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Vectorial formalism for analysis and design of polyphase synchronous machines

E. Semail — A. Bouscayrol , and J.-P. Hautier

Abstract. A vectorial formalism for analysis and design of polyphase synchronous machines without reluctance and saturation
effects is described. We prove the equivalence of such a machine with a set of magnetically independent machines, which are
electrically and mechanically coupled. Specific problems of polyphase machines can thus be favorably analyzed with this concept.
Rules of conception and constraints on electric supply can be deduced. Moreover the vectorial approach, which generalizes the
complex phasor method, can also be used to control n-leg Voltage Source Inverters. This methodology is applied to 3-phase and 6-

phase synchronous machines.

1 Introduction

The transmission of electric energy by 3-phase networks has
led to the development of 3-phase electric machines to ensure
electromechanical conversion. These machines have taken
benefits of the rise of Digital Signal Processors (DSP) and
power semiconductors. In association with power electronics,
these 3-phase machines have improved their performances
particularly in the field of variable speed drives.
Nevertheless, when the power has to be increased, problems
appear as much in the inverter as in the machine. The power
switches have to commute voltages and currents of higher
magnitudes. The partition of the power between numerous
phases can be a solution of the problem [25], [43]. Moreover,
this kind of structure improves the reliability of the
electromechanical conversion [23],[34]. Polyphase machines
have been thus industrially developed [30],[16]. The double-
star machines with a 30° electric phase-shift between the two
stars are the most used [4],[15].

The polyphase machines have firstly been supplied by Pulse
Amplitude Modulation Current Source Inverter (PAM CSI)
[15],[4]. In this case, a machine with g 3-phase stars can be
considered as the association of q 3-phase machines
mechanically coupled on a same shaft. Each 3-phase machine
is associated with one of the g stars. This decomposition is
possible in spite of the magnetic coupling between the stars,
because of a property of the PAM CSI: when there is
commutation of a current in a star, the currents in the other
stars are constant. Then, there is no interaction between the
stars through mutual inductances. They can be considered as
magnetically independent.

Nowadays, a Pulse Width Modulation Voltage Source
Inverter (PWM VSI) is chosen because of its better dynamic
performances. However this voltage supply requires a much
more precise modeling of the polyphase machines [48],[33].
The equivalence of a polyphase machine to a set of more
simple machines is no more obvious as in the PAM CSI
supply. The proposed vectorial approach enables us to show
that, with some conditions, it is possible to find an equivalent
set of fictitious electric machines. These equivalent machines,
called Multimachine system, are mechanically coupled on the
same shaft and electrically coupled. The analysis of the
fictitious machines gives information for the design of
polyphase machines and VSI control [24],[32].

2 Drawbacks of standard methods

To study transient or unbalanced states of 3-phase electric
machines, different methods have been developed. Matricial
and complex phasor methods are the most used. Each one of
these two approaches defines a 2-phase fictitious machine,
which is mathematically equivalent to the real machine. We
examine in this section if it is possible to extend the use of
these methods to the study of polyphase machines in transient
states.

2.1 Complex Phasor Method (Space Vector Theory)

This method consists of working in a complex plane
[35],[28]. Consequently, the machine must have a 2-
dimensional mathematical model. In this case, the various
equations can be summarized by only one equation with
complex variables. Thus, it is possible to represent this
equation in a complex plane. The same concepts have also
been developed for steady state: phasor diagrams of A.C.
machines [1]. Consequently, the same graphical rules of
construction as those developed for steady state can be used
in transient states.

Moreover, this method enables an equivalent graphical
representation of Voltage Source Inverters (VSI) [ 22] and
Current Source Inverters (CSI) [2],[40]. The time durations of
switches can be calculated with a few simple geometrical
rules concerning mathematical projections ([22], Fig 1, Fig
2). Besides, this inverter modeling allows good control of the
converters since third harmonic injection (also called use of
zero-sequence component) becomes implicit [12]. The
control of multilevel inverters also takes advantage of such a
graphical representation for the synthesis of control laws [9].

All these various properties can explain the quick
development of the complex phasor method. Nevertheless,
one weak point of this approach lies precisely in the fact that
modeling in complex plane is only possible with 2-
dimensional systems.

To carry on the use of this method for an n-dimensional
system we must suppose the possibility to decompose it into
elementary independent 2-dimensional systems. The problem
is to find these elementary systems.

For the analysis of 6-phase or 5-phase machines a few models
using two complex planes have been developed [48],[20].



The determination of these planes is realized by an inductive
approach. The first plane is obtained by considering the first
harmonic of magneto-motive force. The second plane is then
chosen to be orthogonal to the first one. This approach is
possible for 4-dimensional systems but cannot be generalized
to n-dimensional systems. The vectorial formalism that we
propose leads to the required decomposition into elementary
systems.

2.2 Matricial formalism for n-phase machine study

In the matricial approach of n-phase electric machines, a
vector n-space is implicitly considered since vectors with n
lines are defined. This space is provided with an orthonormal
base &, that can be called “natural” since the coordinates of
a vector in this base are the measurable values relative to each
phase.

In our opinion, the main drawback of the matricial approach
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Fig 1: 2-level 3-leg VSI

is to give too much importance to the coordinates of the
vectors instead of the vectors themselves. Intrinsic properties
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Fig 2: Space phasor representation of 2-level 3-leg VSI.

of the vectors and other vectorial mathematical objects (as
linear application) are masked and consequently not used.
This remark can particularly be applied to the concept of
transformation, which has been developed for the study of
transient states.

