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Application of Non-negative Matrix Factorization to
LC/MS data

Jérémy Rapin, Antoine Souloumiac, Jérôme Bobin, Anthony Larue, Chistophe Junot, Minale Ouethrani
and Jean-Luc Starck (firstname.lastname@cea.fr)

Abstract—Liquid Chromatography-Mass Spectrometry
(LC/MS) provides large datasets from which one needs to
extract the relevant information. Since these data are made
of non-negative mixtures of non-negative mass spectra, non-
negative matrix factorization (NMF) is well suited for its
processing, but it has barely been used in LC/MS. Also, these
data are very difficult to deal with since they are usually
contaminated with non-Gaussian noise and the intensities vary
on several orders of magnitude. In this article, we show the
feasibility of the NMF approach on these data. We also propose
an adaptation of one of the algorithms aiming at specifically
dealing with LC/MS data. We finally perform experiments and
compare standard NMF algorithms on both simulated data and
an annotated LC/MS dataset. This lets us evaluate the influence
of the noise model and the data model on the recovery of the
sources.

Index Terms—BSS, NMF, sparsity, multiplicative noise, LC/MS

I. INTRODUCTION

A. Liquid chromatography-mass spectrometry data

The aim of LC/MS is to detect, quantify and identify
molecules from liquid samples. The liquid sample is first in-
jected into a chromatographic column, through which the dif-
ferent compounds exhibit different kinds of physico-chemical
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Fig. 1: LC/MS chromatogram of a sample (filtered for visual-
ization purpose)

interactions with the stationary phase. These compounds thus
leave the column at different times, referred to as retention
times. At each time t, the compounds leaving the column are
sprayed, ionized in the source of the mass spectrometer, and
then separated according to their mass to charge ratios in the
analyzer (i.e., an orbitrap analyzer in the present study). Each
ion having a specific mass-to-charge ratio, the LC/MS process
provides a two dimension separation (although imperfect) in
both mass and retention time domains. It yields 2D data such
as the ones shown in Fig. 1. These data are coined Y ∈ Rm×n

in the article, and each of the m lines of this matrix is a n-
sample long spectrum at a given acquisition time.

B. Non-negative matrix factorization

Non-negative matrix factorization (NMF) aims at decom-
posing the data as non-negative mixtures of non-negative
signals, the sources. The first publications dealing with these
particular settings come from Paatero & Tapper [1] and Lee
& Seung [2]. The non-negative assumption arises naturally in
many applications such as hyperspectral imaging [3], nuclear
magnetic resonance [4], [5] or LC/MS [6], [7]. Indeed, in
LC/MS, the mass spectra are non-negative, and the mixtures
are related to the relative concentrations, which cannot be
negative either. Under the instantaneous linear mixture model,
each of the m observation Yi,· ∈ R1×n is a linear mixture of
r elementary non-negative spectra Sj,· ∈ R1×n:

Yi,· =

r∑
j=1

Ai,jSj,· + Zi,· , ∀i ∈ {1, ..,m}, (1)

where Ai,j are the non-negative mixtures coefficients and Zi,·
accounts for noise and model imperfections. Under matrix
form, this can be recast as: Y = AS+Z. From Y, the aim is
to recover both A ∈ Rm×r and S ∈ Rr×n, which is usually
done by solving a problem of type:

argmin
A≥0, S≥0

D(Y||AS) + J (S), (2)

where D is a divergence measuring the discrepancy between
the data Y and the factorization AS, and J is a regularization
function providing prior information about the spectra. This
problem is however non-convex and NP-Hard [8] and finding
an optimal solution is therefore very difficult. Different NMF
algorithms or even different initializations of a same algorithm
therefore yield different factorizations.
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C. Contribution

Although NMF is particularly well suited for processing
LC/MS data, it has barely ever been used on this type of
data. In this article, we test reference and state-of-the-art NMF
algorithms on an annotated LC/MS dataset. We also propose
an adaptation of the non-negative generalized morphological
component analysis (nGMCA) aiming at specifically dealing
with LC/MS data. The comparison highlights the behaviors
of the algorithms in difficult settings, with large dynamics,
multiplicative noise and potential non-linearities, and shows
the efficiency of our adaptation. In the final section, based
on the experiments, we discuss further improvements which
could be brought to the existing algorithms in order to better
handle LC/MS data.

