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Abstract : 9 

In this work we perform a statistical analysis of global solar radiation measured at two sites, 38 km 10 

distant from, in Guadeloupe, French West Indies. We have established a correlation model based 11 

on the coefficient of variation assuming a time scale separation. The coefficient of variation is 12 

calculated on 10 minutes interval with data measured at 1 Hz. This analysis highlight the dynamic 13 

correlation that can occur between measurements from two different sites with a time step of one 14 

second. From this results, knowing the coefficient of variation on a site we have established a new 15 

correlation model on this parameter for another site. A diagram linking the standard deviation on 16 

both sites, for a given coefficient of variation is proposed for correlated and non-correlated cases. 17 

More over this analysis put in evidence the existence of a threshold time under which there is no 18 

significant correlation.  19 

This model can be useful in choosing new sites of production not only for establishing correlation 20 

from on site to another, but also in optimizing the geographical distribution of the solar farms within 21 

the territory. 22 

 23 
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1.Introduction 25 

 26 

1.1 Context 27 

Because of clouds, solar radiation is a fluctuating data especially under tropical climate. Indeed, 28 

rapid changes in the local meteorological condition as observed in tropical climate can provoke large 29 

variation of solar radiation. The amplitude of these variations can reach up to 700 W/m². Moreover, 30 

these solar radiation variations can occur within short time interval (from few seconds to few 31 

minutes), depending on the clouds size, speed and number. The typical time scales associated with 32 

these solar radiation variations also vary significantly with the geographical location. 33 

Studies of solar energy systems are traditionally performed using daily or hourly data [1] [2]. These 34 

data do not take into account the fluctuations mentioned previously. It has been shown that the 35 

fractional time distribution for instantaneous radiation differs significantly from that obtained with 36 

daily values. 37 

Since solar energy systems are sensitive to instantaneous radiation fluctuations, simulations of 38 

these systems with daily or hourly data can lead to significant error especially under tropical climate. 39 

Indeed rapid variation of solar energy induces rapid and large variation of the output of such 40 

systems. For example solar cells (photovoltaics), used for electrical production, have very short 41 

response time and their electrical output will follow almost instantaneously the variations of solar 42 

radiation. 43 

With a high density of photovoltaics generation in a power distribution grid, rapid fluctuations of 44 

the produced electrical power can lead to unpredictable variations of node voltage and power. In 45 

small grids as they exist on islands (such a Guadeloupe, FWI) such fluctuations can cause instabilities 46 

in case of intermediate power shortages with insufficient back-up capacity available. To manage the 47 

electrical network and the alternative power sources requires a better identification of these small 48 



time scales variations. This stresses the need for power system operators to develop real time 49 

estimation tools for such disturbances.  50 

Over the last years, some work were dedicated in establishing correlation between sites as a 51 

function of distance [3] and in parameterization of short term irradiance variability [4]. There has 52 

been resurgent interest in modeling and quantifying sub-hourly variability using different methods 53 

and metrics. In [4] the authors uses and frequency analysis based on spectral and coherence 54 

functions. This study showed high correlation for time scale greater than 3 hours :24h, 12h , 6h and 55 

4h which are the main component in the irradiance signal. 56 

Other studies have quantified the solar radiation variability with a prediction goal. Methods such as 57 

wavelets [6], fractal parameters [7], [8] or hybrid models [9] were used for a given site. 58 

The Marquez formula [10] is also used to measure the variability, it is defined with the variation of 59 

the clear sky index CSI, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡) − 𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡 − 1) and 𝑉𝑉 = �𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2). 60 

An extension of this metric (called P) proposed by Perez et al. [5] is based on the dispersion of the 61 

quantity diff 𝑃𝑃 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑). Four metrics are used to characterize intra-hourly variability, including 62 

the standard deviation of the global irradiance clear sky index, and the mean index change from one 63 

time interval to the next, as well as the maximum and standard deviation of the latter. Different 64 

time scales are studied from 20 seconds to 15 minutes. 65 

In the present work we compare and analyze the statistical moments of the solar radiation 66 

parameters measured at two sites in the Guadeloupean archipelago with a time step of one second. 67 