In the matricial method, the emphasis is put on the
determination of a transformation matrix, which is a means to
get simpler equations. Concordia’s, Park’s or Fortescue’s
transformation matrixes allow a simple control of 3-phase
machines with delta or star connections. The common way to
get a transformation matrix is to find a matricial factorization
of the stator self-inductance matrix. With this aim,
eigenvalues and associated eigenvectors are determined [1].
A new base & is composed of chosen eigenvectors. It is then
possible to express the new decoupled flux equations. As
there is an infinity of eigenvectors we can explain thus the
multiplicity of transformations that have been developed up
to now [29].

From the point of view of the proposed vectorial formalism, a
transformation matrix gives only the coordinates, in the
"natural” base ,, of vectors, which constitute a new base &
for study. This new base includes only eigenvectors of a
characteristic morphism* % of the electric machine: the
coordinates of this morphism % in the "natural” base are the
elements of the stator self-inductance matrix. The interest of
the concept of morphism is that to a morphism % belongs
vectorial entities which are independent of the chosen base:
eigenvalues®, eigenvectors and eigenspaces®.

Instead of working with eigenvectors, eigenspaces are
preferred. A vector is no more decomposed into coordinates
but into a vectorial sum of eigenspace vectors. As the
corresponding vectorial decomposition is unique, the
simplified vectorial equation is also unique. For n-
dimensional systems, this approach is particularly interesting
since it provides concise vectorial equations.

Moreover, the orthogonality of the eigenspaces of the
morphism allows the generalization of the -equivalent
machine concept. In the matricial formalism, a 2-phase
equivalent electric machine (also called 2-axis equations) has
already been defined for a 3-phase machine [1]: the torque of
the 3-phase machine is produced by this 2-phase fictitious
machine. Nevertheless, the matricial formalism, which does
not use the eigenspaces, does not lead to the generalization of
this concept for polyphase machines. It will be noticed in this
paper that the 3-phase machine with usual winding
connections is quite a particular case: in general a polyphase
machine is equivalent to a set of 1-phase and 2-phase
machines.

We can conclude that the matricial approach enables the
study of n-dimensional systems but its presentation, which

% A morphism is a vectorial linear application.
®1f 4 is an eigenvalue of .% then there is a vector m called
eigenvector suchas .(m )=A m .

¢ An eigenspace E, is the vector-space generated by the set of
eigenvectors associated to an eigenvalue A.



uses coordinates of vectors, of morphism (matrix), does not
bring out intrinsic vectorial properties.

The proposed vectorial formalism [ 41] will take advantage of
vectorial properties: dot product of two vectors (to express
power), mixed product (to determine activation time of VSI
switches [38]), morphism and eigenspace (to determine
simpler equations), bilinear applications or cross products (to
express torque)....

2.3 Vectorial and tensorial formalisms

There is another formalism expanded by G. Kron [27], which
allows also the definition of mathematical entities with
intrinsic properties. Independent of the studying base, these
entities are called tensors. This approach is more general than
the vectorial one. For example, a morphism can be considered
as a particular tensor. We think that a vectorial approach
constitutes nevertheless an intermediate step between the
tensorial and matricial approaches. The tensorial formalism is
all the more interesting as the physical frame used to describe
physical phenomenon is not orthonormal (for example atomic
positions of a crystal in vibration). In this case, the choice of
non-orthonormal base in a non-Euclidian vector-space allows
us to keep the equations simple.

For the study of electric machines the use of non-orthonormal
base is not common and not useful except perhaps for
reluctance machines [ 44]. A vectorial formalism in Euclidian
vector space is sufficient to introduce the concept of the
Multi-Machine that we propose for polyphase machines. G.
Kron has already introduced this kind of concept for 3-phase
machine to take into account the space harmonics [26].

3 Generalization of transformation concept

In order to show that a polyphase machine is equivalent to a
set of 1-phase and 2-phase machines, we have to bring out
vectorial properties of the stator self inductance matrix. The
analysis of its properties enables the generalization of the
transformation concept. Of course, the transformation
matrixes which generalize Park’s and Concordia’s
transformations for a n-phase machine have already been
defined [29],[36] and used, [14],[46],[13],[20],[37] in
particular cases. Our formalism defines a larger class of
systems for which these transformations can be used. This is
possible because, in the vectorial approach, transformations
are only the expression of vectorial properties linked to the
stator inductance matrix.

At first, an Euclidian vector n-space is associated with an n-
phase machine. Then we consider that the stator inductance
matrix is the characterization, in a natural base, of a linear
application also called an endomorphism®.

In the next paragraphs, we give some of its properties and
then we use them for two kinds of machines: a 3-phase and a
6-phase machine.

¢ An endomorphism is a morphism inside a same vector
space.

3.1 Endomorphism and stator inductance matrix

Let us consider the stator inductance matrix [L'] of a

polyphase machine. We interpret it as the matrix of an
endomorphism % in an orthonormal base %, classified as
“natural™®. This endomorphism % has properties independent
of the choice of the studying base: eigenvalues, eigenvectors
and eigenspace. To get them we have only to examine [LZ].

As mutual inductance between two windings r and s are
identical (Ms=M) then the matrix is symmetrical. This
symmetry implies the existence of a base of eigenvectors.
Moreover the eigenspaces of % are orthogonal each other
and the dimension of an eigenspace E; is equal to the
multiplicity order’ of the associated eigenvalue A. For
example, if the order of multiplicity is one (respectively two),
the eigenspace is a vectorial line (respectively vectorial
plane).

To obtain an orthonormal base of eigenvectors we have only
to choose in each eigenspace an orthonormal base. The
classic transformation matrixes of Park or Concordia are
nothing else than tables that allow us to find the coordinates
of these eigenvectors.