II. LC/MS DATASET

The data considered in this article were acquired from a
mixture of eleven commercial chemical compounds for which
the mass spectra and retention times are known (see Fig. 5
for the list of compounds). This sample was analyzed in an
LC/MS pipeline using an orbitrap mass analyzer [9], [10]. We
focus on a time range going from 2 to 18min and masses from
69 to 644 Dalton (Da) since these ranges concentrate most of
the information of the sample. Since all ions related to the
eleven molecules and their retention times were known, we
can build a reference source matrix Sannot., in which each line
is the mass spectrum of one of the molecules.

A. Mass and elution profiles

A typical mass profile Yt,· ∈ R1×n at a time t is provided
in Fig. 2a. This mass profile is a mixture of elementary spectra
which are characteristic of specific compounds. Unmixing
them can therefore help identify the chemical compounds
of the liquid. In LC/MS, it is well known that ions other
than molecular species are produced by atmospheric pressure
ionization methods during the desolvation process, includ-
ing natural isotopes, adduct ions, fragment ions formed by
spontaneous in-source fragmentations of the precursor ion by
release of small size neutrals and also multimers in the case of
ESI mass spectra [11]. Thus, many peaks of the mass profile
corresponds to the m/z ratios related to one of these ions.
The figures are scaled in Da —1Da having a value very close
to the mass of a nucleon— since all the ions have the same
charge state here (-1e). Zooming on the main peak of the
previous figure yields Fig. 2b, where a small peak is visible at
+1Da, which is typical of the presence of carbon-13 13C. This
figure also highlights the large range of intensities which must
be extracted from the data. In practice, the main peak has a
width of about ten samples, showing the extreme precision of
the Orbitrap spectrometer which was used for the acquisition
of these data.

Fig. 3 shows a temporal profile Y·,µ ∈ Rm×1, or in other
words the evolution of the intensity of a specific mass µ
during the acquisition time. Such a profile is also called elution
profile. Elution profiles are typically smooth, similar to a
Gaussian with a width slightly smaller than a minute and a
heavy tail after the maximum value.
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(a) Full mass profile
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(b) Zoom around the main peak

Fig. 2: Examples of mass profile at a time t.
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Fig. 3: Temporal profile of a
mass in the dataset.
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Fig. 4: Mean-standard devia-
tion cloud for the main tem-
poral profiles.

B. About the noise contamination

A feature of LC/MS data is clearly visible on the temporal
profile of Fig. 3: the larger the values, the noisier they are.
In order to corroborate this observation, we plot in Fig. 4 the
point cloud of an estimation of the data standard deviation
with respect to its mean amplitude, computed on non-null
chunks of the most energetic elution profiles. A correlation
between amplitude and standard deviation is then visible. We
therefore model the noise contamination with multiplicative
noise, which standard deviation is proportional to the value of
eacg signal coefficient. Numerous studies have come to similar
conclusions [12], [13]. Considering that the noise is a mixture
of an additive component and a multiplicative component
yields the following model for the standard deviation of the
noise on each coefficient of the data:

Σi,j =
√
σ2

add + σ2
multY

2
i,j , (3)

where σadd is the additive noise standard deviation, and σmult
is the coefficient of the multiplicative noise. The black line
in the figure corresponds to the best fit model, with values
σmult = 0.074 and σadd =15,000. Biologists using these data
tend to consider that peaks start to be significant at an order
of magnitude of 104, which comforts our estimation.

C. Processing pipeline

The processing of LC/MS data is usually performed with
software such as XCMS [14] or MZmine [15], which perform
(i) automatic peak detection, (ii) alignment of features in the
m/z and chromatographic retention time domains, and (iii)
results are returned as a peak table containing variable identity
(i.e., m/z and retention time) and signal abundances (i.e.,
peak intensities and/or area of extracted ion chromatographic
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peaks) in the samples. As mentioned in [6], NMF is however
particularly well-suited for the processing of LC/MS data and
combines the extraction and gathering stages into a unique
step. In this article, we evaluate the performances of several
NMF approaches on an annotated dataset and show the feasi-
bility of this approach, with the following processing pipeline:

1) Mass gridding: Each spectrum acquired by the mass
spectrometer has a specific mass grid, different from the
ones acquired at other times. We therefore construct a
grid shared between all spectra so as to arrange the data
into a matrix form.