We have established a correlation model for the coefficient of variation defined over a ten minutes 68 

period. 69 

The paper is organized as follow: the theoretical frame is exposed in section 2,  70 



This model can be useful in choosing new sites of production not only for establishing correlation 71 

from on site to another, but also in optimizing the geographical distribution of the solar farms within 72 

the territory to favor a smoothing of the overall available solar electricity production. Indeed this 73 

choice should be done not only on the basis of the annual potentiality of a site but also from the 74 

stability of its production.  75 

1.2 Methodology 76 

In the present work, we compare and analyze the solar global radiation signals 𝐺𝐺1, 𝐺𝐺2, measured at 77 

two sites in the Guadeloupean Archipelago. This study put in evidence the existence of a dynamical 78 

correlation between 𝐺𝐺1 and 𝐺𝐺2. To do so, we calculate for each signal, the global solar radiation 79 

fluctuation 𝐺𝐺′[𝑇𝑇1; 𝑇𝑇2] for time scales T= 10 min, 20 min, 30 min, …, 3 hours. The cross-correlation 80 

coefficient 𝐶𝐶𝐺𝐺1𝐺𝐺2  is used for each time scale T. From this result, we determine the time scale 81 

threshold 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡: for𝑇𝑇 < 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡, the two signals are decorrelated and for 𝑇𝑇 > 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡, the two signals are 82 

correlated. To evaluate the scattering effect of two sites, we determine the coefficient of variation 83 

for the sum signal 𝐺𝐺1+2. 84 

Finally we propose, analytical relationship of coefficient of variation 𝐼𝐼1+2 for two cases i) two signals 85 

statistically independent with different momentum, ii) two signals correlated with different 86 

momentum. 87 

2.Theoretical frame 88 

2.1 Decomposition of solar radiation signal using moving average filter 89 

The moving average of the instantaneous solar radiation 𝐺𝐺, at a given instant 𝑡𝑡 for a given averaging 90 

time 𝑇𝑇, is defined as(Papoulis): 91 

𝐺𝐺T����(𝑡𝑡) = 1
𝑁𝑁
∑ 𝐺𝐺(𝑖𝑖)
𝑖𝑖=𝑡𝑡+𝑇𝑇+12
𝑖𝑖=𝑡𝑡−𝑇𝑇−12

                                          (1) 92 



The instantaneous solar radiation 𝐺𝐺 can then be expressed as (ref): 93 

𝐺𝐺(𝑡𝑡) = 𝐺𝐺𝑇𝑇����(𝑡𝑡) + 𝐺𝐺′T(𝑡𝑡)                                    (2) 94 

Where 𝐺𝐺′T(𝑡𝑡) is the solar radiation fluctuation for time scales smaller then 𝑇𝑇 while the moving 95 

average 𝐺𝐺𝑇𝑇����(𝑡𝑡) gives the solar radiation evolution for time scales larger than 𝑇𝑇. This decomposition 96 

is illustrated in figure (1), where 𝐺𝐺𝑇𝑇����(𝑡𝑡) is superimposed to 𝐺𝐺(𝑡𝑡) for a measurement duration of one 97 

day and for 𝑇𝑇 = 3600𝑠𝑠.  Figure (1.a) illustrates the fluctuations obtained from equation (2). 98 

 99 

 100 

Figure1: An example of instantaneous solar radiation signal  (red line) and it’s trend (black line). 101 
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 102 

Figure 1a: global solar radiation fluctuations obtained from moving average decomposition 103 

 104 

Besides, the difference between two moving average having respectively averaging time 𝑇𝑇1  and 𝑇𝑇2, 105 

gives the fluctuation for time scales ranging on [𝑇𝑇1,𝑇𝑇2]: 106 

G′
T1−T2(𝑡𝑡) = 𝐺𝐺𝑇𝑇1����(𝑡𝑡) − 𝐺𝐺𝑇𝑇2����(𝑡𝑡)                                  (3) 107 

