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Physical transceivers exhibit distortions from hardware impairments, of which traces remain even after compensation and calibration. Multicell MIMO coordinated beamforming methods that ignore these residual impairments may suffer from severely degraded performance. In this work, we consider a general model for the aggregate effect of the residual hardware impairments, and propose an iterative algorithm for finding locally optimal points to a weighted sum rate optimization problem. The importance of accounting for the residual hardware impairments is verified by numerical simulation, and a substantial gain over traditional time-division multiple access with impairments-aware resource allocation is observed.

INTRODUCTION

For wireless networks with multiple antennas at the transmitters and receivers, spatial selectivity can be exploited to serve several users simultaneously. Spectral efficiency can then be improved over traditional orthogonal multiple access schemes, such as time-division multiple access (TDMA) [START_REF] Gesbert | Multi-cell MIMO cooperative networks: A new look at interference[END_REF]. In particular, for multicell MIMO networks, the concept of interference alignment (IA) [START_REF] Cadambe | Interference alignment and degrees of freedom of the K-user interference channel[END_REF] has lately gained traction. IA is able to completely remove the inter-user interference, by restricting the interference to a lower-dimensional subspace at all receivers simultaneously, and then applying zero-forcing filters at the receivers. In terms of sum rate, it is suitable to apply IA at high SNRs, when inter-user interference is the main performancelimiting factor [START_REF] Gomadam | A distributed numerical approach to interference alignment and applications to wireless intererence networks[END_REF][START_REF] Brandt | Interference alignment in frequency -a measurement based performance analysis[END_REF]. For practical networks, there are typically other important performance-limiting factors as well, such as low to intermediate SNR [START_REF] Ayach | The practical challenges of interference alignment[END_REF], uncoordinated interferers [START_REF] Peters | Cooperative algorithms for MIMO interference channels[END_REF], imperfect channel state information [START_REF] Lee | On robust weighted sum rate maximization for MIMO interfering broadcast channels with imperfect channel knowledge[END_REF], and imperfect hardware [START_REF] Schenk | RF Imperfections in High-rate Wireless Systems: Impact and Digital Compensation[END_REF]. In this work, we focus on the latter and perform resource allocation and coordinated beamforming for any SNR by finding a local optimum to a weighted sum rate optimization problem. Any physical wireless transceiver will have hardware impairments, such as phase noise, I/Q imbalance, power amplifier nonlinearities, and sampling-rate and carrier frequency offsets [START_REF] Schenk | RF Imperfections in High-rate Wireless Systems: Impact and Digital Compensation[END_REF]. For each of these impairments, compensation schemes are typically applied to limit their negative effect. However, in practice the compensation and calibration will not be perfect, and distortion noises from residual hardware impairments will still remain [START_REF] Studer | MIMO transmission with residual transmit-RF impairments[END_REF]. These distortions may have a large impact on end-to-end performance [START_REF] Björnson | Capacity limits and multiplexing gains of MIMO channels with transceiver impairments[END_REF][START_REF] Björnson | Optimal resource allocation in coordinated multi-cell systems[END_REF],
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Previous Work and Contributions

A large amount of previous work has focused on individual hardware impairments and their respective compensation schemes; see [START_REF] Schenk | RF Imperfections in High-rate Wireless Systems: Impact and Digital Compensation[END_REF] and references therein. In [START_REF] Studer | MIMO transmission with residual transmit-RF impairments[END_REF], the aggregate effect of residual hardware impairments after such compensation was studied, and a model for the residual impairments was proposed and verified through measurements. In [START_REF] Björnson | Capacity limits and multiplexing gains of MIMO channels with transceiver impairments[END_REF], it was shown that the point-to-point MIMO capacity is fundamentally limited in the high-SNR regime, due to the residual impairments. However, [START_REF] Björnson | Capacity limits and multiplexing gains of MIMO channels with transceiver impairments[END_REF] further showed that the relative gain over SISO systems with residual impairments could still be large. The impact of path loss and power budget for systems with residual impairments was studied through simulations in [START_REF] Studer | System-level implications of residual transmit-RF impairments in MIMO systems[END_REF]. Generalizing the model from [START_REF] Studer | MIMO transmission with residual transmit-RF impairments[END_REF], reference [START_REF] Björnson | Optimal resource allocation in coordinated multi-cell systems[END_REF]Ch. 4.3] also described the optimal beamforming solution for the multicell MISO downlink.

