points on
the path are good were independent, we would indeed conclude by the above that this
probability decays like e−I(l)n, where I(l) grows to infinity as l grows to infinity, so that
the result would follow by taking l large enough.

The lack of independence forces us to adapt this strategy. Let us assume that a
point (k, Yk) satisfies (5.10) but not (5.11). We define a random variable d to quantify
how much (5.11) failed; roughly, d measures the distance to the right of Yk travelled
by the particles that made (5.11) to fail (see (5.13) for a precise definition). The main
observation is that, when considering a next point (k′, Yk′) satisfying (5.10), with k′ > k,
then, if (k, Yk + d) ∈ T−k′,Yk′ , we can estimate the probability that (5.11) is satisfied for
(k′, Yk′), independently of our knowledge about (k, Yk). This observation is implemented
as follows: First, in order to decrease the cardinal of possible paths, we consider paths
of blocks of size l instead of paths of points. This helps since, while the number of such
paths is now bounded by 2n/l, the probability that a given block is bad (see (5.12) below)
still behaves like 1− l2e−cl ∼ 1− e−c

′l. Then, each time a bad block is seen, we estimate
how bad it was, i.e. we estimate E, as defined in (5.17) below. The probability that E
exceeds a certain amount k ≥ 0 decays exponentially with k (see Lemma 5.2 bellow).

Before starting the proof of Proposition 5.1, let us state an elementary result relative
to the updates of the environment alone (recall that the updates U(t, x) are defined for
all t ∈ R). Given an environment, we say that a space-time point (t, x) is l−bad, or simply
bad, if there exists a particle i ∈ Z and a time s ≤ t such that

(s, ξ(s, i)) ∈ T−t,x and ξ(t, i) ≥ l + x. (5.12)

Remark that, contrary to the notion of good point (see (5.10-5.11)), the notion of bad
point does not involve the trajectory of the walker. Given (t, x) a bad point, At,x denotes
the set of particles satisfying (5.12). Given a particle i ∈ At,x we define

s(i) = max{s ≤ t : (s, ξ(s, i)) ∈ T−t,x},
λ(i) = min{k : for all s(i) ≤ s ≤ t, (s, ξ(s, i)) ∈ T−t,x+k}.

Finally we define the variable dt,x by

dt,x = inf{λ(i), i ∈ At,x} (5.13)

if (t, x) is bad, and dt,x = 0 if (t, x) is not bad. We stress that the variables dt,x are
deterministically equal at 0 or larger than l, measurable with respect to ξ, and identically
distributed (but off course not independent).

Lemma 5.2. There exists c > 0 so that, for any k ≥ l,

P1(d0,0 ≥ k) ≤ e−ck. (5.14)

Proof. We first establish the exponential decay for large k. For k ≥ l, using a union
bound,

P1(d0,0 ≥ k) ≤
∑
i≥l

P1(∃s ≤ 0 s.t. ξ(s, i) /∈ T−0,k−1, ∃t ≤ s s.t. ξ(t, i) ∈ T−0,0). (5.15)

EJP 20 (2015), paper 105.
Page 30/42

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3906
http://ejp.ejpecp.org/


Random walk driven by the simple exclusion process

For each i ≥ l, (ξ(s, i))s≤0 is a simple continuous time random walk so that there exists
some constant c1 > 0 so that P1(∃ t ≤ 0 s.t. ξ(t, i) ∈ T−0,0) ≤ e−c1i. The sum (5.15) is
decomposed in two parts. First, there exists c2 > 0 such that, for k large enough,∑
i≥k

P1(∃s ≤ 0 s.t. ξ(s, i) /∈ T−0,k−1, ∃t ≤ s s.t. ξ(t, i) ∈ T−0,0) ≤
∑
i≥k

P1(∃t ≤ 0 s.t. ξ(t, i) ∈ T−0,0) ≤ e−c2k.

Second, let us consider an index l ≤ i ≤ k − 1. Using Markov’s property at the hitting
time of the complementary of T−0,k−1 together with the fact the interchange process is
considered under its invariant measure, we obtain

P1(∃s ≤ 0 s.t. ξ(s, i) /∈ T−0,k−1, ∃t ≤ s s.t. ξ(t, i) ∈ T−0,0) ≤ P1(∃t ≤ 0 s.t. ξ(t, k−1) ∈ T−0,0),

so that ∑
l≤i≤k−1

P1(∃s ≤ 0 s.t. ξ(s, i) /∈ T−0,k−1, ∃t ≤ s s.t. ξ(t, i) ∈ T−0,0) ≤ ke−c1k.