 108 

2.2 Coefficient of variation defined for two sites. 109 

In this study we consider solar radiation signal of 10 min length defined arbitrary. Let consider 𝐺𝐺1 �
𝐺̅𝐺1
𝜎𝜎1

 110 

and 𝐺𝐺2 �
𝐺̅𝐺2
𝜎𝜎2

 two signals measured at site 1 and 2 respectively. We can define, for each G1 and G2, 111 

from the two momentums 𝐺̅𝐺 and 𝜎𝜎, the coefficient of variation, a normalized measurement of 112 

dispersion of a probability distribution as: 113 

𝐼𝐼 =
𝜎𝜎
𝐺̅𝐺

  114 

 115 
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This parameter is a second order statistic moment measuring the degree of variability of a given 116 

process. In the turbulence and the wind energy communities, it’s called turbulence intensity and is 117 

classically used. Turbulence intensity is a metric characterizing turbulence expressed as a percent. 118 

For an illustration, an idealized flow of air with absolutely no fluctuations in air speed would have 119 

a turbulence intensity value of 0%. This idealized cases never occurs on earth. However, the values 120 

greater than 100% are possible. This can happen, for example, when the average air speed is small 121 

and there are large fluctuations present. The higher the coefficient is, the more turbulent the flow.  122 

This parameter is computed for the first time with global solar radiation data. This could be an 123 

interest for the solar energy community. It could be a simple way in order to qualify and classify the 124 

variability level of sites. 125 

 126 

Let consider the sum 𝐺𝐺1+2 𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑏𝑏𝑏𝑏  𝐺𝐺1+2 �
𝐺̅𝐺1+2
𝜎𝜎1+2

  with 𝐺𝐺1+2= 𝐺𝐺1+ 𝐺𝐺2and 𝐺𝐺1+2������ = 𝐺𝐺1���+ 𝐺𝐺2��� 127 

Let us define 𝜎𝜎1+2. By definition of standard deviation  128 

𝜎𝜎𝐺𝐺 =  �(G − 𝐺̅𝐺)2������������ 129 

thus, 130 

𝜎𝜎1+2 = �(𝐺𝐺1 + 𝐺𝐺2)2 + (𝐺𝐺1 + 𝐺𝐺2����������)² − 2(𝐺𝐺1 + 𝐺𝐺2)( 𝐺𝐺1 + 𝐺𝐺2������������)��������������������������������������������������������������  131 

This equation becomes 132 

𝜎𝜎1+2 = �𝐺𝐺12����� + 𝐺𝐺22����� + 2𝐺𝐺1𝐺𝐺2������� + 𝐺𝐺1���
2+ 𝐺𝐺2���

2 + 2G1��� G�1 − 2 G1G1���������� − 2 G1G2���������� − 2 G2G1���������� − 2 G2G2����������  133 

A) Assuming that G1 and G2 are statistically independent and have same moment order: 134 



We have 135 

 𝐺𝐺1𝐺𝐺2������� = G1��� G2��� 136 

And 137 

G1���=G2��� 138 

With this assumption equation (2) becomes: 139 

𝜎𝜎1+2 = �2(G12����� − G1���
2)  140 

Hence we can define the coefficient of variation of 𝐺𝐺1+2 as: 141 

I1+2 =
𝜎𝜎1+2
𝐺𝐺1+2������ =  

�2(G12����� − G1���
2)

2𝐺𝐺1���
  142 

I1+2 = 1
√2

𝜎𝜎1
𝐺𝐺1����

                                                                  (4) 143 

This result can be extended to n independent signals having the same moments: 144 

