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A weakly nonlinear analysis of the bifurcation of the stratified Ekman boundary-layer
flow near a critical bulk Richardson number is conducted and compared to a similar
analysis of a continuously stratified parallel shear flow subject to Kelvin–Helmholtz
instability. Previous work based on asymptotic expansions and predicting supercritical
bifurcation at Prandtl number Pr < 1 and subcritical bifurcation at Pr > 1 for the
parallel base flow is confirmed numerically and through fully nonlinear temporal
simulations. When applied to the non-parallel Ekman flow, weakly nonlinear analysis
and fully nonlinear calculations confirm that the nature of the bifurcation is dominantly
controlled by Pr, although a sharp threshold at Pr = 1 is not found. In both flows the
underlying physical mechanism is that the mean flow adjusts so as to induce a viscous
(respectively diffusive) flux of momentum (respectively buoyancy) that balances the
vertical flux induced by the developing instability, leading to a weakening of the
mean shear and mean stratification. The competition between the former nonlinear
feedback, which tends to be stabilizing, and the latter, which is destabilizing and
strongly amplified as Pr increases, determines the supercritical or subcritical character
of the bifurcation. That essentially the same competition is at play in both the parallel
shear flow and the Ekman flow suggests that the underlying mechanism is valid for
complex, non-parallel stratified shear flows.
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1. Introduction

Shear and stratification compete to respectively destabilize and stabilize many flows,
especially environmental flows. This competition is captured by the Miles–Howard
criterion, establishing the critical value of the local Richardson number beyond which
an inviscid stratified shear flow is linearly stable (Howard 1961; Miles 1961). This
criterion describes well the onset of the primary instability of many flows, especially
continuously stratified parallel shear flows (Klaassen & Peltier 1985), and the more
complicated stratified Ekman boundary-layer flow, which forms near boundaries in
rotating flows and presents both similarities and qualitative differences with the
parallel shear flow (Brown 1972). However this criterion does not address nonlinear
effects arising as the primary instability develops. The nonlinear development of
Kelvin–Helmholtz billows has been investigated for Richardson numbers far away
from its critical value (Cortesi, Yadigaroglu & Banerjee 1998; Staquet 2009). Here we
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are interested in characterizing weakly nonlinear effects arising when the Richardson
number is close to its critical value.

Lilly (1966) identified two branches in the linear stability analysis of the Ekman
flow, one associated with a viscous instability and another due to an inflection-
point instability, also referred to as type I or cross-flow instability. The role of
these instabilities in the transition to turbulence of more complex, non-stratified
flows, especially the flow over rotating disc(s), has been extensively investigated
(Lingwood 1997; Davies & Carpenter 2003; Pier 2003; Viaud, Serre & Chomaz
2008). In the presence of stratification and at a sufficiently high Reynolds number, the
inflection-point branch is stabilized according to the Miles–Howard criterion: although
the critical bulk Richardson number is quite small, the local Richardson number
computed at the first inflection point is close to the theoretical value of 1/4 (Brown
1972). Until the recent work by Mkhinini, Dubos & Drobinski (2013), the nonlinear
development of the instability had been studied only in the fully turbulent regime
(Coleman, Ferziger & Spalart 1992) or without stratification (Iooss, Nielsen & True
1978; Haeusser & Leibovich 2003; Dubos, Barthlott & Drobinski 2008). In the non-
stratified case, weakly nonlinear analysis shows that the bifurcation occurring at the
lowest Reynolds number, which corresponds to the viscous instability, is supercritical
(Iooss et al. 1978; Haeusser & Leibovich 2003). Dubos et al. (2008) computed fully
nonlinear equilibrated flows resulting from the saturation of the inflection-point branch
and found that this bifurcation is supercritical too. Mkhinini et al. (2013) extended
this work to the stratified case by increasing the bulk Richardson number Ri until
the critical value Ri = Ric was reached. For Prandtl number Pr = 1 the deviation of
the equilibrated flow from the basic Ekman profile vanished at Ri = Ric, indicating a
supercritical bifurcation, while at Pr = 4 the deviation of the equilibrated flow from
the basic Ekman profile had a finite amplitude at Ri = Ric, indicating a subcritical
bifurcation.

Churilov & Shukhman (1987), extending and correcting Brown, Rosen & Maslowe
(1981), investigated nonlinear feedbacks in a continuously stratified parallel shear flow
with a linear profile for buoyancy and a tanh profile for velocity. In what follows we
refer to this basic flow as the Kelvin–Helmholtz (KH) profile. Churilov & Shukhman
(1987) is based on a weakly nonlinear theory, and matched asymptotic expansions in
the limit of large Reynolds number Re → ∞, yielding the dominant contribution to the
first Landau coefficient. Their main prediction, confirmed by temporal direct numerical
simulations (Lott & Teitelbaum 1992) is that the net nonlinear feedback is stabilizing
if the Prandtl number Pr < 1 and destabilizing if Pr > 1. This control of nonlinear
feedbacks by Pr can be understood qualitatively as the result of a competition between
the nonlinear weakening of the mean shear and mean stratification, although the
interaction between the unstable wave and its second harmonic also contributes.