We thus obtain (5.14) for k large enough.
As P1(d0,0 ≥ k) is non-increasing with k ≥ l, it remains to prove that P1(d0,0 ≥ l) < 1

to complete the proof, or equivalently that P1(d0,0 = 0) > 0. We already know that for
some K large enough

∑
i≥K P1(∃t ≤ 0 s.t. ξ(t, i) ∈ T−0,0) < 1. We consider a time s < 0 so

that − v
4s > K. Using Markov’s property at time s together with the fact the interchange

process is considered under its invariant measure, we obtain

P1(d0,0 = 0) ≥ P1

(
U(s, l) = U(0, l), {∃i ≥ l ∃t ≤ s s.t. ξ(s, i) ≥ l and ξ(t, i) ∈ T−0,0}c

)
≥ P1 (U(s, l) = U(0, l))

(
1− P1(∃i ≥ K ∃t ≤ 0 s.t. ξ(t, i) ∈ T−0,0)

)
> 0,

where U(s, l) = U(0, l) means that the clock between the sites l − 1 and l has not rung
during the time interval [0, s]. That concludes the proof.

Proof of Proposition 5.1. The proof is made of two steps.
In a first step, we fix l ≥ 1 large enough, and we prove that there exists some constant

c0 > 0 such that, for all n large enough,

P0(]{i ≤ n, (i,Xi) is l−good} < c0n) ≤ 1

nq+1
, (5.16)

with l−good as defined in (5.10-5.11). We observe that

P0(]{i ≤ n, (i,Xi) is good} ≤ c0n) ≤ P0

(
]{i ≤ n, (i,Xi) is good} ≤ c0n,Xn ≥

v

2
n
)

+P0

(
Xn ≤

v

2
n
)
.

By Proposition 3.3, the second term is bounded by P0(Xn ≤ v
2n) ≤ e−φ

1/4
n ≤ 1/nq+2,

where the second inequality is valid for n large enough. We thus need a bound on the
first term.

Let us consider a deterministic trajectory (j, Yj)0≤j≤n such that Y0 = 0, Yj+1−Yj = ±1

for all 0 ≤ j ≤ n − 1, and Yn ≥ v
2n. We first describe how to create two trajectories of

boxes of size l, called R and T below, starting from the trajectory of points (j, Yj)0≤j≤n.
Our constructions are illustrated on Figure 4. For j ≥ 0, we define

tj = inf
{
k ≥ 0 s.t. Yk ≥ j +

v

4
k
}
,

and we remark that, on the event {Xn ≥ v
2n}, ti ≤ n for all i ≤ v

4n. We define a space-time
parallelogram, or box, by its opposite sides,[

(0, 0),
(
n,

v

4
n
)]

and
[(

0,
v

4
n
)
,
(
n,

v

2
n
)]
,
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and we cut it into boxes of size l: writing M = bnl c and N = b vn4l c, we consider M ×N
boxes C(i, j), with i ∈ {1, . . . ,M} and j ∈ {1, . . . , N}, where C(i, j) is the box defined by
the two opposite sides[(

(i− 1)l, (j − 1)l +
v

4
(i− 1)l

)
,
(
il, (j − 1)l +

v

4
il
)]

and
[(

(i− 1)l, jl +
v

4
(i− 1)l

)
,
(
il, jl +

v

4
il
)]
.

We denote by R ⊂ {1, . . . ,M}× {1, . . . , N} the subset of indices (i, j), such that (i, j) ∈ R
if and only if the box C(i, j) contains at least one point (tk, Xtk) for some k ≤ v

4n. We
observe the following:

1. For any 1 ≤ j ≤ N , there exists at least one i ∈ {1, . . . ,M} such that C(i, j) ∈ R.

2. For any 1 ≤ i ≤M , there are at most two j ∈ {1, . . . , N} such that C(i, j) ∈ R, and
in that case the two indices j are consecutive.

It makes thus sense to consider the subset T ⊂ R such that (i, j) ∈ T if j is odd and if i
is the smallest number so that (i, j) ∈ R. The cardinal of T is N/2 (assuming N even,
the other case being analogous) and the set T can be described as

T =
{

(i1, 1), (i2, 3), . . . , (iN/2, N/2)
}

with 1 ≤ i1 < i2 < · · · < iN/2 ≤M.

Z

R

v
2n

n

j

i

v
4n0

(n, v4n) (n, v2n)

Figure 4: Construction of the trajectories of blocks, R and T , from a deterministic
trajectory (k, Yk)0≤k≤n satisfying Y0 = 0 and Yn ≥ v

2n. The trajectory R is marked by the
shaded boxes, and the trajectory T ⊂ R by the darker boxes. A box C(i, j) is represented
by the hatched region.