2) Cleaning: masses which appear only a very limited
number of consecutive times in the data, or at too low
an intensity, are not considered significant and removed
from the grid. Conversely, masses which are constant
during all the analysis, such as the one corresponding
to the solvents, are also eliminated from the data. The
resulting data is coined Y.

3) Subsampling: In order to further reduce the data size, Y
is subsampled along the mass dimension, yielding a data
matrix Ysub with lower dimensionality. This reduces the
precision but makes computation faster and diminishes
the noise influence, now estimated at σadd =12,000 and
σmult = 0.023 (compared to the estimation in section
II-B). Also, the initial precision can mostly be recovered
thanks to the inversion step 5).

4) Factorization: the data is decomposed as Ysub ≈ ASsub
with A and S non-negative matrices, using an NMF
algorithm.

5) Inversion: The full precision is recovered by solving the
inverse problem 4 using the mixing matrix A found
at the previous stage and the non-subsampled data Y
explicited on the shared mass grid of stage 2).

argmin
S≥0

1

2
‖Y −AS‖22, (4)

III. NMF ALGORITHMS

Algorithms in NMF can aim at solving different formu-
lations of the problem, with different divergences D and
regularizations J . Also, because of its non-convexity, even one
algorithm with different initializations can produce different
results. In this section, we therefore evaluate the performances
of several algorithms on LC/MS data.

A. Standard non-regularized algorithms

The first converging iterative algorithm proposed in NMF
is the multiplicative update of Lee & Seung [16]. Using
the Kullback-Leibler divergence, it aims at solving Problem
(2) with no regularization and with the Kullback-Leibler
divergence (5) or the euclidian distance (6). Both versions are
tested in the experiments, respectively under the names “mult.
(KL)” and “mult. (L2)”.

D(Y||AS) =
∑
i,j

Yi,j log
Yi,j

(AS)i,j
− (AS)i,j (5)

D(Y||AS) =‖Y −AS‖22 (6)

In order to take into account the multiplicative noise in
LC/MS, Dubroca et al. proposed in [6] to modify the previous
algorithm using a non-stationary model for the noise. At each
sample, they provide an expected noise standard deviation Σi,j

depending on the amplitude of the data (cf. equation (3)). The
maximum likelihood is then given by:

D(Y||AS) = ‖(Y −AS)�Σ‖22, (7)

where � is the elementwise matrix division. This algorithm is
coined “mult. (non-stat.)” in the following experiments. These
multiplicative algorithms are widely used, easy to implement,
but often deemed to be slow and not very efficient [17], [18].

B. Algorithms using sparse regularizations

In the wide sense, a sparse signal is a signal which concen-
trates its energy into only a few large non-zero coefficients, or
can be well approximated in such a way. This is definitely the
case in LC/MS since both spectra and mixing coefficients are
mostly null with few large coefficients. In the NMF literature,
the sparse assumption has been shown to help recovering
relevant factorizations [19], [20].

Many iterative algorithms aim at solving Problem (2) with
the euclidian divergence (6) and a sparsity inducing regulari-
zation J (S) = ‖Λ�S‖1, where Λ is a parameter matrix, and
� the pointwise multiplication. This is the case for HALS [21]
and nGMCA [18]1, which are both tested in the experiments.
In nGMCA, the Λ parameter must be set at the noise standard
deviation. In a recent implementation of HALS [22], [23]2, the
parameter Λ is automatically handled in order to obtain a user-
defined sparsity rate3. In the experiments, the sparsity rate of
the sources is set as the sparsity rate of the observations Yi,·,
since no better estimation is available in practice.

In [20], Kim & Park have proposed to use a regularization
J (S) = λ

∑n
t=1 ‖S·,t‖21. This term aims at favoring sparsity

in a way which makes a single source dominate over the other
ones. We use here the default values of the parameters from
the implementation4, since there is no straightforward way to
tune them.