For the multicell MIMO downlink without hardware-impaired transceivers, several iterative and distributed methods for coordinated beamforming exist [START_REF] Gomadam | A distributed numerical approach to interference alignment and applications to wireless intererence networks[END_REF][START_REF] Shi | An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel[END_REF][START_REF] Schmidt | Comparison of distributed beamforming algorithms for MIMO interference networks[END_REF]. In particular, [START_REF] Shi | An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel[END_REF] stands out as a constructive way of finding a local optimum to the non-convex weighted sum rate optimization problem, by reformulating the problem as a weighted minimum mean squared error (MMSE) problem.

In this work, we devise an iterative method for finding a local optimum to the weighted sum rate problem for the multicell MIMO downlink with residual hardware impairments. This is done by applying the general residual impairments model of [START_REF] Björnson | Optimal resource allocation in coordinated multi-cell systems[END_REF]Ch. 4.3] to the MIMO case, and extending the weighted MMSE approach of [START_REF] Shi | An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel[END_REF] to the problem with hardware-impaired transceivers. System performance is evaluated through numerical simulations, and the advantage of accounting for the residual hardware impairments is verified. Further, we note a large relative gain for the proposed method, over TDMA with hardware-impaired transceivers.

Notation: The pth row of a matrix A is [A] p,: , and the qth column is [A] :,q . The zero-mean circularly symmetric complex Gaussian distribution is denoted CN (0, B) with covariance matrix B. The Frobenius norm is k•k F and diag (•) creates a diagonal matrix.

MULTICELL MIMO WITH IMPAIRED TRANSCEIVERS

Our system model is a multicell MIMO downlink with hardwareimpaired transceivers. There are Kt base stations (BSs), each serving Kc user equipments (UEs). We index the kth UE associated with the ith BS as i k . Orthogonal frequency-division multiplexing (OFDM) is used to transform the wideband channel into a set of orthogonal narrowband channels, or subcarriers. We study the subcarriers independently, and do not include the subcarrier index for

Qi k = E ⇣ yi k y H i k ⌘ = Hi k iVi k V H i k H H i k i | {z } useful signal + X (j,l)6 =(i,k) Hi k j Vj l V H j l Hi k j | {z }
inter-cell and intra-cell interference

+ K t X j=1 Hi k j C (t) j H H i k j | {z } impact of transmitter distortions + C (r) i k |{z}
receiver thermal noise and distortions [START_REF] Gomadam | A distributed numerical approach to interference alignment and applications to wireless intererence networks[END_REF] notational simplicity. At a given subcarrier, the received signal at UE i k is then

yi k = Hi k iVi k xi k + X (j,l)6 =(i,k) Hi k j Vj l xj l + K t X j=1 Hi k j z (t) j + z (r) i k
(1) where Hi k j 2 C Mr ⇥M t is the flat fading MIMO channel 1 from BS j to UE i k . We let the signal intended for UE i k , xi k ⇠C N (0, IN d ), be linearly precoded with a transmit filter Vi k 2 C M t ⇥N d . The received signal in (1) contains the desired signal, inter-and intra-cell interference, and transceiver distortion noises. The terms z (t) j and z (r) i k in (1) model the distortion noises from the residual hardware impairments after compensation and calibration at the transmitter and receiver, respectively. The receiver thermal noise is part of z (r)

i k .
For the distortion noises, we use the model from [START_REF] Björnson | Optimal resource allocation in coordinated multi-cell systems[END_REF]Ch. 4.3]. That is, z

(t) i ⇠CN(0, C (t) i ) where C (t) i = diag ⇣ c (t),2 i,1 ,...,c (t),2 i,M t ⌘ .
The transmitter distortion is modeled as Gaussian, since it is the sum of many residual impairments. Even if the antennas are served by different RF-chains, the distortions at the different antennas may be correlated due to the precoding [START_REF] Moghadam | Correlation of distortion noise between the branches of MIMO transmit antennas[END_REF]. Such correlations are, however, typically small [START_REF] Moghadam | Correlation of distortion noise between the branches of MIMO transmit antennas[END_REF], and we approximate them with zero for tractability. Due to its nature, being the residual of impairments after compensation and calibration for a given transmitted signal, we assume the transmit distortion noise to be independent of the transmitted signal. The power of the distortion noise at antenna m, c (t),2 i,m , is however a function of the signal power allocated to that antenna [START_REF] Studer | MIMO transmission with residual transmit-RF impairments[END_REF].

Following [START_REF] Björnson | Optimal resource allocation in coordinated multi-cell systems[END_REF]Ch. 4.3] we let c

(t) i,m = η r P Kc k=1 [Vi k ] m,: 2 F ! ,
where the η(•) is a convex, nonnegative, and nondecreasing function describing how the magnitude of the signal maps to the magnitude of the transmitter distortions.