If the order of multiplicity of all eigenvalues is one, then
there is only one orthonormal base of eigenvectors.
Consequently, only one transformation that keeps the power
invariant can then be elaborated.

On the other hand, if the order of multiplicity is not one for
one eigenvalue, then there is an infinity of orthonormal bases
of eigenvectors. Consequently an infinity of transformations
keeping invariant the power can be defined. This property
explains the great number of transformations that have been
proposed in the past.

In the following examples, we study % and obtain simplified
vectorial flux equations.

3.2 Example of a 3-phase machine

To highlight the particularity of the proposed approach, the
well-known 3-phase synchronous machine with 2p-pole
number is studied. The machine is assumed to be ideal: there
is no reluctance effect (uniform air-gap in the machine), no
magnetic induced reaction and no saturation effect; the belts
are regularly shifted by 120/p degrees (regular
manufacturing).

In a “ natural ” orthonormal base %, = ( Sa, Se, S ), We define
the following vectors:
. I:jﬂ?d+jszs_c;+ stS_C; ; Q)
(jsk stator current in the phase no. k)

¢ Defined in paragraph 2.2
" The order of multiplicity of an eigenvalue A is equal to the
number of times this eigenvalue is root of the %
characteristic polynomial.
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(dsk linked flux of the stator phase no. k).

@

The hypothesis allows us to express the stator inductance
matrix as:

Ls Mg Mg
[Li ]: Ms Ls Mg (3)
Me Mg L

The solution of the characteristic equation det(L3]-A[l5])=0
gives two eigenvalues:

L0: Lss+ 2 Mss and Lc: Lss' Mss- (4)
One of them is double, L., the other single, Ly. To the last one
is associated a 1-dimensional eigenspace &, to the first one L.
a 2-dimensional eigenspace #

Let us expand any vector X into a sum of two vectors, one

per eigenspace. The decomposition, achieved by constructing
two orthogonal projections onto the two eigenspaces, gives:

X=X+ X ®)

with X € Zand X € #

Former relations between flux and current vectors become
then:

" fa=loJu + G ®)
" =L oo + fon ™

with Z; and ¢—dq , the respective projections onto £ and &

of (/7 , the flux vector due to the field created by the rotor.

We obtain then a simple vectorial relation between flux and
current vectors without the necessity of introducing any
matricial transformation. The only necessary concepts are
those of eigenvalue, eigenvector and eigenspace.

To establish now the link with the transformation concept, we
study the eigenspaces.

For the vectorial line & the eigenspace associated with Lo,
there is only one normal vector:

AF=——(Sa+50 +53 ) .

8

7 ®)

On the other hand in the plane .# relative to L., there is an
infinity of orthonormal bases. We know that this plane is
orthogonal to the eigenspace & The dot product of any
vector of & with d—f; is then equal to zero. We easily obtain

the equation of the plane #
X+y+z=0.

)

——

Let us note by( ES,?) an orthonormal base of this plane:

— 1, = =
z“:\/;(xz Sc1+y2502+225c3)

; (10)
= =,
3 Z\/g(h Sa + Y3 Sc2 +Z3 Ses )
Thus, we obtain the following matricial relations:
L 0 O
[L]=P 0 L o] (12)
0 0 L
1 1 1
with [pv]zg v v ozl (12)
Xs Y3 Zs

The matrix [P"], whose lines are the coordinates of eigen-
vectors in the “natural ” base 4,, is a passage matrix. It
allows expressing the coordinates of a vector in a new base
&, with those of the “natural” base. It defines a
transformation.

We take now the example of Concordia’s transformation to
show that it is a particular case for which equations (6) and
(7) are verified. The following matrix:

5 Yoz Ve M
[P']= \g 1 =¥ -4
0 +V3) V3

characterizes the Concordia’s transformation (it is the
transposed of Concordia’s matrix).

Let us note by (XnX4Xq) the coordinates® of a vector X in

this new base &. The relations between flux and current
vectors are:

(13)

Po=Lo jo 05+ Lo ju dF +Le ju dF + Gu .  (14)
By projection we get:
q)sh = LO jsh +¢srh
¢sd = Lc jsd +¢srd (15)

(I)sq = Lc jsq +¢srq

We find the (6) and (7) vectorial expressions again. These
last ones are more general, since they require only the
knowledge of the eigenspaces without the definition of a
precise base.

3.3 Example of a 6-phase machine

We consider a 6-phase synchronous machine with the same
assumptions as for the 3-phase machine. As represented in
Fig 3, the belts are split into two sets of 3-phase windings,
which are spatially phase shifted by 30 electrical degrees. The

9 The index h reminds us that the projection of a vector onto
the line @ is classically called the zero-sequence component.



space harmonics of the magneto-motive force are neglected
and the leakage self-inductances have all the same value L.

In a “natural ” orthonormal base %= ('Sw, S, S,

Seen, Sean, Sems ), We define the following vectors:

" o = jou St joro S+ jors St

joer Sean + js2 Semo+ jobs Seps | (16)
- U;ZUW§+U5A2§2>+U3A3§\;+

Usmg +Use2 gz’ +Uses ga) ; 17
= s =0 Son + o Soo+ o Som+

d)sﬂlgﬂ; +(|)552 S_csz> + (I)sss g; (18)

With the hypothesis we obtain the following expression of
the stator self inductance matrix:

Ly 1 1 V3B i
Y- —= — +—= — 0
L 2 2 2 2
1 Ly 1 V33
— — — 0 +—= —
2 L 2 2 2
1 1 L 3 V3
ol 2 2 M0 2 Y T g
=L
] V3 V3 Ls 1 1 (19)
+~ 0 2= 5= = =
2 2 2 2
3B 1 Ls 1
-— +— 0 -— — —
2 } 2 L 2
0 __3 +_3 _E _1 1+£
L 2 2 2 2 L