In =
�(∑ 𝜎𝜎i2)n

i=1

∑ 𝐺𝐺ı�n
i=1

                 (5)                                                         145 

 146 

B) Let us now consider G1 and G2 two signals statistically independent with different 147 

momentum. 148 

We can decompose each signal as 𝐺𝐺 = 𝐺𝐺����+ 𝐺𝐺 ′ 149 

Were G’ is the fluctuation in the signal around the mean value 𝐺𝐺����. 150 

Thus the sum is  151 



𝐺𝐺1+2= 𝐺𝐺1���+ 𝐺𝐺1′+𝐺𝐺2���+ 𝐺𝐺2′ 152 

𝐺𝐺1+2=𝐺𝐺1��� + 𝐺𝐺2���+ 𝐺𝐺1′+𝐺𝐺2′ 153 

𝐺𝐺1+2=𝐺𝐺1+2������ + 𝐺𝐺1+2′ 154 

With  155 

𝐺𝐺1+2������=𝐺𝐺1��� + 𝐺𝐺2���  156 

and  𝐺𝐺1+2′ = 𝐺𝐺1′+𝐺𝐺2′ 157 

The standard deviation of 𝐺𝐺1+2 is 158 

𝜎𝜎1+2 = �(𝐺𝐺1+2 − 𝐺𝐺1+2������)²������������������� 159 

Elsewhere  𝜎𝜎1+2 = �(𝐺𝐺1
′ + 𝐺𝐺2′)²���������������� =�(𝐺𝐺1

′2 + 2𝐺𝐺1′𝐺𝐺2′ + 𝐺𝐺2
′2)������������������������������ 160 

 161 

As the signals are considered statistically independent and decorrelated, we have  162 

Corr (𝐺𝐺1′,𝐺𝐺2
′) = c =

�𝐺𝐺1′𝐺𝐺2′���������

𝜎𝜎1𝜎𝜎2
= 0 163 

Where c is the normalized correlation coefficient 164 

Thus  𝐺𝐺1′𝐺𝐺2′��������= 0 165 

And  166 

𝜎𝜎1+2 = �(𝐺𝐺1
′2 + 𝐺𝐺2′2����������������) = �(𝜎𝜎1

2 + 𝜎𝜎22��������������) 167 

And the variation coefficient is  168 



𝐼𝐼1+2 = 
�𝜎𝜎12+𝜎𝜎22������������

𝐺𝐺1����+𝐺𝐺2����
                 (6) 169 

C) Now let us consider two signals correlated with different momentum as 170 

 c =
�𝐺𝐺1′𝐺𝐺2′���������

𝜎𝜎1𝜎𝜎2
  and  𝜎𝜎1+2 = �(𝐺𝐺1

′2 + 2𝐺𝐺1′𝐺𝐺2′ + 𝐺𝐺2
′2)������������������������������ 171 

𝜎𝜎1+2 = �𝜎𝜎12 + 2(c 𝜎𝜎1𝜎𝜎2)² + 𝜎𝜎22)������������������������������ 172 

As said previously c is the normalized correlation coefficient and the variation coefficient is  173 

21

2
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2
21

2
1

21

)(2
GG

c
I

+

++
=+

σσσσ
               (7) 174 

Consequently, using the analytical relation given above, considering two signals 175 

decorrelated, c=0, we found the analytical expression given in equation 6. Besides, if we 176 

consider two signals correlated, c=1, the analytical relation given 7 becomes:  177 

21

2
2

2
21

2
1

21

)(2
GG

I
+

++
=+

σσσσ
 178 

3 Solar radiation measurements  179 

In this study, the solar radiation measurements sampled at 1ℎ𝑧𝑧 were measured during one 180 

year, from January 2006 to January 2007, at two different sites in Guadeloupe. The daily average 181 

for the solar load on a horizontal surface is around 5 kWh/m². A constant sunshine combined with 182 

the thermal inertia of the ocean makes the air temperature variation quite weak, between 17°C and 183 