These algorithms may not be well-suited to the case of
a multiplicative noise contamination because they use an
euclidean divergence. Also, all the iterative algorithms are very
sensitive to stationary points and can therefore converge to
highly suboptimal solutions.

C. Adaptation of nGMCA for LC/MS data

Considering the drawbacks of the previous methods, we
propose to adapt nGMCA to the case of LC/MS data by:

• using divergence (7) instead of divergence (6) so as to be
more robust to multiplicative noise.

• add a stochastic term D in order to avoid the multiple
stationary points, which arise from the specific structure
of LC/MS data.

1http://www.cosmostat.org/GMCALab.html
2https://sites.google.com/site/nicolasgillis/code
3ratio of coefficients smaller than 10−6 times the largest one.
4http://www.cc.gatech.edu/∼hpark/nmfsoftware.php

http://www.cosmostat.org/GMCALab.html
https://sites.google.com/site/nicolasgillis/code
http://www.cc.gatech.edu/~hpark/nmfsoftware.php
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Fig. 5: Elution profiles Aannot. of the annotated sources,
estimated by an inversion (infinite norm shared between Aannot.

and Sannot.
sub for visualization purposes).

At each iteration k, both A and S are updated once —such
as in standard nGMCA— so as to approach the solution of:

argmin
A≥0, S≥0

1

2
‖
(
Y + σ

(k)
D D(k) −AS

)
�Σ‖22 + ‖Λ(k) � S‖1.

(8)
The coefficients of D(k) are taken as independent centered
and reduced Gaussian variables, and σ(k) decreases at each
iteration and reaches 0 at the end of the algorithm so as to
causing a bias. In the same way than in nGMCA, Λ(k) is
automatically chosen according to the estimated noise level.
This version is coined “non-stat. nGMCA (stoch.)” in the
experiments. In the following section, it is compared to all
the other algorithms on simulated data.

IV. EXPERIMENTS

A. Results on simulated data

So as estimate the actual elution profiles one should ob-
serve, we first undersample the reference source matrix on
the subsampled grid so as to obtain Sannot.

sub . We define the
corresponding elution profiles by solving the inverse problem
9. These profiles are shown in Fig. 5. From there, one can
synthesize a data matrix using Equation 10.

Aannot. = argmin
A≥0

1

2
‖Ysub −ASannot.

sub ‖22. (9)

Ysynth. = Aannot.Sannot.
sub + Z. (10)

We consider here that the coefficients Zi,j are independent
Gaussian variables with standard deviation fixed to Σi,j , as
computed in equation (3). The additive noise contamination is
controlled by σadd, which is fixed to 12,000, as estimated in the
actual data. Still, the noise level was estimated only on non-
null chunk and additive noise in the data is much scarcer in
practice. The parameter σmult controls the multiplicative noise
level. In Fig. 6, it varies from 0 to 0.1 in order to assess the
sensitivity of the selected algorithms to multiplicative noise
on the synthesized LC/MS data. The evaluation is carried
out by comparing the obtained spectra with Sannot.

sub using the
source distortion ratio (SDR) introduced in [24]. This criterion
increases for higher quality reconstructions.

All the algorithms show significant sensitivity to the multi-
plicative noise contamination, as can be seen in Fig. 6. One
can first notice the globally poor results of the multiplicative

update algorithms, which do not use any sparse regularization,
with a very slight advantage for the non-stationary version
mult. (non-stat.). Concerning the other algorithms, which
make use of sparse regularizations on S, the stochastic non-
stationary version of nGMCA obtains the best results. Kim &
Park algorithm is globally 5dB under this version of nGMCA,
but close to 5dB above all the other algorithms. One can recall
that this algorithm was used with its standard parameters and
was therefore not tuned at all. This highlights the fact that, as
well as an adequate noise model, an accurate source model can
be beneficial. Indeed, the regularization used in this algorithm
favors sources which do not share any coefficient. This model
is well verified on the dataset.