Recall now the definition (5.12) of bad points. A block C(i, j) is said to be bad if at
least one point in C(i, j) is bad. For any block C(i, j), we define the variable E(i, j) by
E(i, j) = 0 if the block is not bad, and by

E(i, j) = inf{m ≥ 1 : ∃(t, x) ∈ C(i, j) bad s.t. ∃p ∈ At,x s.t. x+ λ(p) ∈ T̃−i,j+m} (5.17)
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if the block is bad, where

T̃−i,j = T−il,jl+ v
4 il
.

We note that E(i, j) ≥ 1 if and only if the block C(i, j) is bad. The crucial observation is
that, for any m ≥ 1, the event {E(i, j) = m} is measurable with respect to

σ
(
U(t, x) : (t, x) ∈ T̃−i,j+m \ T̃−i,j−1

)
. (5.18)

Moreover, using a union bound together with (5.14), we get that there exists c1 > 0 such
that, for any m ≥ 1,

P(E(i, j) ≥ m) ≤ e−c1ml. (5.19)

Let us now assume that 0 < c0 ≤ v
16l . We have{

]{i ≤ n, (i,Xi) is good} ≤ c0n,Xn ≥
v

2
n
}
⊂
{
]{(i, j) ∈ T ((i,Xi)1≤i≤n) s.t. C(i, j) is bad} ≥ N

4

}
,

where the notation T ((i,Xi)1≤i≤n) means that the trajectory of blocks T is built from
the trajectory (i,Xi)1≤i≤n. There exists c2 > 0 (independent of n) so that the number of
T trajectories is bounded by ec2

n
l . Therefore

P0

({
]{i ≤ n, (i,Xi) is good} ≤ c0n,Xn ≥

v

2
n
})

≤ ec2
n
l max
T

P0

(
]{(i, j) ∈ T s.t. C(i, j) is bad} ≥ N

4

)
,

where the maximum runs over all block trajectories T built from trajectories (j, Yj)0≤j≤n.
Moreover, there exists c3 > 0 (independent of n) so that, given T , there are at most ec3

n
l

ways to extract half of the blocks of T . Thus

P0

(
]{(i, j) ∈ T s.t. C(i, j) is bad} ≥ N

4

)
≤ ec3

n
l max
T ′⊂T ,]T ′=N/4

P0 (∀(i, j) ∈ T ′, C(i, j) is bad)

(we assume that N/4 is an integer for the ease of notations, the other cases are analo-
gous).

To get a bound on the maximum in this last expression, we need some extra notations.
Let j1 < · · · < jN/4 be the set of points such that (i, jk) ∈ T ′ for some unique i. We denote
by Φ a partition of {j1, . . . , jN/4} in non-empty intervals, by which we mean non-empty
sets of the type [a, b] ∩ {j1, . . . , jN/4}, for [a, b] an interval of R. We denote by |Φ| the
number of sets in Φ, by φk the sets of Φ, by |φk| ≥ 1 the cardinal of each set, by lk the
smallest integer in the set φk, by rk the largest integer in the set φk. Moreover, to lighten
the notations, let us simply write C(jk) (resp. E(jk)) for C(i(jk), jk) (resp. E(i(jk), jk)),
where i(jk) is the number such that (i(jk), jk) ∈ T ′ for a given jk ∈ {j1, . . . , jN/4}. Then

P (∀(i, j) ∈ T ′, C(i, j) is bad) = P
(
C(j1), . . . , C(jN/4) are bad

)
≤
∑
Φ

P
(
r1 − l1 + 1 ≤ E(l1) ≤ l2 − l1 − 1, r2 − l2 + 1 ≤ E(l2) ≤ l3 − l2 − 1, . . . , E(l|Φ|) ≥ r|Φ| − l|Φ| + 1

)
=
∑
Φ

P (r1 − l1 + 1 ≤ E(l1) ≤ l2 − l1 − 1)P (r2 − l2 + 1 ≤ E(l2) ≤ l3 − l2 − 1) · · ·P
(
E(l|Φ|)) ≥ r|Φ| − l|Φ| + 1

)
≤
∑
Φ

P (r1 − l1 + 1 ≤ E(l1))P (r2 − l2 + 1 ≤ E(l2)) · · ·P
(
E(l|Φ|)) ≥ r|Φ| − l|Φ| + 1

)
≤
∑
Φ

e−c1l
∑|Φ|
i=1 |φi| ≤ 2N/4e−c1lN/4,
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where the equality in front of the third line follows from (5.18), where the inequality in
front of the fourth line follows from (5.19) together with the rough estimates |rk−lk+1| ≥
|φk| for any 0 ≤ k ≤ |Φ|, and where the last estimates follows from the fact that the
number of partitions Φ in intervals is bounded by 2N/4. Since N ≥ c5n/l, we obtain
finally that, for some constant c6 < +∞,

P0

(
]{i ≤ n, (i,Xi) is good} ≤ c0n,Xn ≥

v

2
n
)
≤ ec6

n
l e−c5n.