Given the similarities and also differences between the KH and Ekman flows, this
work investigates whether the mechanism found to dominate the nonlinear feedbacks
in the KH flow is of sufficiently wide validity to also apply to the stably stratified
Ekman flow. In § 2 we present the base flows and the most important quantities
involved in the weakly nonlinear analysis. In § 3 the salient conclusions arrived at by
the asymptotic theory of Churilov & Shukhman (1987) are verified numerically. In § 4
we analyse the development of perturbations added to the stratified Ekman flow near
the bifurcation Ri = Ric. A partial exploration of the parameter space indicates that
the Prandtl number Pr, rather than the Reynolds number or the wave vector of the
instability, is indeed the primary factor on which the nature of the bifurcation depends.
We relate this dependence to the modifications of the mean flow induced by the
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nonlinear development of the unstable wave, as with the KH flow. Nevertheless, not
all contributions to the first Landau coefficient have the same behaviour as a function
of Re and Pr in both flows, the most robust mechanism being the amplification as Pr

increases of the destabilizing feedback due to the change in mean stratification. Our
results are summarized and discussed in § 5. Details of the weakly nonlinear theory are
provided in appendix A and the numerics are described in appendix B.

2. Basic flows and notation

2.1. Basic flows

The flows we consider obey the Boussinesq equations:

∇ ·U = 0,
∂U

∂t
+ U ·∇U +

1

Ro
ez × U + ∇P =

1

Re
1U + B

√
Ri ez, (2.1)

∂B

∂t
+ U ·∇B =

1

Re Pr
1B − w

√
Ri, (2.2)

where U is the velocity, B the buoyancy, P is the pressure, w is the vertical velocity
and ez is the unit vector in the z direction. In the non-dimensional equations
(2.1)–(2.2), velocities have been scaled by a velocity scale U, lengths by a spatial scale
δ, time by the advective scale δ/U and buoyancy by UN where N is the Brunt–Väisälä
frequency of the background linear stratification. The flow is controlled globally
by the bulk Richardson number Ri = N2/(U/δ)2, the Reynolds number Re = Uδ/ν,
the Rossby number Ro = U/f δ and the Prandtl number Pr = ν/κ , where ν is the
kinematic velocity, κ is the kinematic diffusivity of buoyancy and f the Coriolis
parameter.

The stratified free shear basic flow that we consider is:

UKH = tanh z, VKH = 0, WKH = 0, BKH = z
√

Ri (2.3)

in a non-rotating frame, i.e. 1/Ro = 0 in (2.1). In what follows, we refer to this basic
flow as the Kelvin–Helmholtz profile. The velocity scale is the maximum velocity and
the length scale is given by the shear thickness.

The Ekman profile, given by:

UE = 1 − e−z cos z, VE = e−z sin z, WE = 0, BE = z
√

Ri, (2.4)

is an exact solution of the Boussinesq equations (2.1)–(2.2) for the steady three-way
balance between the pressure gradient, Coriolis and frictional forces, which specifies
the characteristic length scale δ =

√
2ν/f , hence Ro = Re/2 (Ekman 1905). The

velocity scale is defined as the geostrophic velocity, to which the flow velocity tends
far away from the solid boundary present at z = 0.

2.2. Amplitude equation

We shall analyse the nonlinear development of infinitesimal perturbations (u, b) added
to either the KH flow or the stratified Ekman flow near the bifurcation Ri = Ric.
For this we derive an amplitude equation obeyed by the small amplitude A of
perturbations:

dA

dt
= (σ1 + µ|A|2)A,

1

2

d

dt
|A|2 = (Re(σ1)+ Re(µ)|A|2)|A|2 (2.5)

where σ1 is the growth rate of the linear instability, µ is the first Landau coefficient
and Re denotes the real part. The perturbations themselves are expanded in powers
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of A, starting with the normal mode of the shear instability. In order to define µ

unambiguously, the normal mode is scaled to unit total energy TE = KE + PE, with

KE =
∫

u
2 dz the kinetic energy and PE =

∫

b2 dz potential energy, where the overbar
denotes horizontal averaging. The normal mode is sinusoidal in the x, y directions and
defines the fundamental harmonic. New harmonics appear as higher powers of A are
considered (see appendix A for a full derivation).

Notice that (2.3) is considered here as steady (frozen), which means that we neglect
the viscous diffusion of the basic KH profile. Indeed (2.3) is a steady solution only
of the inviscid Boussinesq equations. This seems problematic as the growth rates we
consider will typically be small since Ri ≃ Ric. However, as discussed in detail by
Churilov & Shukhman (1987), there exists a range of amplitudes for which the weakly
nonlinear theory is valid and at the same time the amplitude evolves much faster
than the time scale of diffusion of the base flow, which can therefore be consistently
neglected.

As derived in appendix A, we obtain µ for any value of Pr,Re, k where k is
the wave vector of the eigenmode. For each Pr,Re, k, there is an Ric(Pr,Re, k)

such that σ1 < 0 for Ri > Ric. We also define kc(Pr,Re) such that Ric(Pr,Re, kc) =
maxk (Ric(Pr,Re, k)). The value of µ is computed at Ri 6 Ric(Re,Pr, k) from a
compatibility condition (A 20) involving the adjoint eigenmode and nonlinear source
terms induced by the development of the instability. At Ri = Ric, where Re(σ1) = 0,
the sign of Re(µ) determines the stability of the laminar equilibrium A = 0. If
Re(µ) < 0 the nonlinear effects are stabilizing and limit the growth of the amplitude
while if Re(µ) > 0, the nonlinear effects are destabilizing and amplify the growth of
the roll amplitude. In the latter case a finite-amplitude equilibrium or no equilibrium at
all exists at the bifurcation depending on higher-order terms not included in (2.5).