B. Qualitative study on the real data
The above observations were made on very realistic sim-

ulated data. Evaluation of the algorithms on the real dataset
is however trickier. Indeed, the annotations only provide the
main peaks time and mass localization for each source, but not
exactly the spectra which should be recovered. In this section,
we observe results obtained on the real dataset so as to develop
quantitative criteria. We consider the search of 18 sources,
among which we wish to recover the 11 annotated sources.
nGMCA based algorithms are provided with estimations of
the noise level: σadd =12,000 and σmult = 0.05.

The elution profiles Aannot. in Fig. 7a can be compared with
the ones obtained on the real dataset by nGMCA and non-stat.
nGMCA (stoch.) (respectively Fig. 7b and 7c). A couple of
observations can be made from it:

• the database is not perfect and may not contain all the
compounds present in the mixture: nGMCA and non-stat.
nGMCA (stoch.) agree on the existence of an prominent
non-annotated source (purple line at 12.4min, source
#12 and #14 respectively). Its mass spectrum presents
a structure typical of the presence of adducts.

• source #6 obtained with nGMCA (dashed magenta line
at 11.45min) interferes with DL-vanillomandelic acid
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Fig. 6: SDR of the recovered sources with respect to the
amount of multiplicative noise (average of 100 simulations).
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Fig. 7: Zoom on the elution profiles between 11 and 13
minutes (real dataset).
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Fig. 8: Beta-D-fucose mass spectrum (annotations and recon-
structions for the real dataset).

(source #7, blue line at 11.45min), and source #10
(dashed cyan line at 12.1min) with adipic acid (source
#9, red line at 11.9min). The interferences with DL-
vanillomandelic acid (source #9) do not appear with non-
stat. nGMCA (stoch.), and the ones with the adipic acid
are weaker, which tends to suggest a better reconstruction
quality obtained with this algorithm.

Fig. 8 provides an example of mass spectrum reconstruction
with nGMCA for beta-D-fucose, in red crosses. The green
diamonds show the spectrum such as it is annotated, once
set on the mass grid. One can notice the preeminence of two
peaks, appearing on both spectra at about 163 and 209Da. Still,
many peaks differ between these spectra. The black circles
correspond to the same source estimated based on the inversion
of Aannot., using Equation (4). This sums up to estimating the
sources from the reference elution profile obtained from the
annotations. The obtained spectra are then very similar to the
ones yielded by nGMCA, which shows that, in practice, the
data are more complex than what the annotations indicate.

Fig. 9a and Fig. 9b display the number of peaks respectively
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

cystathionine

cis−4−hydroxy−D−proline

beta−D−fucose

DL−arginine

carnitine

DL vanillomandelic acid

P−amino hippuric acid

adipic acid

folic acid

3−hydroxybenzoic acid

naringenin
0

2

4

6

8

(a) with nGMCA.

# of the estimated source

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

cystathionine

cis−4−hydroxy−D−proline

beta−D−fucose

DL−arginine

carnitine

DL vanillomandelic acid

P−amino hippuric acid

adipic acid

folic acid

3−hydroxybenzoic acid

naringenin
0

2

4

6

8

(b) with non-stat. nGMCA (stoch.).

Fig. 9: Number of peaks recovered peaks from the searched
compounds (real dataset).

estimated by nGMCA and non-stat. nGMCA (stoch.) which
are compatible with the annotations (both in mass and in time).
It is difficult to give a quantitative evaluation of these results
on the real dataset. Still, these figures provide some insights
on the quality of the identifications of the searched sources:

• all the annotated sources are not necessarily recovered.
On the top figure (nGMCA), the line associated to
carnitine is empty and thus no peak from this source
has been identified by the algorithm. Non-stat. nGMCA
(stoch.) however recovers at least one peak from each of
the sources on this example.

• some estimated sources contain peaks from several com-
pounds (columns with more than one non-null coeffi-
cient). These additional peaks are interferences which
must be avoided. A comparison between Fig. 9a and Fig.
9b, seems to indicate that the non-stat. nGMCA (stoch.)
is less prone to interferences than nGMCA.