For the receiver distortion noise, the model in [START_REF] Björnson | Optimal resource allocation in coordinated multi-cell systems[END_REF]Ch. 4.3] only considered single-antenna receivers. In order to support the MIMO case, we extend the model accordingly. Hence we assume that z (r)

i k ⇠CN(0, C (r) i k ) where C (r) i k = diag ⇣ c (r),2 i k ,1 ,...,c (r),2 i k ,Mr
⌘ . Similarly as above, we assume the distortions to be uncorrelated over antennas, and independent of the received signal. The dis-

tortion power is c (r),2 i k ,m = σ 2 r + ν 2 r P (j,l) [Hi k j Vj l ] m,: 2 
F !
where ν(•) is a convex, nonnegative, and nondecreasing function describing how the magnitude of the received signal maps to the magnitude of the receiver distortions. σ 2 r is the thermal noise power. The impact of transceiver impairments is typically measured using the error vector magnitude (EVM). For our hardware impairments model, the EVM at transmitter antenna m is

EVM (t) m , v u u u t c (t),2 i,m P Kc k=1 [Vi k ] m,: 2 
F = η r P Kc k=1 [Vi k ] m,: 2 
F ! r P Kc k=1 [Vi k ] m,: 2 
F
. 1 The system model can easily be extended to different number of antennas per transceiver, different number of data streams per user, etc.

The EVM at the receiver side antennas is similarly defined, with respect to the received power at that antenna. Depending on the required spectral efficiency, a typical maximum transmit-EVM range in the 3GPP LTE standard is [0.08, 0.175] according to [START_REF] Holma | LTE for UMTS: Evolution to LTE-Advanced[END_REF].

WEIGHTED SUM RATE OPTIMIZATION

Focusing on the effect of hardware impairments, we assume perfect channel state information at all nodes. Given the system model in [START_REF] Gesbert | Multi-cell MIMO cooperative networks: A new look at interference[END_REF], and assuming that the interference and distortions are treated as noise in the decoder, the achievable data rate for user i k is

Ri k =logdet ✓ I + V H i k H H i k i ⇣ Q int+dist i k ⌘ -1 Hi k iVi k ◆ , (2) 
where

Q int+dist i k = Qi k -Hi k iVi k V H i k H H i k i
is the covariance matrix of interference and distortions for user i k . The total received signal covariance matrix Qi k is given in (3), at the top of the page.

Our goal is then to maximize the weighted sum rate RWSR = P (i,k) αi k R ik of the system. The nonnegative data rate weights αi k determine the relative priorities of the users in the system level criterion, and are assumed to be given. Under a per-BS power constraint, the impaired weighted sum rate problem to be solved is maximize

{V i k } X (i,k) αi k Ri k (ImpWSR) subject to Tr ⇣ C (t) i ⌘ + Kc X k=1 kVi k k 2 F  Pi,i=1,...,Kt.
This is a non-convex problem, since (2) is non-convex in {Vi k }. Therefore, we only endeavour to find a locally optimal point. In order to do that, we first introduce the mean squared error (MSE) matrix for user i k ,

Ei k = E ✓ ⇣ xi k -U H i k yi k ⌘⇣ xi k -U H i k yi k ⌘ H ◆ = I -U H i k Hi k iVi k -V H i k H H i k i Ui k + U H i k Qi k Ui k where Ui k 2 C Mr ⇥N d
is a linear receive filter. Inspired by [START_REF] Shi | An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel[END_REF], we introduce the MSE weight matrices Wi k 2 C N d ⇥N d and formulate an impaired weighted MMSE problem: minimize

{U i k } {W i k } {V i k } X (i,k) αi k (Tr (Wi k Ei k ) -log det (Wi k )) subject to Tr ⇣ C (t) i ⌘ + Kc X k=1 kVi k k 2 F  Pi,i=1,...,Kt. (ImpWMMSE) 
Proposition 1. The optimization problems in (ImpWSR) and (ImpWMMSE) have the same global solutions {V ? i k }. Proof. Similarly as in the proof of Theorem 1 in [START_REF] Shi | An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel[END_REF], this follows by substituting the optimality conditions for {Ui k } and {Wi k } (derived in Sec. 3.1) into (ImpWMMSE). The remaining optimization problem (w.r.t. {Vi k }) can then be identified as (ImpWSR). minimize