A detailed expression for µ is shown in appendix A. We decompose µ as:

µ= µ[0] + µ[2] (2.6)

where the contribution µ[0] results from a modification of the mean flow and the
contribution µ[2] is due to the second harmonic. The main question we address here
is whether µ is positive or negative, depending on what control parameters, and
according to which dynamical process. To know which contribution is the main cause
of the sign change of µ, we also decompose µ[0] as:

µ[0] = µ[0]
u

+ µ
[0]
b . (2.7)

Here µ
[0]
b is the contribution due to the modification of the mean buoyancy and µ[0]

u
is

the contribution due to the modification of the mean velocity.

3. Nonlinear feedbacks in the Kelvin–Helmholtz flow

3.1. The asymptotic theory of Churilov & Shukhman (1987)

Churilov & Shukhman (1987) derive an asymptotic value for the first Landau
coefficient µ as Re → ∞ at fixed Pr and Ri = Ric(Re,Pr, kc). Note that the Landau
coefficient µ and the various contributions of µ are real due to the mirror symmetry
of the flow. Their asymptotic theory relies on a multiple-time-scale expansion and
matched asymptotics. A viscous critical layer develops near the inflection point z = 0,
which requires careful asymptotic expansion in the critical layer and matching between
the outer expansion and the expansion in the critical layer. Salient results obtained by
(Churilov & Shukhman 1987) are that:
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Pr Ric kx ky µ µ[2] µ[0] µ[0]
u

µ
[0]
b µ

[0]
bx µ

[0]
bz |A|2eq

0.25 0.2465 0.70 0 −19.3 −2.8 −16.5 −9.2 −7.3 −11.8 4.4 9.1 × 10−5

0.7 0.2465 0.70 0 −7.0 −0.7 −6.3 −5.5 −0.8 −12.8 12.0 2.5 × 10−4

1 0.2465 0.70 0 0 0.6 −0.6 −4.7 4.1 −13.2 17.3 0.045
4 0.2465 0.70 0 70.0 11.4 58.6 −2.8 61.4 −13.8 75.0 —

TABLE 1. Values of the Landau coefficient µ and its various contributions

µ[2], µ[0], µ[0]
u
, µ

[0]
b , µ

[0]
bx and µ

[0]
bz for KH base flow at Re = 1000. The equilibrium amplitude

|A|eq is computed at Ri = 0.99Ric using (3.4).

(a) µ[0] and µ[2] both change sign precisely at Pr = 1, with µ < 0 for Pr < 1 and
µ > 0 for Pr > 1;

(b) the thickness of the critical layer scales like Re−1/3;

(c) both contributions µ[0] and µ[2] scale like Re but the mean-flow contribution µ[0]

dominates.

Furthermore the change of sign of µ at Pr = 1 can be explained qualitatively as
follows: the variation of the local Richardson number which governs the flow stability
is determined by a competition between the nonlinear reduction of the mean shear
and that of mean stratification. The former is a stabilizing effect, while the latter
is destabilizing and enhanced by a larger Pr. Therefore for sufficiently large Pr the
destabilizing effect dominates and µ > 0.

3.2. Numerical verification of the asymptotic theory

To provide a quantitative comparison between the several contributions of µ, we give
their values computed at Re = 1000,Pr = 0.25, 0.7, 1, 4 in table 1. We find that µ[0]

u
is

always negative so modification of the mean shear is always stabilizing. Therefore we
now focus on the contribution of the mean buoyancy which can be further decomposed
as:

µ
[0]
b = µ

[0]
bx + µ

[0]
bz (3.1)

where µ
[0]
bx depends on horizontal gradients of the linear eigenmode while µ

[0]
bz depends

on the modification of the horizontal-mean buoyancy gradient (see appendix A); µ
[0]
bz

depends strongly on Pr while µ
[0]
bx depends weakly on the Prandtl number. Overall, the

change in sign of µ is dominantly due to the strong amplification of µ
[0]
bz as Pr is

increased, with a smaller contribution from µ[2] which also increases with Pr. Because
the destabilizing feedback µ

[0]
bz competes with the stabilizing feedbacks µ[0]

u
, µ

[0]
bx which

depend weakly on Pr, this amplification leads to a change of the net feedback from
stabilizing at Pr = 0.7 to destabilizing at Pr = 4. On the other hand, the various
contributions cancel each other at Pr = 1 leading to µ≃ 0. This means that the change
in sign occurs precisely at Pr = 1, in agreement with Churilov & Shukhman (1987).

In figure 1(a), we examine the mean shear modification du
[0]
2 /dz and mean

stratification modification db
[0]
2 /dz at a fixed Re (Re = 1000). The interpretation

of these profiles is that the mean velocity and buoyancy profiles change as the
perturbation grows according to:

u
[0] = UKH(z)+ |A|2u[0]

2 (z), b[0] = BKH(z)+ |A|2b
[0]
2 (z) (3.2)
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FIGURE 1. (a) Nonlinear modification of mean shear du
[0]
2 /dz and mean stratification db

[0]
2 /dz

at Pr = 1 and Pr = 4,Re = 1000. (b) max(|du
[0]
2 /dz|) and max(|db

[0]
2 /dz|) as a function of Pr

at Re = 10 000 (circles) and Re = 1000 (dots) for KH flow.

where u
[0] is the horizontal-mean velocity and b[0] is the horizontal-mean buoyancy.