• some compounds are recognized in several estimated
sources (rows with more than one non-null coefficients).
This means that these compounds have been split into
several parts. This is for instance what was observed for
sources #6 and #7, and the sources #9 and #10 of the
reconstructions with nGMCA on Fig. 7b. This splitting
of the compounds into several parts seems once again
less frequent with non-stat. nGMCA (stoch.).

C. Quantitative study on the real data

Considering the above qualitative example, one can design
quantitative criteria. To this extent, the 200 largest recovered
peaks are extracted from each reconstruction obtained with an
NMF algorithm. This choice of a predefined number of peaks
allows a more accurate comparison between the algorithms,
since it does not privilege very selective thresholding strategies
which could artificially reduce the amount of interferences.
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Such as in the previous section, peaks are affected to a
compound when they are compatible both in mass and in time
with the annotations. Since we estimate 18 sources so as to
recover the 11 annotated compounds, we define the matrix
E ∈ R11×18 such that each element Ei,j is the sum of the
quadratic energies of the peaks of the jth estimated source
which are affected to the ith compound. We also define the
vector e ∈ R18 such that ej is the sum of the quadratic energy
of the peaks of the jth estimated source which are not affected
to any compound. We then affect each compound to a unique
estimated source by choosing a permutation of the columns
of E which maximizes

∑11
i=1 Eii. Thus the ith compound is

affected to the ith estimated source. We are then able to define
the following quantitative criteria:

• correct energy ratio: mean energy ratio of the estimated
source which belongs to the compound it is affected to:

corr. =
1

11

11∑
j=1

Ejj

ej +
∑11
i=1 Ei,j

. (11)

• interference energy ratio: mean energy ratio of the esti-
mated sources peaks belonging to an annotated compound
which is different from the one to which the estimated
source is affected, with respect to the total energy of the
estimated source (energy ratio on the column of E, taking
into account the non-identified peaks):

interf. =
1

11

11∑
j=1

(
1− Ejj − ej

ej +
∑11
i=1 Ei,j

)
. (12)

• splitting energy ratio: mean energy of the peaks of a
compound which are not affected to it, with respect to
the total energy of the identified peaks for this compound
(energy ratio over the lines of E). This criterion aims
at evaluating the tendency of algorithms to split the
compounds into several estimated source, while in the
ideal case each of these compounds should be gathered
in a unique estimated source. It is computed as follows:

split. =
1

11

11∑
i=1

(
1− Eii∑18

j=1 Ei,j

)
. (13)

• identification ratio: the number of compounds for which
at least one peak was identified, with respect to the
number of annotated compounds (i.e. 11).

• recovery: we will consider that all the sources have been
recovered if at least one peak of each annotated com-
pound has been identified. This does not mean that the
factorization is perfect but it is nevertheless a necessary
condition for it.

All this criteria are averaged over 200 realizations, cor-
responding to different initializations of the algorithms. The
results are given in table I and the standard deviations are
provided between parenthesis. This table is teaching in several
aspects:

• evaluation of the algorithms: most of the criteria have
similar behaviors. The most discriminative criteria is the
recovery rate which goes from 29.5% to 97%. Most of the

algorithms obtain between 30 and 40% on this criterion.
Kim & Park’s algorithms however still outperforms most
of the other algorithms, with a recovery rate at 56%.
Only non-stat. nGMCA (stoch.) reaches a better recovery
rate, at 97%, while keeping one of the lowest interference
ratio.

• robustness to the initialization: the variability of all the
algorithms is significant. The initialization is therefore
of the uttermost importance. This tends to confirm the
presence of a large number of critical points to which
the algorithms are very sensitive. The lower variability
of non-stat. nGMCA (stoch.) —by more than 1 point—
indicates that the stochastic term is helpful in order to be
more robust to these critical points.

• data fidelity term: the non-stationary data fidelity term
seems beneficial for nGMCA and for the multiplica-
tive update algorithms, since mult. (non-stat.) performs
significantly better than mult. (L2). The version with a
Kullback-Leibler divergence obtains a recovery rate com-
parable to the one of mult. (non-stat.) (43.5%), although
at the price of a deterioration on all the other criteria. The
use of a particular data fidelity term is therefore far from
being neutral. On these data, the full integration of the
non-stationarity in the nGMCA framework is the most
efficient approach.