By taking l large enough, this is bounded by 1/nq+2 for n large enough, from where
(5.16) follows.

We now turn to the second step of the proof, and derive the result from (5.16). Let
g1 be the first good time, i.e. the first time such that (g1, Xg1

) is good, and define then,
by iteration on i ≥ 1, gi+1 as the first good time after gi + l. By (5.16), the sequence
(gi)i≥1 is almost surely infinite. Remark that (gi)i≥1 are stopping times with respect to
the filtration

Fk = σ((Xi)i≤k, (ξ(u, x))u≤k,x∈Z), k ≥ 1. (5.20)

There exists a constant ε > 0 such that, for any i ≥ 1,

P0(gi + l is a candidate|Fgi−1+l)

≥ P0(U(gi + l,Xgi + l) = U(gi, Xgi + l), Xgi+1 −Xgi = 1, · · · = Xgi+l+1 −Xgi+l = 1|Fgi−1+l)

≥ κl+1P0(U(l, 0) = U(0, 0)) ≥ ε,

where we have used the ellipticity to bound the conditional probability that the walker
does l+ 1 steps to the right. Let us denote by (Zi)i≥1 a sequence of variables with values
in {0, 1} such that Zi = 1 if gi + l is candidate, and Zi = 0 otherwise. The above implies
that P0(Zk = 1|Z1, . . . , Zk−1) ≥ ε. Therefore, for c7 > 0 small enough, there exists c8 > 0

so that

P0 (]{n ≤ gi + l : (n,Xn) is candidate} ≤ c7i) ≤ P0

(
i∑

k=1

Zk ≤ c7i
)
≤ e−c8i. (5.21)

We now compute

P0 (]{i ≤ n : (i,Xi) candidate} ≤ cn) ≤
P0 (]{i ≤ n : (i,Xi) candidate} ≤ cn, ]{i ≤ n : (i,Xi) good} ≥ c0n)+P0 (]{i ≤ n : (i,Xi) good} < c0n) .

The second term is bounded by 1/nq+1 thanks to (5.16). For the first one, we observe
that on the event {]{i ≤ n : (i,Xi) good} ≥ c0n}, there exists c9 > 0 such that gc9n ≤ n.
Therefore, if c > 0 is taken so that c ≤ c7c9, we obtain

P0 (]{i ≤ n : (i,Xi) candidate} ≤ cn, ]{i ≤ n : (i,Xi) good} ≥ c0n) ≤
P0(]{i ≤ gc9n : (i,Xi) candidate} ≤ cn) ≤ e−c8c9n

thanks to (5.21).

5.2 Proof that (0, X0) satisfies (5.6-5.7) with positive probability

We prove here that, with positive probability, the walker lives in T+
0,0 and does not

visit any of the particles that were initially at its left. We introduce

D = inf
{
n ≥ 0 s.t. Xn < X0 +

v

4
n
}
, (5.22)

F = inf
{
n ≥ 0, s.t. ∃ x ≥ X0 +

v

4
n, ξ(0, µ(n, x)) < X0

}
, (5.23)
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with the convention that inf ∅ = +∞. Remark that F is defined as a discrete time and
that D, F are stopping times with respect to the filtration (Fk)k≥0 defined in (5.20). The
variable D can be considered as a function of X, and F as a function of ξ and X0 only.
Let H be the infimum of these two stopping times:

H = D ∧ F.

We claim that
P0(H = +∞) = P0(D = F = +∞) > 0. (5.24)

Proof of (5.24). In this proof, as X0 = 0 a.s., we consider F as a function of ξ only, i.e.
F = F (ξ, 0). As lim inf Xn/n > v P0−a.s., we deduce by monotonicity that

lim
L→+∞

P0

(
Xn ≥

v

4
(n− L), ∀n ≥ 0

)
= 1. (5.25)

Using the same type of computation as for (5.14), we obtain that

P1(F = +∞) > 0,

and we choose L large enough so that (recall (5.25))

P0

(
Xn ≥

v

4
(n− L), ∀n ≥ 0

)
> 1− P1(F = +∞)

2
. (5.26)