Two eigenvalues are found for the endomorphism %
associated with [LS]:

L.=3L+L; and Ls, (20)
whose orders of multiplicity are respectively two and four.
We associate then to the double eigenvalue L. a vector-plane
- and to L; a 4-dimensional space .#

Let us expand any vector X into a sum of two vectors, one

per eigenspace. The decomposition, achieved by creating two
orthogonal projections onto the two eigenspaces, gives:

—_ — —

X = Xan + Xaq , (21)

with Xa € .7 and Xq € 7

Fig 3: Double-star 6-phase machine

Former relations between flux and current vectors become
then:

* Qun=Ls Jun + Guan (22)
" =L Jun + oo (23)

The equations have been simplified without an explicit choice
of a base of eigenvectors. It is quite different from the
matricial approach where an explicit transformation has to be
chosen to obtain simplified equations.

Now, it is possible to explain why a transformation, which
consists of applying twice the 3-phase Concordia’s
transformation to each star of the double-star machine [11],
[33],[3], does not lead to complete decoupling. With this aim,
we express this transformation by its characteristic matrix [T],
obtained by concatenation of [P"] (cf. 3.2):

(W2 w2 u2 0 0 0 |
Ll 0 o
5 4

5| 0 BBy 0 0
== 24
"] 3] 0 0 0 UV2 U2 12 (24)

0 0 B

55

0 0 0 0 +—3—73

Even if the lines of T define effectively a base of orthonormal
vectors, there is still coupling between the equations because
the vectors are not eigenvectors of %,

On the other hand, the following matrix [Tre'] used in [48],

[20],[39], allows the definition of an orthonormal base of
eigenvectors:



11 1 0 0 0
_’]__l _E +ﬁ _ﬁo
A
SRR
= 25
re] 30 o0 0o 1 1 1 (25)
1_E _E _ﬁ +§0
N
O__3 +_3 E E _1
2 "2 2 2

This matrix [T plays exactly the same function as
Concordia’s matrix for 3-phase machines: a decoupling is
achieved between stator phases. Each line of T, gives the
coordinates, in the natural base, of eigenvectors, which make

up an orthonormal base noted & = (?_zcgd?_fg?_ég)
With (Xha, X1, Xq1, Xne, Xd2, Xq2) the coordinates of a vector
X in this base, we obtain finally six equations relative to the
stator flux:

(])shA =L jshA +(|)srhA
¢sd1 = Lc jsdl +¢srd1
d)sql = Lc jsql + ¢srq1

(I)sha =L jshB +(])sth
¢sd2 = Lf jsdz +¢srd2
d)sqz = Lf jsqz +q)srq2

(26)

We find again, expanded, the vectorial (22) and (23)
expressions.

4 Multimachine Modeling of a Polyphase
Machine

In the above examples it appears, thanks to equations (6) and
(7) or (22) and (23), that if the vector ¢_5r' does not depend on
the stator currents then the equations linking flux and stator
currents are decoupled inside eigenspaces. So, the stator
phases have been magnetically decoupled. It is now possible

to define a set of 1-phase and 2-phase machines, which are
equivalent to the polyphase machine.

4.1 Equivalent machine set

4.1.1 Decomposition into machines without

coupling

magnetic

To show that the torque of a polyphase machine can be
expanded into several torques attached to the eigenspaces, we
examine the flow of energy. At first, we express the electric
power that is provided to the stator:

k=n —
ps :ZUSK jsk =Us. Js (27)
k=1

with ug and js the stator voltage and current of the phase
number k.

Taking into account R, the stator resistance per phase, the
stator vectorial differential equation can be put into the
following form:

(28)

The %, index reminds that differentiation is operated
according to the 4, natural base.
We obtain then:

b=t F=RT.T {%} T
dt R
Obviously the first term is relative to stator copper losses. Let
us express the second term using the decomposition of ¢,
onto the eigenspaces:

f=F
¢s :stf j51 +¢srf
f=1

with Js and ¢« the respective projections of J. and

(29)

(30)

&: onto the eigenspace number f, Ly the eigenvalue of the

eigenspace and F the number of eigenspaces.
With the hypothesis of an idealized synchronous machine, the

eigenvalues and eigenvectors are constant and ¢. depends
only on the angle 6. So we have:

— f=F — —
{dﬂ =L {OL} {d%} (31)
at |, = dt |, | dt |,

with the consequence that {d(ﬂ belongs to eigenspace
dt |,
7

number f. Therefore, as the eigenspaces are orthogonal to
each other, the expression (29) becomes:

pszﬁs’.f:fii R, (E’)2+Lsf {ﬁ} EJ{@} e |=
dt I, &

=1 dt

32
=1 dt dt do (32)

1 — \2
F d=Lsl js —
‘ Rs(ﬁ)uL(f){@j{dﬂ} e
&

The first term can be considered as stator copper losses, the
second term as derivative of stator magnetic energy and the
third the product of angular speed d6/dt and torque:

cf{dfﬂ} s
do |,

The total torque is then:

(33)

f=F
Cc=> C

f=1

(34)

So we can consider F fictitious machines, each one of them
being associated with an eigenspace. These machines are
magnetically independent but mechanically coupled through



the same shaft. For each fictitious machine the number of
phases is equal to the dimension of the associated eigenspace.
From a total desired torque C,e;, the control has to elaborate a
reference torque for each fictitious machine. Consequently
there is not only one solution. Moreover, there is an electric
coupling induced by the change of working base: from the
natural base %, to the new base &. It translates the existing
link between real applied voltages and fictitious voltages. So,
the problem is to control several machines which are
electrically coupled and supplied by only one Voltage Source
Inverter [5],[24],[37]. The synthesis of a VSI control law in
order to achieve an electric decoupling is nevertheless easier
to get than a magnetic one. The reason is that the VSI directly
controls electric voltages.

