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1 Introduction

Given a natural number n, let ρ̃n be the reduced real regular representation of
the elementary abelian 2-group Vn := (Z/2)n. Let BV kρ̃n

n , k ∈ N, denote the
Thom space over the classifying space BVn associated to the direct sum of k
copies of the representation ρ̃n. Following S. Takayasu [14], let M(n)k denote
the stable summand of BV kρ̃n

n which corresponds to the Steinberg module of
the general linear group GLn(F2) [12].

Takayasu constructed in [14] a cofibration of the following form:

ΣkM(n− 1)2k+1 → M(n)k → M(n)k+1.

This generalised the splitting of Mitchell and Priddy M(n) ≃ L(n) ∨ L(n− 1),
where M(n) = M(n)0 and L(n) = M(n)1 [12]. Takayasu also considered the
spectra M(n)k associated to the virtual representations kρ̃n, k < 0, and proved
that the above cofibrations are still valid for these spectra. Here and below, all
spectra are implicitly completed at the prime two.

Note that the spectra M(n)k, k ≥ 0, are used in the description of layers of
the Goodwillie tower of the identity functor evaluated at spheres [2, 1], and the
above cofibrations can also be deduced by combining Goodwillie calculus with
the James fibration, as described by M. Behrens in [3, Chapter 2].

The purpose of this note is to give another proof for the existence of the
above cofibrations for the cases k ∈ N. This will be carried out by employing
techniques in the category of unstable modules over the Steenrod algebra [13].
Especially, the action of Lannes’ T-functor on the Steinberg unstable modules
(see §4), will play a crucial role in studying the vanishing of some extension
groups of modules over the Steenrod algebra.

2 Algebraic short exact sequences

In this section, we recall the linear structure of the mod 2 cohomology ofM(n, k)
and the short exact sequences relating these A -modules. Recall that the general
linear group GLn := GLn(F2) acts on H∗Vn

∼= F2[x1, . . . , xn] by the rule:

(gF )(x1, · · · , xn) := F (
n∑

i=1

gi,1xi, · · · ,
n∑

i=1

gi,nxi),
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where g = (gi,j) ∈ GLn and F (x1, · · · , xn) ∈ F2[x1, . . . , xn]. This action com-
mutes with the action of the Steenrod action on F2[x1, . . . , xn].

By definition, the Thom class of the vector bundle associated to the reduced
regular representation ρ̃n is given by the top Dickson invariant:

ωn = ωn(x1, . . . , xn) :=
∏

06=x∈F2〈x1,...,xn〉

x.

Recall also that the Steinberg idempotent en of F2[GLn] is given by

en :=
∑

b∈B,σ∈Σn

bσ,

where Bn is the subgroup of upper triangular matrices in GLn and Σn the
subgroup of permutation matrices.

Let Mn,k denote the mod 2 cohomology of the spectrum M(n, k). By Thom
isomorphism, we have an isomorphism of A -modules:

Mn,k
∼= Im[ωk

nH
∗BVn

en−→ ωk
nH

∗BVn].

We note that Mn,k is invariant under the action of the group Bn.

Proposition 2.1 ([5]). A basis for the graded vector space Mn,k is given by

{en(ω
i1−2i2
1 · · ·ω

in−1−2in
n−1 ωin

n ) | ij > 2ij+1 for 1 ≤ j ≤ n− 1 and in ≥ k}.

Theorem 2.2 (cf. [14]). Let α : Mn,k+1 → Mn,k be the natural inclusion and
let β : Mn,k → ΣkMn−1,2k+1 be the map given by

β(ωi1,··· ,in) =

{
0, in > k,

Σkωi1,··· ,in−1
, in = k.

Then

0 → Mn,k+1

α
−→ Mn,k

β
−→ ΣkMn−1,2k+1 → 0

is a short exact sequence of A -modules:

The exactness of the sequence can be proved by using the following:

Lemma 2.3 ([6, Proposition 1.2]). We have

ωi1,··· ,in = ωi1,··· ,in−1
xin
n + terms ωj1,··· ,jn−1

xj
n with j > jn.

Note also that a minimal generating set for the A -module Mn,k was con-
structed in [5], generating the work of Inoue [8].
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3 Existence of the cofibrations

A spectrum X is said to be of finite type if its mod 2 cohomology, H∗X , is
finite-dimensional in each degree. Recall that given a sequence X → Y → Z of
spectra of finite type, if the composite X → Z is homotopically trivial and the
induced sequence 0 → H∗Z → H∗Y → H∗X → 0 is a short exact sequence of
A -modules , then X → Y → Z is a cofibration.