33°C with an average of 25°C to 26°C. Relative humidity ranges from 70% to 80% and the trade 184 

winds are relatively constant all along the year. Two main regimes of cloudiness are superposed: 185 



the clouds driven by the synoptic conditions over the Atlantic Ocean and the orographic cloud layer 186 

generated by the local reliefs. 187 

4 Results 188 

4.1 Time scale separation 189 

To put in evidence an eventually dynamical correlation between the two sites, the cross-190 

correlation coefficient 𝐶𝐶𝐺𝐺′1𝐺𝐺′2  is defined as [3]: 191 

𝑅𝑅𝐺𝐺′1𝐺𝐺′2(𝜏𝜏) = � � 𝐺𝐺′1𝑛𝑛+𝜏𝜏𝐺𝐺′2𝑦𝑦𝑛𝑛    𝜏𝜏 ≥ 0,
𝑇𝑇−𝜏𝜏−1

𝑛𝑛=0
𝑅𝑅𝐺𝐺′1𝐺𝐺′2(−𝜏𝜏)            𝜏𝜏 < 0

 192 

𝐶𝐶𝐺𝐺′1𝐺𝐺′2(𝜏𝜏) =
𝑅𝑅𝐺𝐺′1𝐺𝐺′2(𝜏𝜏)
𝜎𝜎𝐺𝐺′1𝜎𝜎𝐺𝐺′2

 193 

Where 𝐺𝐺′1, 𝐺𝐺′2 are zero-mean stochastic variables, σG’1 and σG’2 are the corresponding 194 

standard deviation .  For each day we have calculated this coefficient 𝐶𝐶𝐺𝐺′1𝐺𝐺′2  for different 195 

time scales. 196 

 197 

Figure 2: The conditional probability of the cross correlation. 198 
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 199 

Figure 3: percentage of correlation values for different 𝜏𝜏  200 

For the highlighting of a threshold time 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡 under which the fluctuations of two sites 201 

are not correlated, we determine the correlation coefficient 𝐶𝐶𝐺𝐺′1𝐺𝐺′2(𝜏𝜏) for the fluctuations 202 

G′
T1−T2(𝑡𝑡) defined in equation 3, with T1=10j minutes and T2=T1+10 minutes, for j between 203 

1 and 18. The figure illustrates the conditional probability 𝑃𝑃�𝐶𝐶𝑥𝑥𝑥𝑥�𝛥𝛥𝛥𝛥�,  with Δt  = T2 – T1. We 204 

observe that the maximum value of the probability increase 0.25 to 0.5 for time range 205 

[10;170] minutes. We observe a significant correlation for time [160; 170] and 𝐶𝐶𝐺𝐺′1𝐺𝐺′2= 0,5. 206 

This correlation keeps increasing for higher time scale. Thus the threshold time is estimated 207 

to be  𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡 = 170 𝑚𝑚𝑚𝑚𝑚𝑚. 208 

 209 



4.2 Time scales for uncorrelated signals: T<𝑻𝑻𝒕𝒕𝒕𝒕𝒕𝒕. 210 

 211 

Figure 4: a (left) The cross correlation function in semi-log diagram. The red curve correspond to the cross 212 

correlation for an example of a marginal event, and the blue curve represent the cross correlation  for the 213 

majority of the events.   b(right) the predicted coefficient of variation versus the experimental coefficient of 214 

variation. 215 

In this section, the figure 3a presents the cross correlation coefficient of the two 216 

sites, for time scales T< Ttrs. In 97% of cases, the value of 𝐶𝐶𝐺𝐺′1𝐺𝐺′2(𝜏𝜏) is smaller than 0,4. For 217 

time going to [10; 50] minutes the maximum correlation coefficient is 𝐶𝐶𝐺𝐺′1𝐺𝐺′2  =0,25.  218 

A weak value of the cross correlation coefficient for two measurement sites 219 

indicates that the solar radiation fluctuations are statistically independent. This shows 220 

that the fluctuations are not correlated on these time scales. 221 

Figure 5: Examples of correlated marginal events for small time scales. 222 



However, in 2% of cases we observe a dynamical correlation for 𝐶𝐶𝑥𝑥𝑥𝑥 values superior to 0,5. 223 