Finally, for L′ large enough so that L′ − v/4L′ ≥ L,

P0(H = +∞) ≥ P× Pω0,0(F = +∞, X1 −X0 = 1, · · · = XL′ −XL′−1 = 1, Xn ≥
v

4
n, ∀n ≥ L′)

≥ E
(
F = +∞ , Pω0,0(X1 −X0 = 1, · · · = XL′ −XL′−1 = 1)PωL′,L′(Xn ≥

v

4
(n− L), ∀n ≥ 0)

)
≥ κL′E

(
F = +∞ , PωL′,L′(Xn ≥

v

4
(n− L), ∀n ≥ 0)

)
,

where we have used ellipticity to get the last line, and where κ is defined in (5.1). As the
law of the environment is invariant by translation, P× PωL′,L′(Xn ≥ v

4 (n− L), ∀n ≥ 0) is
equal to P0(Xn ≥ v

4 (n− L), ∀n ≥ 0), so that finally, using (5.26),

P0(H = +∞) ≥ κL′P1(F = +∞)

2
> 0.

5.3 Building the first renewal point

We define, for n ≥ 0, the shift θn on the space Ξ× P by θn(ξ, x) = (ξ′, x′), where

ξ′(t, y) = ξ(t+ n, y), (t, y) ∈ R+ ×Z,
x′i = xn+i, i ≥ 0,

and we consider the increasing sequence of stopping times with respect to the filtration
(Fk)k≥1 (see (5.20)) defined by

S0 = 1, and for k ≥ 1,

Rk = inf{n ≥ Sk−1 s.t. (n,Xn) is a candidate},
Sk = H ◦ θRk +Rk.

Define
K = inf{k ≥ 1 s.t. Rk < +∞ and Sk = +∞}. (5.27)
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We claim that
P0 − a.s., K < +∞, (5.28)

so that τ := RK is well defined and moreover τ is a renewal time in the sense that it
satisfies (5.4)-(5.7).

Proof of (5.28). We first deduce from Lemma 5.1 that

P0 − a.s., ∀k ≥ 0, {Sk < +∞} ⊂ {Rk+1 < +∞},

so that
P0(Rk+1 < +∞) = P0(Rk < +∞)− P0(Rk < +∞, Sk = +∞). (5.29)

To compute the last term of (5.29), we use first that Pω is Markovian:

P0(Rk < +∞, Sk = +∞) =
∑

x∈Z,i≥0

P0(Rk = i,XRk = x, Sk = +∞) (5.30)

=
∑

x∈Z,i≥0

E1

(
E2

(
Pω0,0(Rk = i,XRk = x)Pωi,x(H(θiξ,X) = +∞)

))
,

where E1 (resp. E2) denote the expectation with respect to P1 (resp. P2). For any fixed
ξ, let Vi,x be the set of labels of particles that are strictly at the left of x at time i, i.e.

Vi,x = {µ(i, y), y < x}.

Note that given ξ, Pω0,0(Rk = i,XRk = x) is measurable with respect to σ(ν(µ), µ ∈ Vi,x)

while Pωi,x(H(θiξ,X) = +∞) is measurable with respect to σ(ν(µ), µ /∈ Vi,x). These two
variables are thus independent under P2:

E2

(
Pω0,0(Rk = i,XRk = x)Pωi,x(H = +∞)

)
= E2

(
Pω0,0 (Rk = i,XRk = x)

)
E2

(
Pωi,x (H(θiξ,X) = +∞)

)
.

Finally E2

(
Pω0,0(Rk = i,XRk = x)

)
is measurable with respect to σ(U(s, y), s ≤ i, y ∈ Z)

and E2

(
Pωi,x(H(θiξ,X) = +∞)

)
is measurable with respect to σ(U(s, y), s ≥ i, y ∈ Z).

These two variables are thus independent under P1 and finally

P0(Rk < +∞, Sk = +∞) =
∑

x∈Z,i≥0

P0(Rk = i,XRk = x)Pi,x(H(θiξ,X) = +∞).

As the law of environment is invariant by space-time translation, for all x ∈ Z and i ≥ 0,
Pi,x(H(θiξ,X) = +∞) = P0(H = +∞) so that

P0(Rk < +∞, Sk = +∞) = P0(Rk < +∞)P0(H = +∞),

and going back to (5.29),

P0(Rk+1 < +∞) ≤ P0(Rk < +∞)(1− P0(H = +∞)). (5.31)

By iteration, we conclude the proof of (5.28).

5.4 Defining a sequence of renewal points by iteration

Remark that τ1 is a function of X and ξ so that, in order to iterate the construction,
we study the law of these two processes after a time τ1. That is the purpose of the next
proposition.