We wish to realise the algebraic short sequence

0 → Mn,k+1

α
−→ Mn,k

β
−→ ΣkMn−1,2k+1 → 0.

by a cofibration of spectra

ΣkM(n− 1)2k+1 → M(n)k → M(n)k+1.

The inclusion of kρ̃n into (k + 1)ρ̃n induces a natural map of spectra

i : M(n)k → M(n)k+1.

It is clear that this map realises the inclusion of A -modules α : Mn,k+1 → Mn,k.
We wish now to realise the A -linear map β : Mn,k → ΣkMn−1,2k+1 by a map
of spectra

j : ΣkM(n− 1)2k+1 → M(n)k

such that the composite i ◦ j is homotopically trivial. The existence of such a
map is an immediate consequence of the following result.

Theorem 3.1. For all k ≥ 0, we have

1. The natural map [ΣkM(n−1)2k+1,M(n)k] → HomA (Mn,k,Σ
kMn−1,2k+1)

is onto.

2. The group [ΣkM(n− 1)2k+1,M(n)k+1] is trivial.

The theorem is proved by using the Adams spectral sequence

ExtsA (H∗Y,ΣtH∗X) =⇒ [Σt−sX,Y ].

For the first part, it suffices to prove that

ExtsA (Mn,k,Σ
k+tMn−1,2k+1) = 0 for s ≥ 0 and t− s < 0, (1)

so that the non-trivial elements in HomA (Mn,k,Σ
kMn−1,2k+1) are permanent

cycles. For the second part, it suffices to prove that

ExtsA (Mn,k+1,Σ
k+sMn−1,2k+1) = 0, for s ≥ 0. (2)

Here and below, A -linear maps are of degree zero, and so ExtsA (M,ΣtN) is the
same as the group denoted by Exts,t

A
(M,N) in the traditional notation.

The vanishing of the above extension groups will be proved in the next
section.
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4 On the vanishing of ExtsA (Mn,k,Σ
i+sMm,j)

In this section, we establish a sufficient condition for the vanishing of the exten-
sion groups ExtsA (Mn,k,Σ

i+sMm,j). Note that we always consider the modules
Mn,k with k ≥ 0.

Below we consider seperately two cases for the vanishing of the groups
ExtsA (Mn,k,Σ

i+sMm,j): Proposition 4.1 gives a condition for the case j = 0
and Proposition 4.2 gives a condition for the case j > 0.

Proposition 4.1. Suppose n > m ≥ 0 and −∞ < i < |Mn−m,k|. Then

ExtsA (Mn,k,Σ
i+sMm) = 0, s ≥ 0.

Here |M | denotes the connectivity of M , i.e. the minimal degree in which
M is non-trivial.

To consider the case j > 0, put ϕ(j) = 2j − 1 and

F (i, j, q) = i+ j + ϕ(j) + ϕ2(j) + · · ·+ ϕq−1(j),

where ϕt is the t-fold composition of ϕ. Explicitly,

F (i, j, q) = i+ (j − 1)(2q − 1) + q.

Note that F (i + j, 2j − 1, q) = F (i, j, q + 1) and F (i, j′, q) ≤ F (i, j, q) if j′ ≤ j.

Proposition 4.2. Suppose n > m ≥ 0, j > 0 and F (i, j, q) < |Mn−m+q,k| for
0 ≤ q ≤ m. Then

ExtsA (Mn,k,Σ
i+sMm,j) = 0, s ≥ 0.

Recall that Lannes’ T-functor is left adjoint to the tensoring with H :=
H∗BZ/2 in the category U of unstable modules over the Steenrod algebra
[9]. We need the following result, observed by Harris and Shank [7], to prove
Proposition 4.1.

Proposition 4.3 (Carlisle-Kuhn [4, 6.1] combined with Harris-Shank [7, 4.19]).
There is an isomorphism of unstable modules

T(Ln) ∼= Ln ⊕ (H ⊗ Ln−1).

Here Ln = Mn,1.

Corollary 4.4. For n ≥ m, we have |Tm(Mn,k)| = |Mn−m,k|.

Proof. By iterating the action of T on Ln, we see that there is an isomorphism
of unstable modules

Tm(Ln) ∼=

m⊕

i=0

[H⊗i ⊗ Ln−i]
⊕ai ,
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where ai are certain positive integers depending only on m. By using the exac-
titude of Tm and the short exact sequences

0 → Mn,k+1

α
−→ Mn,k

β
−→ ΣkMn−1,2k+1 → 0,

it is easy to prove by induction that there is an isomorphism of graded vector
spaces

Tm(Mn,k) ∼=

m⊕

i=0

[H⊗i ⊗Mn−i,k]
⊕ai .

The corollary follows.