{V i k } K t X i=1 " Tr ⇣ TiC (t) i ⌘ + Kc X k=1 h Tr ⇣ V H i k TiVi k ⌘ -2αi k Re ⇣ Tr ⇣ Wi k U H i k Hi k iVi k ⌘⌘ + αi k Tr ⇣ Ui k Wi k U H i k C (r) i k ⌘i # subject to Tr ⇣ C (t) i ⌘ + Kc X k=1 kVi k k 2 F  Pi,i=1,...,Kt.
(ImpWMMSE-BS)

Alternating Minimization

The problem in (ImpWMMSE) is non-convex, but we can apply alternating minimization [START_REF] Grippo | On the convergence of the block nonlinear Gauss-Seidel method under convex constraints[END_REF] to it over the three blocks of variables. First, by fixing {Wi k , Vi k } and optimizing over {Ui k }, the problem decouples over the users and we get

U ? i k = Q -1 i k Hi k iVi k
. This is the well-known MMSE receiver.

Similarly, fixing {Ui k , Vi k }, the problem again decouples over the users and the optimal MSE weights are

W ? i k = arg min W i k (Tr (Wi k Ei k ) -log det (Wi k )) = E -1 i k = I + V H i k H H i k i ⇣ Q int+dist i k ⌘ -1 Hi k iVi k
where the last equality comes from plugging in U ? i k and applying the matrix inversion lemma. Notice that log det W ? i k = Ri k , and hence the weight W ?

i k describes what data rate user i k can achieve under the current interference and distortion conditions.

Finally, we fix {Ui k , Wi k } and optimize over {Vi k }. By dropping terms only containing Wi k and rearranging the remaining terms using properties of the trace, the problem that should be solved is displayed in (ImpWMMSE-BS), at the top of the page. The matrix Ti = P (j,l) αj l H H j l i Uj l Wj l U H j l Hj l i is a virtual uplink signal and interference covariance matrix for BS i. Note that C (t) i and C (r) i k are functions of {Vi k }, as described in Sec. 2. Since η 2 (•) and ν 2 (•) are convex [START_REF] Boyd | Convex Optimization[END_REF]Ch. 3.2], the problem is convex and can be solved by, for example, general-purpose interior-point methods [START_REF] Löfberg | Yalmip : A toolbox for modeling and optimization in MATLAB[END_REF]. When the optimal {V ? i k } have been found, a new alternating minimization iteration is started by again optimizing over the {Ui k }, given the new {Vi k }. These iterations then continue until convergence.

Proposition 2. The alternating minimization (AM) of (ImpWMMSE) monotonically converges and every limit point of the AM iterates is a stationary point of (ImpWSR).

Proof. The AM objective values are monotonically nonincreasing, and the objective function can be lower-bounded. If any of the c

(t),2 i,m or c (r),2 i k ,n are non-differentiable w.r.t. {Vi k }, introduce aux- iliary optimization variables d (t) i,m and d (r) i k ,n to (ImpWMMSE). Re- place c (t),2 i,m ! d (t) i,m , c (r),2 i k ,n ! d (r)
i k ,n and add inequality constraints

c (t),2 i,m = η 2 s X k [Vi k ] m,: 2 
F !  d (t) i,m , 8 i, m c (r),2 i k ,n = σ 2 r + ν 2 0 @ s X (j,l) [Hi k j Vj l ] n,: 2 
F 1 A  d (r) i k ,n , 8 i k ,n
to get the squared functions on epigraph form. For this equivalent problem, the objective function is continuously differentiable and the extended feasible set is convex. Then, since the subproblem for {Ui k } is strictly convex, [START_REF] Grippo | On the convergence of the block nonlinear Gauss-Seidel method under convex constraints[END_REF]Prop. 5] gives that every limit point of the AM iterates is a stationary point of (ImpWMMSE). That this is also a stationary point of (ImpWSR) follows directly from the proof of Theorem 3 in [START_REF] Shi | An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel[END_REF].

The alternating minimization is distributed over the UEs, but (ImpWMMSE-BS) only decouples over the BSs if the term

P (i,k) Tr ⇣ Ui k Wi k U H i k C (r) i k ⌘
decomposes over the BSs. In the next section we investigate one such particular case.