They correspond to a weakening of the mean shear and mean stratification, the latter

being amplified at higher Pr. The dependence of b
[0]
2 and u

[0]
2 on the Prandtl number

can be analysed quantitatively as follows. The mean flow modification is determined
by (A 12), which simplifies at Ri = Ric for the mean flow since σ1 + σ̄1 = 0. Using the
expression (A 6) for the linearized operator acting on the mean flow, (A 12) reduces to:

1

Re

du
[0]
2

dz
= u

[1]
1 w

[1]
1 + c.c.,

1

Re Pr

db
[0]
2

dz
= b

[1]
1 w

[1]
1 + c.c., (3.3)

i.e. the mean flow adjusts so as to induce a viscous (respectively diffusive) flux
of momentum (respectively buoyancy) that balances the vertical flux induced by the

developing instability. For fixed Re, du
[0]
2 /dz can vary as Pr increases only if the

right-hand side (r.h.s.) of (3.3) does, while db
[0]
2 /dz can vary both due to changes in

the r.h.s. and due to an increase of Pr, even at fixed r.h.s. We plot in figure 2(a)
the velocity field u1 and the buoyancy field b1 of the eigenmode for two different
Pr,Re = 1000 and Ri ≃ Ric The velocity eigenmode u1 depends very little on Pr. Thus

the r.h.s of (3.3) determining u
[0]
2 and µ[0]

u
is also almost constant as Pr varies. On

the other hand the buoyancy eigenmode b1 becomes more vertically confined as Pr is

increased, and also more intense. To verify how the profiles du
[0]
2 /dz and db

[0]
2 /dz scale

with Pr, it is sufficient to consider the maxima max(|du
[0]
2 /dz|) and max(|db

[0]
2 /dz|),

shown in figure 1(b) as a function of Pr at fixed Re (Re = 1000 and Re = 10 000). The

dependence of db
[0]
2 /dz on Pr is not affected when we increase the Reynolds number.

Combined with the proportionality of db
[0]
2 /dz to Pr, these dependences lead to the

rapid growth of µ
[0]
bz with Pr observed in table 1.

We now check that the Landau coefficient µ computed numerically as described
in appendix A behaves as predicted by Churilov & Shukhman (1987) in the
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FIGURE 2. (a) KH eigenmodes u1(x, z) = u
[1]
1 (z) exp(ik · x) + c.c. (left column) and

b1(x, z) = b
[1]
1 (z) exp(ik · x) + c.c. (right column) for Pr = 1 (top row) and Pr = 4 (bottom

row), Re = 1000,Ri ≃ Ric. Contour level interval is 0.2 and negative contours are dotted.
(b) Nonlinear saturation of KH instability near Ri = Ric at Re = 1000 and Pr = 0.7 and
Pr = 4.
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FIGURE 3. (a) µ[0] (stars) and µ[2] (circles) as a function of Re for KH flow. At Pr = 4
(dashed line), µ[0] and µ[2] are positive while at Pr = 0.7 (solid line), µ[0] and µ[2] are

negative and we plot −µ[0] and −µ[2]. (b) max(abs(du
[0]
2 /dz)) (dots) and max(abs(db

[0]
2 /dz))

(circles) as a function of Re.

range 500 6 Re 6 10 000 and 0.25 6 Pr 6 4. We first verify at fixed Pr that µ[0]

and µ[2] scale like Re and that the mean-flow contribution µ[0] dominates. For that we
plot µ[0] and µ[2] as a function of Re (figure 3a) for Pr = 0.7 and Pr = 4. This figure
shows that both µ[0] and µ[2] scale as Re and also that for Pr > 4, µ[0] ∼ 5µ[2].

Next we plot max(du
[0]
2 /dz) and max(db

[0]
2 /dz) (figure 3b) as a function of Re at a

fixed Pr, and find that they scale with Re consistently with (3.3) and with Churilov &
Shukhman (1987).
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3.3. Numerical verification of the weakly nonlinear theory

To verify the validity of the weakly nonlinear theory for the KH profile, finally
we perform fully nonlinear two-dimensional simulations of stratified KH flow
at Ri slightly below Ric at Pr = 0.7 and Pr = 4. We compute numerically
Ric(Re = 1000,Pr = 0.7) = 0.2465, with the corresponding wavenumber kc = 0.70.
Four different simulations with Pr = 0.7, 4 and Ri = 0.95Ric, 0.99Ric are initialized
with (u, b) = (U − UKH,B − BKH) = A (u1, b1) where A = 10−4 and (u1, b1) is the
linear eigenmode computed for each (Pr,Ri) pair at k = k0, normalized to unit total

energy
∫

u
2
1 + b2

1 dz = 1 where the overbar denotes horizontal averaging. Due to this

normalization E(t) =
∫

u2 + b2 dz = |A|2 + O(|A|4) for small A, so that A can be
approximated by E1/2 for the purposes of this subsection. Figure 2(b) presents the
amplitude E1/2 ≃ |A| of the nonlinear perturbation as a function of time rescaled by
the growth rate of the linear instability σ1 = σ1(Re = 1000,Ri,Pr, k = kc). By design
all four curves collapse during the linear phase E1/2 ∼ exp(σ1t). Later, deviations from
the linear behaviour E1/2 ∼ exp(σ1t) confirm that the nonlinearities are stabilizing
at Pr = 0.7 (E1/2 < exp(σ1t)) and destabilizing at Pr = 4 (E1/2 > exp(σ1t) before
saturation).