4.1.2 Representation of the equivalent set (EMR)

The use of the proposed vectorial formalism leads to the
decomposition of a polyphase machine into a set of several
machines. For the representation we use the Energetic
Macroscopic Representation (EMR) [8] developed for the
study of Multimachine Multiconverter Systems (MMS) [5].
This graphical description is based on the causality principle,
which allows the definition of inversion rules for the design
control laws [6]. Moreover the EMR points out the
interactions between the connected power components:
principle of action and reaction. Specific coupling devices
have been also defined in order to take into account the
energy distribution through several conversion chains [5].

On Fig 5 we have the representation of a 3-phase machine
supplied by a Voltage Source Inverter (Fig 1). The VSI,
electric converter, is represented by three intersected squares
since there is only electric coupling. The electric machine is
represented by three intersected circles because there is a
magnetic coupling: magnetic energy is shared between the
three phases.

4

Voltage ' i,
E Uy, C
—{ Source | _j,
4— u 3
: —— 9
le Inverter |J;,

\ magnetic  coupling /

Fig 5: 3-phase machine EMR in natural base

This kind of representation highlights the variables that a
system imposes on its environment. They are associated with
arrows from outside the system: the torque C and the currents
Js1, Js2» Js3 Tor the machine; the voltages ug, Usy, Uss and the
current i, for the Voltage Source Inverter. The arrows whose
directions are towards the inside of a block are associated

with variables that are imposed on this system. On Fig 4 and
Fig 6 we have given the Energetic Macroscopic
Representations of 3-phase and 6-phase machines in the new
base &. The circles do not intersect any more but there are
now intersections between triangles (mechanical couplings).
Moreover since there is no more magnetic coupling it is
possible to associate explicit Energetic Accumulation
Elements (crossed rectangle) to each magnetic subsystem.

In the appendix, we give more precise elements about this
Energetic Macroscopic Representation.

/ electrical coupling mechanical coupling\

_ Uy — ) U:L} i 9,

o Jon
Up, .

I Usiq

2

. USS » ——> Q
I3 Jsaq —

< « [

Fig 4: 3-phase machine EMR in the new base &

4.2 Multimachine set of a 3-phase machine

For a 3-phase machine the expression (28) becomes:

azapm zai{ddﬂ {dﬂ
dt R dt R dt &

with d)Thand q?dq projections of ¢. onto the two eigenspaces
& and 2defined in 3.2.
The relations (31) can be expanded into:

d¢sh — I_0 djsh + d¢srh — L0 dJsh +e_sm’
dt P dt & dt & dt P
“h % 5 % (36)

9 C srdq
|, do ), | d ], at |,

s

(3%)

Finally we obtain two decoupled equations:

— - d .s -
Ush = Rs Jsh + LO ¢ =+ Esrh
dt |,
= @37)
d Jsdq

Uqu = Rs jsdq + Lc |:T:|('@ +85rdq

So, there is effectively no more magnetic coupling but an
electric one induced by the change of bases, from %, to &. A
complete equivalent Energetic Macroscopic Representation
of a 3-phase machine is given Fig 4. We find two machines
electrically and mechanically coupled which are
simultaneously controlled.



The analysis of vectorial equations (37) shows that the
machines have electrical time constants, z.=LJ/Rs and
7 = Lo/Rs, quite different. Effectively, if we consider only the
first harmonic of magneto-motive force, we have, taking into
account leakage self inductance L;:

Le=L+Ls and Mg =-L /2 (38)

and so,
Lo=Lss+ 2 M= Lt and L= Lss-M=3L/2. (39)

Consequently, for a machine with little leakage, 7. is much
greater than z. To control the current jg,, it will be necessary
to realize a feedback control with a higher bandwidth than the

one necessary for qu . If this is not achieved, the supply by
VSI induces circulating currents [18].

In fact, it is possible not to supply the 1-phase machine,
which has the smallest time constant z. We have only to
connect the three belts of the machine as usually: a delta-wire
connection (then ug+uptug=Ug=0) or a star-wire
connection without ground (then jg+ jo+ jss= jsh = 0).

We find that a 3-phase machine can generally be considered
as equivalent to a 2-phase machine.

In the matricial approach, the concept of a 2-phase equivalent
electric machine (also called 2-axis equations) is introduced
[1] for one purpose: to solve the equations, which are
singular, it is necessary to reduce the dimension of the vector
space from 3 to 2.

In conclusion, the 3-phase machine with usual connections is
quite a particular case of polyphase machine since it is
equivalent to only one 2-phase machine. This is not the case
for other polyphase machines whose control must be thereby
more complex.

4.3 Multimachine set of a 6-phase machine

We apply exactly the same methodology to a 6-phase
machine. Let us consider the voltage vector (Fig 3):

Us =Usa S +Uspo Scaz +Usas Scas +User Scar +Uss2 Scez +Usss Scas .

As there is also only two eigenspaces we obtain the following
voltage equations:

rd

Jan |
dt :| +Eran
&

— o [dfe] —
Lkdq:R Jsdq+|—c|: J dq:| +&rdq
&

@ZR E+Lf |:d
(40)

dt

Since the number of phases of each fictitious machine is
equal to the multiplicity of the corresponding eigenvalue, we
have one 2-phase machine associated with L. and one 4-
phase machine associated with L¢. The EMR formalism gives
the representation in Fig 6.