• regularizations: The sparse regularization used in Kim &
Park’s algorithm seems efficient and robust. The standard
`1 regularization is also beneficial when used accurately
in the non-stationary version of nGMCA.

In summary, the adaptation of nGMCA to non-stationary
noise and the use of a stochastic term yields very good and
robust results. Kim & Park’s algorithm benefits here from the
fact that the mixtures in this dataset are not very complex,
with spectra sharing few common peaks and elution profiles
which do not overlap too much. It would however not perform
so well in more difficult settings where the dominant mixture
model is not verified anymore, such as with a larger number
of chemical compounds for instance.

V. DISCUSSION ABOUT THE MODELIZATION

The experiments above yield promising results for the use of
NMF on LC/MS data. They however allow for many potential
improvements.

A. Noise model

Noise is not yet fully understood in LC/MS. A more
accurate noise model may be a contamination with a mixture
of Poisson noise, at low intensities, and multiplicative noise
at larger intensities, as suggested in [12]. In this paper,
we have used several types of data fidelity term, including
Kullback-Leibler divergence, and regular and weighted eu-
clidean distances. The use of a non-stationary prior thanks
to the utilisation of a weighted euclidean distance seemed
better suited than the standard euclidean distance. Modifying
D to take into account a more precie noise model could prove
helpful.
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algorithm
criterion corr. (%) interf. (%) split. (%) iden. (%) recov.

mult. (non-stat.) 74.6 (+/-6.0) 13.9 (+/-7.0) 14.7 (+/-5.3) 94.4 (+/-5.4) 44
mult. (KL) 69.2 (+/-5.6) 14.6 (+/-5.9) 15.2 (+/-4.8) 94.0 (+/-5.9) 43.5
mult. (L2) 74.7 (+/-5.6) 13.9 (+/-6.8) 13.9 (+/-4.8) 93.6 (+/-5.5) 37.5

Kim & Park 78.1 (+/-5.1) 9.6 (+/-7.4) 10.8 (+/-3.8) 95.9 (+/-4.5) 54.6
HALS 75.3 (+/-4.1) 12.4 (+/-6.2) 13.4 (+/-3.7) 93.5 (+/-4.3) 29.5

nGMCA 77.2 (+/-4.9) 11.2 (+/-5.2) 11.0 (+/-3.5) 93.8 (+/-5.0) 36
non-stat. nGMCA (stoch) 80.3 (+/-3.4) 4.5 (+/-2.4) 10.3 (+/-3.1) 99.7 (+/-1.6) 97

TABLE I: Mean results (and their standard deviations) over 200 different initializations.

B. Mixture model

The mixture model, which states that the observations are
linear combinations of the sources (cf. equation (1)), is not
perfect in practice. Several chemical compounds can indeed
interact with each others. If one has access to a more accurate
model, it may prove very helpful to modify the divergence in
order to take it into account.

Another possibility consists in adding a robust term to the
problem such as in [25]. nGMCA’s framework could easily
encompass the additional minimization of this robust term.
This variable would gather features of the data which have
high energy but cannot be modeled by low rank non-negative
matrices, such as deviations from the linear model. By doing
so, it would prevent these high energy features to contaminate
the estimation of the spectra and elution profiles.

C. Data model for the spectra and the elution profiles

The use of regularizations for the spectra S such as the
sparse ones introduced in section III can be beneficial. Among
the ones tested in the experiments, the sparse regularization∑n
t=1 ‖S·,t‖21 used in Kim & Park’s algorithm was accurate

on this dataset, although it could fail if the dominant mixture
model is not verified anymore.

The algorithms introduced in this article use the sparsity of
the spectra in S in order to help disambiguate the sources. A
is however also sparse. This knowledge could thus be used in
order to obtain more relevant factorizations. Also, while A is
indeed sparse in the direct domain, it could be even sparser in
a wavelet domain since the elution profiles are smooth. The
use of sparsity in a transformed domain in NMF was tested
with success in [26]. Still, its use on the mixtures along with a
sparse regularization of the spectra was only used —with good
results— in BSS [27], i.e. without the non-negative assumption
of NMF.
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