When µ < 0 the equilibrium amplitude |A|eq reached by E1/2 as t → ∞ can be
computed from µ and the linear growth rate σ1 as

|A|2eq = −σ1/µ≃
Ric − Ri

µ

dσ1

dRi
. (3.4)

At Pr = 0.7,Ri = 0.99 Ric (3.4) is verified quite well with |A|2eq = 2.7 × 10−4,−σ1/µ=
1.8 × 10−3/7 = 2.5 × 10−4 (table 1, rightmost column). Furthermore |Aeq| decreases

roughly like
√

Ric − Ri as Ri approaches Ric (the ratio of saturated amplitudes at
Ri = 0.95Ric compared to Ri = 0.99Ric is ∼2 ≃

√
0.05/0.01) while the amplitude

at saturation remains the same for Pr = 4. This confirms directly that the weakly
nonlinear expansion is quantitatively accurate and that the bifurcation of the KH flow
is supercritical at sufficiently low Pr and subcritical at sufficiently high Pr.

We have also used these nonlinear simulations to estimate directly the Landau
coefficient from a linear least-squares fit of the relationship between the total
energy E and its growth rate E−1dE/dt. In fact E = |A|2 + α|A|4 + O(|A|6) yields
E−1dE/dt = 2σ1+2(µ+ασ1)E

2+O(E3)≃ 2σ1+2µE2 for near-critical Ri. This estimate
agrees within 5–10 % with the Landau coefficient computed from the weakly nonlinear
analysis.

4. Nonlinear feedbacks in the stratified Ekman layer

In § 3 we verified that the Prandtl number predominantly controls the
supercritical/subcritical nature of the bifurcation of the continuously stratified KH
flow near Ri = Ric as predicted in Churilov & Shukhman (1987). The weakly nonlinear
analysis suggests that the underlying physical mechanism is the competition between
a Prandtl-number-independent weakening of the mean shear and a Prandtl-number-
dependent weakening of the mean stratification as the instability develops. This
mechanism does not seem to depend on the details of the basic flow. To find out
whether this nonlinear destabilization mechanism is indeed valid for a more general
stratified shear flow, we repeat here our weakly nonlinear analysis on the Ekman flow
which is affected by rotation and the presence of a boundary and is not unidirectional.
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FIGURE 4. (a) Real part of the growth rate σ1(Re = 1000,Ri,Pr, k) of the primary
instability as a function of the wave vector k, at Ri = 0 (thin, contour interval 0.005) and
Ri = 0.015,Pr = 4 (thick, contour interval 0.002). (b) Ekman flow velocity along wave vector
k where k corresponds to the fastest-growing mode.

Infinitesimal perturbations with horizontal wave vector k = (kx, ky) added to the
Ekman flow grow exponentially in time if Ri < Ric(Re,Pr, k) where Ric is the
critical bulk Richardson number above which the linear instability is suppressed.
The overall critical value Ric(Re,Pr) = maxk Ric(Re,Pr, k) depends somewhat on the
Reynolds number Re but very little on the Prandtl number (Mkhinini et al. 2013).
We display in figure 4(a) the real part of the growth rate σ1(Re = 1000,Ri = 0, k)
of the primary instability. The non-trivial dependence of Re(σ1) on k is due to the
veering in the Ekman profile. In what follows we focus on the region of wave vector
space (kx, ky) ∈ [−0.5, 0.1] × [0, 1.2] where σ1 is close to its maximum value, which
corresponds to the inflection-point instability.

4.1. Parameters controlling the nature of the bifurcation

We now explore the parameter space to determine if Re(µ) depends on Pr

independently of Re and k. Note that the basic flow is no longer symmetric, hence
the Landau coefficient and its different contributions are complex numbers.

We plot in figure 5 the real part of the Landau coefficient µ(k) for Re = 1000 and
Pr = (1, 1.5, 4). For each wavenumber k with −0.5 6 kx 6 0.1 and 0 6 ky 6 1.2, µ
is computed for Ri ≃ Ric(Re,Pr, k). For all such k, the values of Re(µ) for Pr = 1
are negative which means that the nonlinear terms have a stabilizing effect. For
Pr = 1.5, Re(µ) takes both signs (figure 5b). For Pr = 4 (figure 5c), the values of
Re(µ) become positive for most k and the nonlinear effect becomes almost everywhere
destabilizing. Similar results are found at Re = 500 (not shown). We conclude then
that this stabilizing/destabilizing effect depends mainly on the Prandtl number.

4.2. Effect of the Prandtl number on nonlinear feedback

Table 2 presents the real part of the Landau coefficient µ and its various contributions

for Re = 1000,Pr = 0.25, 0.7, 1, 4. We observe again that Re(µ
[0]
bz ) is destabilizing and

strongly enhanced as Pr increases, while the other contributions to µ[0] are stabilizing
and depend weakly on the Prandtl number. Combined with a small µ[2], this results in
a destabilizing net feedback Re(µ) > 0 at Pr = 4.
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b ) Re(µ
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bx ) Re(µ

[0]
bz ) |A|2eq

0.25 0.0243 −0.30 0.34 −4.0 −1.3 −2.7 −2.1 −0.6 −1.3 0.6 5.3 × 10−5

0.7 0.0238 −030 0.34 −0.7 −0.8 0.1 −0.4 0.4 −0.9 1.3 2.6 × 10−4

1 0.0249 −0.30 0.33 −0.1 −0.4 0.3 −1.7 2.0 −1.5 3.4 1.6 × 10−3

4 0.0248 −0.30 0.33 16.8 2.2 14.6 −1.0 15.6 −1.5 17.1 —

TABLE 2. Values of the Landau coefficient µ and the real part of its various contributions µ[2], µ[0], µ[0]
u
, µ

[0]
b , µ

[0]
bx and µ

[0]
bz for Ekman flow

at Re = 1000. The equilibrium amplitude |A|eq is computed at Ri = 0.99Ric using (3.4).
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FIGURE 5. Real part of the Landau coefficient µ for Re = 1000 and for Pr = 1 (a), Pr = 1.5
(b) and Pr = 4 (c). For each wave vector k, µ is computed with Ri = Ric(Re,Pr, k).