Proposition 5.3. The process and the environment after the first renewal time, (Xτ1+n−
Xτ1)n≥0, (ξ(τ1 + t, x))t≥0,x∈Z, are independent from (Xn∧τ1)n≥0, (ξ(t ∧ τ1, x))t≥0,x∈Z and
have same law as (Xn)n≥0, (ξ(t, x))t≥0,x∈Z under P0(·|H = +∞).
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Proof. This type of proof is quite usual (see e.g. [23] for the case of a static environment).
We adapt it explicitly to our case in order to be exhaustive. We define

G1 = σ ((Xn∧τ1)n≥0, (ξ(s, x))s≤τ1,x∈Z) .

We have to prove that for any bounded functions φ1, φ2,

E0(φ1((Xτ1+n −Xτ1)n≥0)φ2(ξ(τ1 + t, x)x∈Z,t≥0)|G1)

= E0(φ1((Xt)t≥0)φ2((ξ(t, x))x∈Z,t≥0)|H = +∞). (5.32)

Consider the variables ψ1((Xn∧τ1)n≥0) and ψ2((ξ(s, x))s≤τ1,x∈Z), where ψ1 and ψ2 are
bounded functions. If Z is some process and t some time (possibly random), the process
stopped at time t is denoted Zt: for any s ≥ 0, Zts = Zs∧t. Using the same arguments
as in the proof (5.30)-(5.31), we deduce that (we write explicitly the arguments of the
functions only when they change from line to line)

E0 (φ1φ2ψ1ψ2)

=
∑
k,x,n

E0 (φ1(θnX −Xn)φ2(θnξ)ψ1(Xn)ψ2(ξn), Rk = n,XRk = x,H ◦ θn = +∞)

=
∑
k,x,n

E1
(
φ2ψ2E

2[Eω0,0(ψ1, Rk = n,XRk = x)Eωn,x(φ1(X), H(θnξ,X) = +∞)]
)

=
∑
k,x,n

E1
(
ψ2E

2[Eω0,0(ψ1, Rk = n,XRk = x)]φ2E
2[Eωn,x(φ1(X), H(θnξ,X) = +∞)]

)
=
∑
k,x,n

E1
(
ψ2E

2[Eω0,0(ψ1, Rk = n,XRk = x)]
)
E1
(
φ2E

2[Eωn,x((φ1(X), H(θnξ,X) = +∞)]
)

=
∑
k,x,n

E1
(
ψ2E

2[Eω0,0(ψ1, Rk = n,XRk = x)]
)
En,x(φ1φ2(θnξ), H(θnξ,X) = +∞)

= E0(φ1φ2|H = +∞)
∑
k,x,n

E1
(
ψ2E

2[Eω0,0(ψ1, Rk = n,XRk = x)]
)
P0(H = +∞)

= E0(φ1φ2|H = +∞)E(ψ1(Xτ1)ψ2(ξτ1)),

where the last line is obtained from the previous one by taking φ1 = φ2 = 1 in the same
computation. This concludes the proof of (5.32) and thus the proof of Proposition 5.3.

As P0(H = +∞) > 0, τ is also defined and finite a.s. under P0(·|H = +∞). We
can thus define τ2, the second renewal time, by τ2 = τ1 + τ1((Xn+τ1 − Xτ1)n≥0, (ξ(n +

τ1, x))t≥0,x∈Z) and, by iteration, we define in the same way an increasing sequence of
renewal times (τk)k≥1 that are finite P0−a.s.

The interest of this construction lies in the following

Proposition 5.4. Under P0,
(
(Xτk+· −Xτk)0≤t≤τk+1−τk , τk+1 − τk

)
k≥1

are i.i.d. with the

same law as ((Xt)0≤t≤τ1 , τ1) under P0(·|H = +∞).

The proof follows by induction from Proposition 5.3.

Corollary 5.5. Under P0, (Xτk+1
−Xτk , τk+1− τk)k≥1 are positive i.i.d. random variables

with the same law as (Xτ1 , τ1) under P0(·|H = +∞).

5.5 Control on the moments of τ1 and conclusion of the proof

Proposition 5.6. For n ≥ 0 large enough,

P0(τ1 > n) ≤ 1

n3
.
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In particular, as P0(H = +∞) > 0, this implies

E0(τ1|H = +∞) < +∞ and E0(τ2
1 |H = +∞) < +∞.

Proof. First observe that for any n ∈ N,

P0(τ > n) ≤ P0(τ > n,K < ln2 n) + P0(K ≥ ln2 n), (5.33)

with K defined in (5.27). As K is distributed under P0 like a geometric random variable
with success parameter P0(H = +∞) > 0 ( see (5.24)), we obtain that for n large enough

P0(K ≥ ln2 n) ≤ 1

n4
.