/ electrical coupling mechanical c upIi@

—>

usAl ¢ u s4h o

T

£ s
—

Fig 6: 6-phase machine EMR after magnetic decoupling

We can remark there are still two different time constants
with 7z, >z. Nevertheless, it is no longer possible to supply
the 4-phase machine only by using a wise choice of the
connection of belts. If they are connected as in Fig 3, only

two components of vector j, are canceled. When the

machine is supplied by a VSI, it is possible to cancel the
mean values of the other components but not the
instantaneous values. If the period of the pulse width
modulation is not small in comparison with z, ,we observe
thereby large amplitude currents [33],[16],[17],[24]. These

currents do not produce torque when the projection e, is

equal to zero. So, they can be considered as parasitic currents.
How is it possible to reduce and control their amplitude?
Further analysis will give us information.

5 Properties of the Multimachine set

In this section, we analyse the characteristics of each
fictitious machine in order to get design criteria.

5.1 Fictitious machines and harmonics

The expression (33) shows that the torque C; is the dot
product of the vectorial projections of two vectors. The first
one is the stator current vector, which is imposed by control
laws. Let us examine the second one that depends on the
design of the machine:

o
40 |

As it is a 2z/p periodic function, it can be expanded into
Fourier serie and consequently expressed as a sum of vectors
associated with harmonic order number k. Properties of
symmetry, due to the regular manufacturing assumption,
imply, as usual, the cancellation of sine terms and of even
cosine terms.

Moreover, when a vector relative to an harmonic is projected
onto an eigenspace, then the result is not the same depending
on the number of harmonic order. In the following examples,
it is notified that, depending on the considered eigenspace
associated with the fictitious studied machine, the null terms
of the Fourier serie are not the same. There is a distribution of
the different harmonics between the eigenspaces. This

(41)



particularity is verified for every vector which has the same
mathematical properties as d¢s /d0 . Thus, it is possible to

associate to each fictitious machine a characteristic family of
harmonics.

5.2 Equivalent machines of a 3-phase machine

For the 3-phase machine we have two fictitious machines: the
first one, associated with a vectorial line & is a 1-phase
machine. The second one, associated with the plane #is a 2-
phase machine.

5.2.1 Examination of d¢-/d® projections

As the coordinates of d;/ﬁ?/de are even functions there is no
sine terms in the expanded series. So we have:

dq’“ S AR (42)
Wlth

H, =cos(kpd) s, +coskpd— k%r) s, +Coskpo — k%z) s, (43)

%(e—zlj are odd
p

Moreover, the coordinates of

do
functions. Thus the even terms of the Fourier series are nul.

The projection onto the vectorial line & gives:

do,,
do

=d, z {cos kp#) + coskpd— k—)+ coskpd— k)} (44)

As cos(kp8) + cos(kpd — k?ﬂ) +cos(kpd —k ?ﬂ) =0 for k=3q,

then only the triplen harmonics (k=3q) induce non-null
components of ddsn/do:
d¢5rh —72\/_ A, c0s(3qp6) (45)

All the other harmonics are consequently relative to the 2-
phase machine.

5.2.2 Criteria of choice for the supply of fictitious machines

We dispose of two machines to produce the torque of the real
machine. To be able to get torque with a machine the

projection of d¢—sr/ do onto the associated eigenspace must

not be equal to zero. Pratically, we have only to achieve a
spectral analysis of the electromotive force since it can be
remarked that:

dt |, dt| do |, | do |,

n

Consequently the 1-phase machine, associated with & can
produce torque only if the electromotive force includes
triplen harmonics.

The use of this possibility allows for the increase of the
torque for given copper losses [18]. Nevertheless, to supply
the 1-phase machine it is necessary to connect the neutral N
point outside: to the N; point of the VSI or to a fourth leg (Fig

7).
E>
\ \ \ vcN
vcl Al
0 >
Ni vc2 >
A2
» A3

vc3 N

Fig 7: 4-leg VSI to use 3" order harmonic of electromotive
force

In the first case it is necessary to control not only one voltage
to a 2 E value but two voltages to E for the reason that the
point N; is no more fictitious. In the second case, we have to
control a 4-leg VSI.

Besides, as the torque produced by a 1-phase machine is not
constant, the use of this machine is not simple if a global
constant torque is required. In this case, the 2-phase machine
has to supply a variable torque in order to keep constant the
global torque. The induced complexity can explain that this
kind of structure is not widely used.

On the other hand, if the electromotive forces do not have
triplen harmonics, then the supply of this 1-phase machine
can only lead to currents that do not produce torque but only
losses and ripples.

So, let us examine the necessary conditions to verify the
following equation:

jsh :_d (47)
As o= (jsr + jso + Js3)/ V3 , it appears that a star-wire coupling
without neutral is sufficient. Another solution is a delta-wire

coupling. We have then u, =(u, +u, +u, )/+/3=0 and

consequently Jsh =0, if there is no electromotive force.

These two kinds of coupling are widely used and induce
simplification of the control law of 3-phase machine, which is
then equivalent to a 2-phase machine.

In this 2-phase machine we find again all harmonics of
electromotive forces except the triplens.

We show now how the use of vectorial formalism enables us
to easily find common control laws.



In case of sinusoidal electromotive force, the vector

dsag /O has a constant modulus ||d[mq' / d9||.
To get a maximum and constant torque with minimal copper

= |2 R -—
losses ( Rs|| js || ) we have to impose a vector j., 0f constant

modulus, colinear with ddse/d .