Proof of Proposition 4.1. Fix i, s and take a positive integer q big enough such
that i+ s+ q is positive. We have

ExtsA (Mn,k,Σ
i+sMm) = ExtsA (ΣqMn,k,Σ

i+s+qMm).

Using the Grothendieck spectral sequence, we need to prove that

Exts−j
U

(DjΣ
qMn,k,Σ

i+s+qMm) = 0, 0 ≤ j ≤ s.

Here Dj is the jth-derived functor of the destabilisation functor

D : A -mod → U

from the category of A -modules to the category of unstable A -modules [11].
As Mn is U -injective, it is easily seen that ΣℓMm has a U -injective resolu-

tion I• where It is a direct sum of Mm ⊗ J(a) with a ≤ ℓ− t, where J(a) is the
Brown-Gitler module [10]. So we need to prove that, for a ≤ (i+s+q)−(s−j) =
i+ j + q, we have

HomU (DjΣ
qMn,k,Mm ⊗ J(a)) = 0.

By Lannes-Zarati [11], we have

DjΣ
qMn,k = ΣRjΣ

j−1+qMn,k ⊂ Σj+qH⊗j ⊗Mn,k,

where Rj is the Singer functor. It follows that HomU (DjΣ
qMn,k,Mm ⊗ J(a))

is a quotient of
HomU (Σj+qH⊗j ⊗Mn,k,Mm ⊗ J(a))

which is in turn a subgroup of

HomU (Σj+qH⊗j ⊗Mn,k, H
⊗m ⊗ J(a)) =

(
(Tm(Σj+qH⊗j ⊗Mn,k))

a
)∗
.

This group is trivial because, by Corollary 4.4, we have

|Tm(Σj+qHi ⊗Mn,k)| = |Σj+qMn−m,k| = |Mn−m,k|+ j + q > i+ j + q ≥ a.

The proposition follows.
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Proof of Propositiont 4.2. We prove the proposition by induction on m ≥ 0. By
noting that M0,j = Z/2, the case m = 0 is a special case of Proposition 4.1.

Suppose m > 0. For simplicity, put Es(ΣiMm,j) = ExtsA (Mn,k,Σ
i+sMm,j).

The short exact sequence of A -modules Mm,j →֒ Mm,j−1 ։ Σj−1Mm−1,2j−1

induces a long exact sequence in cohomology

· · · → Es−1(Σi+jMm−1,2j−1) → Es(ΣiMm,j) → Es(ΣiMm,j−1) → · · ·

So from the cofiltration of Mm,j

ΣiMm,j
�

�

// ΣiMm,j−1
�

�

//

��
��

· · · �
�

// ΣiMm,1
�

�

//

��
��

ΣiMm

��
��

Σi+j−1Mm−1,2j−1 Σi+1Mm−1,3 ΣiMm−1,1

we see that, in order to prove Es(ΣiMm,j) = 0, it suffices to prove that the

groups Es−1(Σi+j′Mm−1,2j′−1), 1 ≤ j′ ≤ j, and Es(ΣiMm), are trivial.
By Proposition 4.1, Es(ΣiMm) is trivial since i = F (i, j, 0) < |Mn,k|. For

1 ≤ j′ ≤ j and 0 ≤ q ≤ m− 1, we have

F (i+ j′, 2j′ − 1, q) = F (i, j′, q + 1) ≤ F (i, j, q + 1) < |Mn−m+1+q,k|.

By inductive hypothesis for m − 1, we have Es−1(Σi+j′Mm−1,2j′−1) = 0. The
proposition is proved.

We are now ready to prove Theorem 3.1. Recall that the connectivity of
Mn,k is given by

|Mn,k| = 1 + 3 + · · ·+ (2n−1 − 1) + (2n − 1)k.

Proof of Theorem 3.1 (1). Using the Adams spectral sequence, it suffices to
prove that

ExtsA (Mn,k,Σ
k+tMn−1,2k+1) = 0 for s ≥ 0 and t− s < 0.

For q ≥ 0, we have

F (k+ t− s, 2k+1, q) = k+ t− s+2k(2q − 1)+ q < (2q+1 − 1)k+ q ≤ |Mq+1,k|.

The vanishing of the extension groups follows from Proposition 4.2.

Proof of Theorem 3.1 (2). Using the Adams spectral sequence, it suffices to
prove that

ExtsA (Mn,k+1,Σ
k+sMn−1,2k+1) = 0, for s ≥ 0.

For q ≥ 0, we have

F (k, 2k + 1, q) = k + 2k(2q − 1) + t = (2q+1 − 1)k + q < |Mq+1,k+1|.

The vanishing of the extension groups follows from Proposition 4.2.
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