In order to deal with the first term in the right had side of (5.33), we decompose

P0(τ > n,K < ln2 t) ≤ P0

(
τ > n, {∀ 1 ≤ k < K,Sk −Rk ≤

√
n},K ≤ ln2 n

)
+ P0

(
τ > n, {∃ 1 ≤ k < K,Sk −Rk >

√
n},K ≤ ln2 n

)
, (5.34)

and again we have to control two terms. For the first one, note that

P0

(
τ > n, {∀ 1 ≤ k < K,Sk −Rk ≤

√
n},K ≤ ln2 n

)
≤ P0(]{i ≤ n, (i,Xi) is a candidate } ≤ √n ln2 n),

so that, using Proposition 5.1, we obtain that for n large enough,

P0

(
τ > n, {∀ 1 ≤ k < K,Sk −Rk ≤

√
n},K ≤ ln2 n

)
≤ 1

n4
.

For the second term in (5.34), we observe that

P0

(
τ > n, {∃ 1 ≤ k < K,Sk −Rk >

√
n},K ≤ ln2 n

)
≤

ln2 n∑
k=1

P0

(
Rk < +∞,√n < Sk −Rk < +∞

)
.

We study each term of the sum in the same way. Fixing some integer k such that
1 ≤ k ≤ ln2 n,

P0(Rk < +∞,√n < Sk −Rk < +∞) =
∑

x∈Z,i≥0

P0(Rk = i,XRk = x,
√
n < Sk −Rk < +∞)

=
∑

x∈Z,i≥0

E1

(
E2

(
Pω0,0(Rk = i,XRk = x)Pωi,x(

√
n < H(θiξ,X) < +∞)

))
.

Given ξ and ν, for all i ≥ 0 and x ∈ Z,

Pωi,x(
√
n < H(θiξ,X) < +∞) ≤ Pωi,x(

√
n < D < +∞)1{F (θiξ,x)=+∞} + 1{

√
n<F (θiξ,x)<+∞}.

(5.35)
We consider separately these two terms. For the first one, observe that given ξ, Pω0,0(Rk =

i,XRk = x) is measurable with respect to σ(ν(µ), µ ∈ Vi,x) while Pωi,x(
√
n < D < +∞) is

measurable with respect to σ(ν(µ), µ /∈ Vi,x). These two variables are thus independent
under P2:

E2

(
Pω0,0(Rk = i,XRk = x)Pωi,x(

√
n < D < +∞)

)
= E2

(
Pω0,0(Rk = i,XRk = x)

)
E2

(
Pωi,x(

√
n < D < +∞)

)
.

EJP 20 (2015), paper 105.
Page 38/42

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3906
http://ejp.ejpecp.org/


Random walk driven by the simple exclusion process

Observe that E2

(
Pω0,0(Rk = i,XRk = x)

)
is measurable with respect to σ(U(s, y), s ≤

i, y ∈ Z) and E2

(
Pωi,x(

√
n < D < +∞)

)
1{F (θiξ,x)=+∞} is measurable with respect to

σ(U(s, y), s ≥ i, y ∈ Z). These two variables are thus independent under P1 and∑
x∈Z,i≥0

E1

(
E2

(
Pω0,0(Rk = i,XRk = x)

)
E2

(
Pωi,x(

√
n < D < +∞)

)
1{F (θiξ,x)=+∞}

)
=

∑
x∈Z,i≥0

P0(Rk = i,XRk = x)Pi,x(
√
n < D < +∞, F (θiξ, x) = +∞).

As the law of environment is invariant by space-time translation, for all x ∈ Z and i ≥ 0,

Pi,x(
√
n < D < +∞, F (θiξ, x) = +∞) = P0(

√
n < D < +∞, F = +∞),

so that∑
x∈Z,i≥0

P
(
Pω0,0(Rk = i,XRk = x)Pωi,x(

√
n < H(θiξ,X) < +∞)

)
= P0(Rk < +∞)P0(

√
n < D < +∞, F = +∞).

Using Proposition 3.3 and (3.23), we obtain that, for n large enough,

P0(
√
n < D < +∞, F = +∞) ≤ P0(∃k ≥ √n,Xk ≤ X0+

v

4
k) ≤

+∞∑
k=
√
n

Ce−k
α

+e−φ
1/4
k ≤ 1

n4
.