The reason lies in the fact that, for given modulus
E| ||ddqu/de|| of two Vectors Jjue, ddus/de , the dot

product, C:Qq=qu.dqgﬂ/d§ , Is maximum when the two vectors
| [d e is

—
Jsdg

are colinear. Then the torque Cg=

oo
Indeed, it is possible to extend this result to an electromotive
force that contains triplen harmonics.

constant if

| is also constant.

On the other hand, when 5" and 7" harmonics exist, the
control laws become necessarily more complex [19], [10] if
constant torque is required. This drawback can lead us to
choose polyphase machines to easily reduce torque ripple and
the corresponding noise [34],[30].

5.3 Equivalent machines of a 6-phase machine

For the considered 6-phase machine, there are two fictitious
machines: the first one, associated with the plane . is a 2-
phase machine; the second one, associated with the 4-
dimensional space .#’is a 4-phase machine.

5.3.1 Examination of projections d¢. /d®

For the same reasons as in 5.2.1, the Fourier serie of
dd./do has only cosine odd terms. So we have:

%:i,&k&:i&(eﬁ[w_{z{)
e = py

with

(48)

Q: cos[kpe—(t—l) k%}g
and

t

V4 2r | —
€k = cos[kpa—kg—(t—4)k?} S,

The cosine expressions encourage us to work in the complex
plane. Let us consider:

e, = Re{E..} ete, =Ref{E,.} (9
with:

— AN — . 2m
. Euk=e'k"°(sc1+a‘kscz+a‘2k sc3) and a=e'® ;

= Ex=b'e"™(si+a*ss+a®ss) and b=e ¢
If we remark that a° = 1 and b® = -j, we obtain than for k=3n:

(5a+ Su+ )
B 0)

and

«  ew=+3cos(3npo)

—

o el jem

+ s+ sy
73

In these two expressions appear df and  df, two
eigenvectors of eigenspace .# (see expression (25):

(51)

«  es=+3cos(3npo) df (52)
and
- e, =3 Re{(— j)”eiW}d_f (53)

So, the triplen harmonics belongs to the subspace »# and
more precisely to the plane #, generated by df and df .

Let us consider now the other harmonics of order k=3ntl
and their projection onto the plane &# As an orthonormal

base of this last one is composed of the vectors dset dS, we

have to evaluate the dot-product ex.ds and ex.ds :

N +n,—jkpo A jkpo
= e z“ng{cos(kpeﬁje +§ iye J (54)

. — i\ alkpo _ i\N q-ikpo
. §5:i§A{sin(kp6)+( iye 2_(J)e )(55)
j

We remark that (j)*=1. When n=4u the previous
expressions become:

€. d5 =+/3Accos(kp6) and ew. d§ =++/3Acsin(kp0) (56)
The harmonics of  order 12uxl have thus non-null
projections onto the .#~plane. Consequently, it is in this plane
that we find the projection of the fundamental of the
electromotive force. # is then qualified of “main” plane and
also the associated 2-phase machine. We must remark that the
6-phase machine is not equivalent to the “main” machine
even if the main part of the torque is produced by the “main”
machine.

Let us examine now the properties of the 4-phase machine
associated with . We have already found that the triplen
harmonics are projected onto the plane %, generated by

dF and df . Consequently it is possible to decompose the 4-
phase machine in two 2-phase machines: the first one is
associated with #, the second one with an other plane %,
subspace of . and orthogonal to #. In £ we find
projections of the last odd harmonics whose orders are
12u+6+1.

As the same way as for the 3-phase machine, we qualify of
“zero-sequence”  the plane £ and the corresponding
machine. We find again effectively the zero-sequence
components in case of double-star coupling. The plane #and
its corresponding machine is called “secondary"".



We give in Table 1, Table 2 and Table 3, complete results for
the projections of dgs: /dé@ onto the different planes. We
find again the three families of harmonics already pointed out

11 0
13 0
15 0
17 V3 A (cos(l? po)ds +sin(L7 pe)d_é;)
19 V3 A, (cos(19 p0)ds —sin(L9 pe)d_ég)
21 0
23 0
25 0

in [25].
Table 1 : projection of d¢s/d6 harmonics onto the “main”
plane
Harmonic order Main plane .7

1 V3A (cos(pe)d—?+sin(p6)d~§s)
3 0
5 0
7 0
9 0
1 V3 A, (cos(llpe)_f—sin(llpe)d_f)
13 V3 As(cos(13p6)ds +sin(13p6)ds
15 0
17 0
19 0
21 0
23 V3 As (cos(23 po)ds —sin(23 pe)d_ﬁg)
25 V3 As (005(25 po)ds’ —sin(25 pe)d_§§)

Table 2: projection of d¢. /d6 harmonics onto the “zero-

sequence” plane

Harmonic order “zero-sequence” plane £
1 0
3 V3 A (cos(3 po)df +sin(3 pe)d_fg)
5 0
7 0
9 J3 A (cos(9p0)dF —sin(9po)ds)
11 0
13 0
15 V3 As (cos(lS po)d? +sin(L5 pe)d_fg)
17 0
19 0
21 V3 Au (cos(21p6)_f§ —sin(21p9)d_§5)
23 0
25 0

Table 3: projection of d¢. /d6 harmonics onto the

“secondary” plane.