We present in figure 6(a) the modification of the mean shear du
[0]
2 /dz and mean

stratification db
[0]
2 /dz. Again, the interpretation of these profiles is that the mean

velocity and buoyancy profiles change as the perturbation grows according to (3.2)

with the Ekman basic flow replacing the KH profile. We see that du
[0]
2 /dz, like

Re(µ[0]
u
), depends weakly on Pr. Furthermore du

[0]
2 /dz is mostly positive while dUE/dz

is mostly negative (figure 4b), i.e. the mean shear weakens as the instability develops.

On the other hand db
[0]
2 /dz is also negative, i.e. the stratification also weakens as the

instability develops. This effect is amplified when Pr = 4 due to the stronger buoyancy

gradients that can form when the diffusivity is low. We plot next max(|du
[0]
2 /dz|) and

max(|db
[0]
2 /dz|) (figure 6b) as a function of Pr at a fixed Re, and find that as in the

case of KH flow, they scale roughly with Pr.
We now turn to the scaling as a function of Re at fixed Pr. Figure 7(a) presents

max(|du
[0]
2 /dz|) and max(|db

[0]
2 /dz|) for Pr = 0.25, 4 and 500 6 Re 6 10 000. Note that

we use Pr = 0.25 to make sure that the Landau coefficient does not change sign as

Re varies; max(|du
[0]
2 /dz|) (stars) and max(|db

[0]
2 /dz|) (circles) scale roughly with Re

as expected from the asymptotic theory of Churilov & Shukhman (1987) and (3.3).
To find if Re(µ[0]) and Re(µ[2]) also scale as Re, we plot these two variables as a
function of Re (figure 7b). Now Re(µ[0]) and Re(µ[2]) increase with Re for Pr = 4
but apparently not as fast as predicted by a linear scaling. Furthermore for Pr = 0.25,
Re(µ[0]) and Re(µ[2]) actually decrease as Re increases, quite the opposite of the
expected behaviour. Therefore while the behaviour as a function of Pr is similar in the
KH and Ekman flows, the scaling with Re is not entirely the same, especially for low
values of Pr.

4.3. Development and saturation of the inflection-point instability

We now verify the conclusions of weakly nonlinear theory regarding the subcritical
or supercritical character of the bifurcation at Ri = Ric using numerically computed
equilibrated flows, i.e. solutions of the fully nonlinear Boussinesq equations that are
stationary in a moving reference frame. Those equilibrated flows have been computed
by Mkhinini et al. (2013) and have a structure comparable to KH rolls. To identify
the nature of the bifurcation, we compute in figure 8 the total energy TE of the



454 N. Mkhinini, T. Dubos and P. Drobinski

z

0

0.4

0.8

1.2

1.6

2.0

–200 –150 –100 –50 0 50 0.70 1.00

Pr

0.25 4.00

(a) (b)

100

101

102

103

FIGURE 6. (a) Nonlinear modification of mean shear du
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2 /dz and mean stratification db

[0]
2 /dz

at Pr = 1 and Pr = 4,Re = 1000. (b) max(|du
[0]
2 /dz|) and max(|db
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2 /dz|) as a function of Pr

at Re = 1000 (dots) and Re = 10 000 (circles) for Ekman flow.
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FIGURE 7. (a) max(|du
[0]
2 /dz|) (dots) and max(|db

[0]
2 /dz|) (circles) as a function of Re for

Ekman flow and Pr = 0.25 (solid) and Pr = 4 (dashed). (b) Re(µ[0]) and Re(µ[2]) as a
function of Re for Ekman flow. At Pr = 4 (dashed), µ[0] and µ[2] are positive while at
Pr = 0.25 (solid), µ[0] and µ[2] are negative and we plot −µ[0] and −µ[2].

equilibrated rolls as a function of Ri for four pairs of parameters (Re,Pr). As

expressed by (3.4), the amplitude of the nonlinearly equilibrated rolls vanishes as

Ri approaches Ric if µ < 0. For Pr = 1, the kinetic and total energies vanish for Ri

close to Ric. On the other hand, for Pr = 4, the kinetic and total energies remain finite

when Ri reaches Ric. This shows that the bifurcation at Ri = Ric for Pr = 4 is indeed

of the subcritical type while the bifurcation is of the supercritical type at Pr = 1.
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FIGURE 8. Total energy of equilibrated Ekman rolls as a function of Ri for several (Re,Pr).
At Re = 500, Ric ≃ 0.018 and at Re = 1000,Ric ≃ 0.025.