We turn to the second term in (5.35). As 1{
√
n<F (θiξ,x)<+∞} is measurable with respect

to σ(U(s, y), s ≥ i, y ∈ Z) and E2

(
Pω0,0(Rk = i,XRk = x)

)
is measurable with respect

to σ(U(s, y), s ≤ i, y ∈ Z), these two variables are independent. Thus, using also the
invariance of P0 under space-time translations,∑
x∈Z,i≥0

E1

(
1{
√
n<F (θiξ,x)<+∞}E2

(
Pω0,0(Rk = i,XRk = x)

))
= P0(Rk <∞)P0(

√
n < F < +∞)

Using the same type of computations as for (5.14), we obtain that, for n large enough,

P0(
√
n < F < +∞) ≤ 1

n4
.

That concludes the proof.

We are now ready to conclude the proof of Theorem 1.1. For random walks in static
random environments, it is well-known that the existence of a finite second moment
for τ2 − τ1 implies a law of large numbers and an annealed central limit theorem (see
[23] and [22]). The proof carries over to our case, and we recall it here for sake of
completeness.

We start with the law of large numbers, i.e. point 1 of Theorem 1.1. For n ≥ 0, k(n)

denotes the label of the "renewal slab" that contains n, i.e. the unique integer such that
τk(n) ≤ n < τk(n)+1. We can thus control the walker via

Xτk(n)

τk(n)+1
≤ Xn

n
≤
Xτk(n)+1

τk(n)
. (5.36)

Rewrite the right term as

Xτk(n)+1

τk(n)
=
Xτ1 +

∑k(n)+1
i=2 ∆i

k(n)

k(n)

τ1 +
∑k(n)
i=2 (τi+1 − τi)

, (5.37)

EJP 20 (2015), paper 105.
Page 39/42

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3906
http://ejp.ejpecp.org/


Random walk driven by the simple exclusion process

so that, using Proposition 5.4 and the law of large numbers, it is seen to converge P0-a.s.
to

v(γ) =
E0(Xτ1 |H = +∞)

E0(τ1|H = +∞)
, (5.38)

which is always well defined and positive thanks to (5.24) and Proposition 5.6. Using
the same decomposition as in (5.37) to study the left term in (5.36), we obtain the law of
large numbers stated in point 1 of Theorem 1.1.

We turn to the proof of point 2 of Theorem 1.1, mainly following [22]. For j ≥ 1,
define

Zj = Xτj+1 −Xτj − (τj+1 − τj)v(γ).

These variables are i.i.d (Proposition 5.3), centered, (5.38) and admit a finite second
moment (Proposition 5.6). It thus follows from Donsker’s theorem that(∑bntc

i=1 Zj√
n

)
t≥0

(5.39)

converges in law to a Brownian motion with variance E0(Z2
1 ), that is positive as Z1 is not

P0−a.s. constant. As a consequence of Proposition 5.4, the law of large numbers and
Dini’s theorem,

P0 − a.s., ∀T > 0, sup
0≤t≤T

∣∣∣∣k(btnc)
n

− t

E0(τ2 − τ1)

∣∣∣∣ .
Therefore, we deduce from (5.39) that(∑k(bntc)

i=1 Zj√
n

)
t≥0

(5.40)

converges in law to a Brownian motion with variance E0

(
(Z1)2

)
/E0(τ2 − τ1). Finally,

observe that P0−a.s., for all T > 0,

sup
0≤t≤T

∣∣∣∣∣Xnt − ntv(γ)√
n

−
∑k(bntc)
j=1 Zj√

n

∣∣∣∣∣ ≤ (v(γ) + 1) max
0≤k≤bnTc

τk+1 − τk√
n

,

with the convention τ0 = 0. Let us prove that the right hand side converges to 0 as
n→∞ in probability, using Proposition 5.4 and Proposition 5.6. Indeed, for any ε > 0,

P0

(
max

0≤k≤bnTc
τk+1 − τk ≥ ε

√
n

)
≤ P0

(
τ1 ≥ ε

√
n
)

+ (nT + 1)P0

(
τ2 − τ1 ≥ ε

√
n
)

≤ P0

(
τ1 ≥ ε

√
n
)

+
nT + 1

ε3n3/2

and the right hand side converges to 0 when n goes to +∞. We have thus proven

that the Skorohod distance between
(
Xnt−ntv(γ)√

n

)
t≥0

and

(∑k(bntc)
i=1 Zj√

n

)
t≥0

goes to 0 in

P0−probability. We deduce from the convergence in law of the latter that(
Xnt − ntv(γ)√

n

)
t≥0

converges in law to a Brownian motion with variance σ2 := E0

(
(Xτ2 −Xτ1)2

)
/E0(τ2−τ1).
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