Harmonic order Plan 2
1 0
3 0
5 V3 A (cos(5 po)ds +sin(5 pe)d—és)
/ VA (cos(? p6)ds* —sin(7 pe)d—e“)
9 0

In Fig 8, we have represented in the EMR formalism the three
machines which are mechanically and electrically coupled:

e the “main” machine (mM) ;

e the “zero-sequence” machine (hM) ;

e the “secondary” machine (sM).

mechanical coupliQ

/electrical coupling

—»
usA / u sh
v -
SsAL =
< u j:h
X sAg. U,
JsA2 S
<+— .
””” > T
<«
SB%
sB3 ﬁsjq»
l L
\ Jsdq

Fig 8 EMR of six-phase machine after magnetic
decoupling

5.3.2 Criteria of choice for the supply of the three fictitious
machines

We dispose of three machines to produce torque. First, we
apply the Multimachine concept to the case of sinusoidal
electromotive force. Thus, only the “main” machine will
produce torque. The currents in the two other machines are
then not desirable since they create only copper losses. They
are parasitic currents. To cancel them we must not supply
these two machines.

It is quite possible for the “zero-sequence” machine by
adapted coupling of the different belts: the more classical one
is the double-star coupling represented in Fig 3.

On the other hand, it is not possible to cancel instantaneous
currents for the “secondary” machine since the voltages
applied to this machine by VSI can not be canceled.
Consequently parasitic currents [33], [16], [24] are induced.
Mean currents can nevertheless be regulated to zero if null
mean voltages are applied thanks to a suitable control law.
For the ripple parasitic instantaneous currents, their
magnitudes depend on Tmod, the modulation period of the
PWM, and on 1z, the electric time constant of the
“secondary” machine.

We find that the determination of leakage inductance [39],
which is part of 7, is important. To reduce magnitude of




parasitic current we must verify: 7> Tyoq. In this paper, we
have only considered for the modeling of the 6-phase
machine the fundamental of magnetomotive force. We have
also neglected mutual leakage inductance. This kind of
approach is generally sufficient for the study of a 3-phase
machine. It appears that it is no more possible for polyphase
machines that are supplied by PWM VSI. To control the
value of 7y the designer has to take into account harmonics of
magnetomotive force [24] and mutual leakage inductance
[21]. For example to increase 7, we can favour the fifth
harmonic of magnetomotive force by using a new winding
distribution.

We have just seen that if the electromotive force is sinusoidal
then it would be preferable to supply only the “main”
machine. But if the electromotive force possesses harmonics,
which are associated with the zero-sequence or secondary
machines, then it can be interesting to supply these machines
to produce supplementary torque [37],[19],[30],[47]. This
kind of possibility has already been studied in [45] for
induction machines with concentrated windings. In [31]
torque density of a 6-phase machine has been improved by
injection of third harmonic currents in the neutral wires of the
two stars. For synchronous machine with permanent magnets
the designer can also act on the arrangement of the permanent
magnets to modify the rate of harmonics.

6 Conclusion

The vectorial characterization of the polyphase machines
leads to the generalization of the concept of 2-phase
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8 Appendix on EMR formalism

The Energetic Macroscopic Representation (EMR) is a
synthetic graphical tool based on the principle of action and
the reaction between elements connected [5], [8]. It leads to a
synthetic description of an overall conversion system between
two sources (oval pictogram). It uses elements which
accumulate energy (rectangular pictogram with an oblique
bar) and elements which convert energy without either energy
loss nor storage (square for electrical conversion, circle for
electromagnetic conversion and triangle for mechanical
conversion).

From the EMR of an electromechanical conversion, one can
deduce a control structure, which is composed of the
maximum of control operations and measurements [8].

This modelling has successfully been applied to electric
vehicles, high-speed railway traction systems, wind energy
conversion systems, ship propulsion with double-star
induction machines.

EMR of an energy conversion — An energy conversion
between two sources S; and S, is represented by an
association of power components (Fig 9): a conversion
element CE and two accumulation elements AE. All of them
are connected by exchange vectors.
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Fig 9 : EMR between two sources

A source element (SE) produces a state variable (output). The
source is either a generator or receptor. It is disturbed by the
reaction of the connected element (input), for example, the
absorbed current for a voltage grid.

A conversion element (CE) yields an energy conversion
without energy loss nor storage. Its tuning is ensured by an
input vector ecy, which consumes less power than the
transferred one. In some case, there is no tuning input and the
conversion transfer is realized with a fixed rate.

An accumulation element (AE) connects an energy source to
a conversion element, thanks to an energy storage, which
induces at least one state variable. An AE has no tuning
input.

The exchange vectors yield the energy to be transferred
between the connected components according to the principle
of action and reaction. On Fig 9, the source S; is chosen
arbitrarily as the upstream source. It produces an action
which is transmitted then to the downstream source S, which
answers by a reaction. So, one defines a chain of action
variables (&) and a chain of reaction variables (r;). These
variables can be scalar or vector. The two connected

components are dual each other: if the action is potential, the
reaction is kinetic.

Extension to multi-machine multi-converter systems (MMS)
— A MMS is composed of several mono-machine mono-
converter systems, which share one or more power devices.
Thus, it yields energy distribution between electric and
mechanical sources through coupled conversion chains,
which can vyield interactions (perturbations) between power
structures. The MMS have to enable best power repartition
with lower cost equipment.

The energy distribution is obtained by specific conversion
structures [5, 6]. These power components are common to
several conversion chains. They are called coupling
structures. A coupling conversion structure links an upstream
device with many downstream one's, or vice versa. Such
structures are drawn by forms with intersections ([Fig 10]).
The electric coupling is associated with electric converters. It
corresponds to a common electric device of several
converters (power switch, capacitor...). It leads to a common
electric variable (voltage, current...).

The magnetic coupling is associated with electric machines. It
corresponds to a common part of several machines (winding,
magnetic materials...). It leads to a common magnetic
variable (flux...).

The mechanical coupling is associated with mechanical
converters. It corresponds to a common mechanical device of
several converters (shaft...). It leads to a common mechanical
variable (speed, force...).
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Fig 10: Examples of coupling devices
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