5. Discussion

The present weakly nonlinear analysis confirms that the nature of the bifurcation of
stratified Ekman flow near Ri = Ric is dominantly controlled by the Prandtl number Pr.
Details of the asymptotic theory derived for the KH basic flow seem invalid for the
Ekman basic flow. In particular, the scaling of the first Landau coefficient with Re for
Pr < 1 is not as predicted by Churilov & Shukhman (1987). Nevertheless the dominant
mechanism controlling the net nonlinear feedback remains that the mean flow adjusts
so as to induce a viscous (respectively diffusive) flux of momentum (respectively
buoyancy) that balances the vertical flux induced by the developing instability, leading
to a Prandtl-number-independent weakening of the mean shear and a Prandtl-number-
dependent weakening of the mean stratification. The competition between the former
effect, which is stabilizing (as well as other contributions not analysed here in detail),
and the latter effect, which is destabilizing, determines the supercritical or subcritical
character of the bifurcation. Therefore the feedback mechanism identified by Brown
et al. (1981) and Churilov & Shukhman (1987) and its dependence on Pr can be
expected to have a wide validity among stratified shear flows, even in the presence of
veering and a solid boundary.

Typical values of Pr range from 0.7 for the diffusion of heat in air to ∼700 for the
diffusion of salt in water. We do not attempt to reach such high Pr because strong
effects are already present at Pr = O(1). Reaching oceanic values would require either
highly resolved numerical calculations or an asymptotic theory in the limit of high
Pr. This is beyond the scope of the present work but it is plausible that the nonlinear
feedback we discuss remains valid at very high Prandtl numbers.

A consequence of this feedback mechanism is that finite-amplitude KH-like billows
can occur even marginally below Ric at high Pr, like in the ocean, while for low
Pr like in the atmosphere a finite departure from Ric is needed to form billows.
Furthermore finite-amplitude billows may develop even at Ri> Ric at high Pr provided
some mechanism generates perturbations with an initial amplitude large enough for the
destabilizing nonlinear feedback to overcome the stabilizing linear feedback (σ1 < 0
if Ri > Ric). Efficient three-dimensional mixing in stratified shear flows results from
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a buoyant-convective secondary instability which depends on the ability of billows to
form locally statically unstable regions (Peltier & Caulfield 2003). Pr may therefore
have a profound influence on such mixing, and it would be interesting and important
to re-examine Prandtl number effects in stratified turbulence beyond the few existing
studies (e.g. Klaassen & Peltier 1985).
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Appendix A. Weakly nonlinear theory

Several equivalent weakly nonlinear formalisms can be found in the litterature
(Stuart 1960; Watson 1960; Reynolds & Potter 1967; Herbert 1983; Fujimura 1989).
Our formalism is along the lines of Herbert (1983). We let U = U0 + u with either
U0 = UE or U0 = UKH and look for a solution of the Boussinesq equations (2.1)–(2.2)
written formally as:

∂

∂t

[

u

b

]

− L ·

[

u

b

]

+ u ·∇

[

u

b

]

= 0 (A 1)

where L represents the dynamics linearized about the basic flow:

L ·

[

u

b

]

=







1

Re
1u +

√
Ri bez −

1

Ro
ez × u − (U0 ·∇)u − (u ·∇)U0 + ∇p

1

Re Pr
1b −

√
Ri w






(A 2)

where 1/Ro = 2/Re for the Ekman flow and 1/Ro = 0 for the KH flow. In (A 2)
we have explicitly written the contribution of the pressure gradient ∇p on the r.h.s.
However in actual numerical computations this r.h.s. is projected onto a space of
divergence-free velocity fields, and the pressure gradient does not contribute to the
result of this projection. Therefore in what follows we do not include this pressure
gradient term, although it is actually present and ensures the non-divergence of the
flow. The deviation u, b from the laminar flow results from the nonlinear development
of the primary instability with wave vector k. We define linear operators acting on
each Fourier mode separately:

L ·

[

El
u

[l](z)

El b[l](z)

]

= El L[l]
·

[

u
[l](z)

b[l](z)

]

, (A 3)

∇

[

El
u

[l](z)

El b[l](z)

]

= El
∇

[l]

[

u
[l](z)

b[l](z)

]

, (A 4)

∇
[l] = exikl + ez

∂

∂z
, (A 5)
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where E = eik·x, k = ‖k‖ and l indexes the Fourier modes. For the mean flow l = 0, the
expression for L[0] simplifies to:

L[0]
·

[

u

b

]

=









1

Re

d2
u

dz2
−

1

Ro
ez × u

1

Re Pr

d2b

dz2









(A 6)

because w = 0, ∂/∂x = 0, (UE · ∇)u = (u · ∇)UE = 0 and the pressure gradient cancels
the buoyancy force.

We expand u, b in powers of a complex amplitude A assumed to be small:

u(x,A)=
∞

∑

m=1

um(x,A,A), b(x,A)=
∞

∑

m=1

bm(x,A,A) (A 7)

where um, bm are polynomials of total degree m in A and its complex conjugate
A; um and bm contain only even (respectively odd) Fourier modes when m is even
(respectively odd):

[

u1

b1

]

= AE

[

u
[1]
1

b
[1]
1

]

+ ĀĒ

[

u
[1]
1

b
[1]
1

]

, (A 8)

[

u2

b2

]

= A2E2

[

u
[2]
2

b
[2]
2

]

+ AA

[

u
[0]
2

b
[0]
2

]

+ Ā2Ē2

[

u
[−2]
2

b
[−2]
2

]

, . . . . (A 9)

Note that u
[−l]
m = u[l]

m and b[−l]
m = b[l]

m . Equation (A 7) satisfies (A 1) provided the
amplitude evolves according to dA/dt = Aσ(|A|2) = A(σ1 + µ|A|2 + · · ·) where σ1

and µ are to be obtained and the u
[l]
m , b[l]

m satisfy relationships that we now detail up
to order m = 3. At first order in A one finds the eigenproblem of the linear stability
analysis

