New aspects of nonautonomous discrete systems stability - Archive ouverte HAL
Article Dans Une Revue Applied Mathematics & Information Sciences Année : 2014

New aspects of nonautonomous discrete systems stability

Résumé

We prove that a discrete evolution family ${\bf U}:=\{U(n,m):\; n\geq m\in \mathbb{Z}_+\}$ of bounded linear operators acting on a complex Banach space $X$ is uniformly esponentially stable if and only if for each forcing term $(f(n))_{n\in \mathbb{Z}_+}$ belonging to $AP_0(\mathbb{Z}_+, X)$, the solution of the discrete Cauchy Problem $$ \left\{ \begin{array}{lc} x(n+1)=A(n)x(n)+f(n), n\in \mathbb{Z}_+ \\ x(0)=0 \end{array} \right. $$ belongs to $AP_0(\mathbb{Z}_+, X)$, where the operators-valued sequence $(A(n))_{n\in \mathbb{Z}_+}$ generates the evolution family ${\bf U}$. The approach we use is based on the theory of discrete evolution semigroups associated to this family.
Fichier non déposé

Dates et versions

hal-01099019 , version 1 (30-12-2014)

Identifiants

  • HAL Id : hal-01099019 , version 1

Citer

Dhaou Lassoued. New aspects of nonautonomous discrete systems stability. Applied Mathematics & Information Sciences, 2014, 2014, pp.1-9. ⟨hal-01099019⟩
83 Consultations
0 Téléchargements

Partager

More