These marginal events correspond to extreme meteorological situations (clear sky or cloudy 224 

sky) as illustrated in figure 4.   225 

Besides, for these time scales, in figure 3b, we have plotted the experimental coefficient 226 

variation I1+2exp = 𝜎𝜎1+2
𝐺𝐺1+2������� versus the analytical relationship given in equation 6, 𝐼𝐼1+2theo = 227 

�𝜎𝜎12+𝜎𝜎22������������

𝐺𝐺1����+𝐺𝐺2����
. A good agreement is observed between the predicted coefficient variation and the 228 

measured coefficient variation, confirming a non-synchronous variability of the two sites 229 

for times scales T<TTrs.  230 

 231 

Figure 6:  Diagram of the predicted coefficient of variation determined with the standard deviations of two 232 

sites, uncorrelated cases. 233 

Moreover, in figure 6, we give the evolution of the predicted coefficient variation versus 234 

the given standard deviation σ1 and σ2, respectively for a site 1 and site 2. 235 

 236 



4.3 Time scales for correlated signals: T>𝑻𝑻𝒕𝒕𝒕𝒕𝒕𝒕 237 

Figure 7: a (left) the cross correlation coefficient in semi-log diagram. b(right) the predicted coefficient of 238 

variation versus the experimental coefficient of variation. 239 

The figure 7a displays the cross correlation of the two sites, for time scales T> Ttrs. We can 240 

observe that the cross correlation coefficients almost are close to 1 obtained for a time 241 

delay equal to 0. 242 

For these time scales, the characteristic length of the convective structure, in the 243 

atmospheric sub- layer, is of the order of several hundreds of kilometers (ref); we recall that 244 

the distance between the two sites is around to 40 kilometers. 245 

 246 

Figure 8:  Diagram of the predicted coefficient of variation determined with the standard deviations of two 247 

sites, correlated cases. 248 



For these time scales, we illustrated in figure 7b, the predicted coefficient of variation 249 

𝐼𝐼1+2theo given in equation 7, is plotted versus the experimental coefficient of variation, 250 

indicating a good agreement between the predicted values and the measured values.  The 251 

figure 8 presents the evolution of the predicted coefficient of variation versus the given 252 

standard deviation σ1 and σ2, respectively for a site 1 and site 2. 253 

5. Discussions 254 

In this study, we attempt to quantify the variability and the coupling of the global solar 255 

radiation for two sites in Guadeloupe, through the coefficient of variation, on ten minutes 256 

interval. This coefficient is defined from the mean and standard deviation of solar irradiance 257 

over the considered interval.  258 

We have established a model for the coefficient of variation assuming a time scale 259 

separation. Two cases can be distinguished according to the correlation of the first order 260 

moment (mean).  261 

The analysis of the cross correlation coefficient put in evidence à threshold under which 262 

there is no significant correlations of the global solar radiation fluctuations. According to 263 

this assumption we have established a model for the coefficient of variation defined for a 264 

pair of site, each one being characterized by the first and second order momentums 𝐺̅𝐺 and 265 

𝜎𝜎. This is given by the equation (6). 266 

When the signal are significantly correlated, the coefficient of variation of a pair of site is 267 

given by equation (7). 268 

Hence according to this model we can determine the coefficient of variation of a pair of site 269 

knowing the mean and standard deviation on one of the sites. 270 



The model was tested on experimental data for both cases, correlated and non-correlated. 271 

In both cases the predicted values by the model are in good agreement with the calculated 272 

coefficient of variation. 273 

For both cases a diagram is proposed to determine the coefficient of variation of a pair of 274 

site. This model can be useful to determine in a very simple and easy way the amount of 275 

energy and the associated fluctuations that may occur on a pair of site knowing the 276 

conditions on one site. 277 

When considering the PV production on different sites, it becomes possible to estimate the 278 

smoothing effect of the sum knowing the PV power at one site. 279 

This study cans also be helpful in choosing the best places for PV plants to take advantage 280 

of the smoothing effect due to the connection of different sites. 281 

 282 
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