L[1]
·

[

u
[1]
1

b
[1]
1

]

= σ1

[

u
[1]
1

b
[1]
1

]

. (A 10)

We impose

〈u[1]
1 ·u

[1]
1 + b

[1]
1 b

[1]
1 〉 = 1 where 〈b〉 =

k

2π

∫

[0,2π/k]×[0,∞[
b dx dz, (A 11)

which allows |A|2 to be interpreted, to leading order, as the total energy of the
perturbation. In order to uniquely define the amplitude A, we introduce the adjoint

eigenvector v, β subject to the normalization constraint
〈

v ·u
[1]
1 + βb

[1]
1

〉

= 1 and

define the amplitude as A =
〈

E
(

v ·u + βb
)〉

. The adjoint eigenproblem is posed at
the discrete level: the adjoint eigenvector is defined as an eigenmode of the conjugate-
transpose of the matrix representing operator L[1].

At second order in A one finds O(|A|2) modifications of the flow, determined by
the response of the mean flow and the 2k mode to forcing by the nonlinear terms
generated by the first harmonic:

(L[0] − (σ1 + σ̄1))

[

u
[0]
2

b
[0]
2

]

= u
[1]
1 ·∇

[−1]

[

u
[−1]
1

b
[−1]
1

]

+ c.c., (A 12)
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(L[2] − 2σ1)
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b
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]

. (A 13)

Considering the Fourier mode l = 1 at third order in A, one finds how the amplitude

must evolve consistently with O(|A|3) modifications of the flow:

(L[1] − 2σ1 − σ̄1) ·
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Now a consequence of the definition of A and the adjoint eigenmode is that

〈v · u
[1]
3 + βb

[1]
3 〉 = 0, which yields the compatibility condition determining µ and

its decomposition:

µ=
〈

v ·uS + β bS

〉

= µ[0] + µ[2], µ[0] = µ[0]
u + µ

[0]
b , µ

[0]
b = µ

[0]
bx + µ

[0]
bz (A 17)

where
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µ
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βu
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2
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=
〈

βw
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1 ·

∂b
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2
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〉

. (A 21)

Appendix B. Numerical discretization

In all circumstances we actually solve for the deviations u from the basic profile

and b from the linear background stratification. The vertical coordinate z is mapped

to η ∈ [−1, 1]. The mapping is η = tanh z/z0 with z0 = 5.1 in the KH case and

η = 1 − 2e−z/z0 with z0 = 4.1 in the Ekman case. The interval η ∈ [−1, 1] is equally

divided into Nz elements, in each of which we define six Gauss–Legendre quadrature

points. The free parameter z0 controls the thickness of the well-resolved region close

to z = 0.

Discrete problems are obtained from the continuous problems by Galerkin projection

onto finite-dimensional spaces for velocity and buoyancy satisfying horizontally

periodic boundary conditions. For the vertical discretization we use Nz + 4 cubic

B-splines Sm(η). Multiplying Sm(η) by f (η) = 1 − η in the Ekman case (respectively

f (η) = (1 + η) (1 − η) in the KH case) ensures exponential decay for z → ∞
(respectively z → ±∞). The velocity components u = −∂ψ/∂z,w = ∂ψ/∂x are defined
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by a stream function ψ to ensure non-divergence:

b(x, y, z)=
Mx
∑

k=0

Nz+4
∑

m=m1

b̃km exp

[

i

(

kx

2πLx

)]

f (η)Sm(η)+ c.c., (B 1)

ψ(x, y, z)=
Mx
∑

k=1

Nz+4
∑

m=m2

ψ̃km exp

[

i

(

kx

2πLx

)]

f (η)Sm(η)+ c.c., (B 2)

v(x, y, z)=
Mx
∑

k=0

Nz+4
∑

m=m1

ṽkm exp

[

i

(

kx

2πLx

)]

f (η)Sm(η)+ c.c., (B 3)

where u(x, y, z) = U(z)ex + u(z)ex + v(z)ey + w(z)ez, (m1,m2) = (0, 0) in the KH case

and (m1,m2)= (1, 2) in the Ekman case. The B-splines satisfy dSm/dη|η=−1 = 0,m > 1

and d2Sm/dη
2|η=−1 = 0,m > 2 so that in the Ekman case the boundary conditions at

z = 0 are enforced by excluding the first or first two B-splines from the expansions.

The expansion of the stream function ψ does not include the x-mean profile U(z)

(corresponding to k = 0) because this would imply
∫

U(z) dz = 0. Instead the mean

profile U(z) is expanded as a linear combination of f (η)Sm(η),m > m1. The resulting

fourth-order method is the same as the one used by Mkhinini et al. (2013), itself a

modification of the spectrally accurate spatial discretization described in more detail

in Spalart (1989) and used in earlier studies of the Ekman boundary layer (Coleman,

Ferziger & Spalart 1990; Foster 1996; Dubos et al. 2008). A vertical resolution of

Nz = 60 is sufficient at Re = 1000,Pr = 4 but Nz = 200 was used to reach Re = 10 000.

For the weakly nonlinear computations the expansions (B 1)–(B 3) are truncated to

Mx = 2. Fully nonlinear simulations use Mx = 21 with 64 quadrature points in the x

direction and Runge–Kutta time stepping.
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