Distributed Solution for Constant-EVM Impairments

We now exemplify how a distributed, semi-closed form, precoder solution can be achieved under a certain impairment model: constant-EVM impairments. In particular, we let η(x)=κtx and ν(x)=κrx; thus, we have that EVM = κr for all users, all receive antennas n, and all transmit antennas m. Consequently,

C (t) i = κ 2 t P Kc k=1 diag Vi k V H i k and C (r) i k = σ 2 r I + κ 2 r P (j,l) diag Hi k j Vj l V H j l H H i k j
, where diag (•) only retains the diagonal elements. Due to the affine structure of

C (r)
i k , the terms in (ImpWMMSE-BS) can be rearranged so the problem decomposes into one subproblem per BS. With e Ti = P (j,l) αi k H H j l i diag Uj l Wj l U H j l Hj l i, the solution for UE i k can be locally calculated at BS i as

V ? i k = αi k ⇣ Ti + κ 2 t diag (Ti)+κ 2 r e Ti + µ ? i I ⌘ -1 H H i k i Ui k Wi k .
The term µ ? i ≥ 0 is a Lagrange multiplier, which can be found by bisection such that 1+κ

2 t P Kc k=1 V ? i k 2 F  Pi is satisfied.

PERFORMANCE EVALUATION

We investigate the performance of the proposed method by means of numerical simulation. For this purpose, we let the impairment functions be

η(x)=κtx 1+ ✓ x κ (NL) t ◆ 2 ! ,ν (x)=κrx, (4) 
which means that the receivers have a constant EVM of κr and the transmitters have a third order non-linearity due to the power amplifier. For low transmit powers, the EVM at the transmitters is κt and, due to the non-linearity, it doubles at a transmit power of κ (NL),2 t . Notice that for this choice of impairment functions, c (t),2 i,m and c (r),2 i k ,m are differentiable w.r.t. {Vi k }. When needed, in order to solve to solve (ImpWMMSE-BS), we use the modeling framework Yalmip [START_REF] Löfberg | Yalmip : A toolbox for modeling and optimization in MATLAB[END_REF] with the Gurobi solver [START_REF] Optimization | Gurobi optimizer reference manual[END_REF]. In the spirit of reproducible research, the entire simulation source code is available for download at [21].

We employ a Kt =3simulation scenario where each BS has Mt =4antennas and each UE has Mr =2antennas. The BSs are placed 500 m apart, at the corners of an equilateral triangle. The triangle is divided into three cells, each containing Kc =2uniformly dropped users that are served by the closest BS. For a distance d (in meters) between BS and UE, the path loss is described by PLdB =15.3+37.6log 10 (d). The UEs are never closer than 35 m to the BS. We assume all users to be indoors with a penetration 2 dB where θ is the angle from the boresight. The MS antenna gain is 0 dB. The small scale fading is given by i.i.d. CN(0, 1) entries for all antenna-pairs. We study one 15 kHz subcarrier with corresponding noise power σ 2 r = -127 dBm, and interpret (2) as a spectral efficiency. The user priorities are αi k =1for all i k .

For the WMMSE method of Sec. 3.1, we compare the case of impairments-aware BSs and UEs, with the case of impairmentsaware UEs and impairments-ignoring BSs, and with the case of both ignorant UEs and BSs. The case of having aware UEs but ignorant BSs could occur if the UEs estimate their covariances Qi k over the air, without having a specific model for the impairments. The impact of the distortions is then picked up by the UEs, and that knowledge is implicitly distributed to the BSs in the WMMSE iterations. The ignorant BSs let C (t) i = 0 and C (r) i k = 0 in their optimization. As a baseline, we apply the popular MaxSINR method [START_REF] Gomadam | A distributed numerical approach to interference alignment and applications to wireless intererence networks[END_REF]. This ad-hoc method iteratively maximizes the SINRs of all the data streams in the network, and although it has not been proven to converge, it often performs excellently in numerical studies without impairments [START_REF] Brandt | Interference alignment in frequency -a measurement based performance analysis[END_REF][START_REF] Ayach | The practical challenges of interference alignment[END_REF][START_REF] Schmidt | Comparison of distributed beamforming algorithms for MIMO interference networks[END_REF]. We modify the method slightly, to account for hardware impairments. In particular, we let Wi k = I for all i k , and optimize the pth column of the precoder for UE i k w.r.t. the virtual uplink interference, distortions and noise covariance matrix

T MaxSINR i k ,p = P (j,l,q)6 =(i,k,p) αj l H H j l i [Uj l ] :,q [Uj l ] H :,q Hj l i + κ 2 t diag (Ti)+κ 2 r e
Ti +(σ 2 r /Pt)I. As another baseline, we use TDMA. For impairments-aware UEs and BSs, we use the WMMSE method to find the precoders. For ignorant UEs and BSs, we use eigenbeamforming with water filling.

First, we study the convergence behaviour of the proposed methods and the baselines. We let N d =2for WMMSE and N d =1for MaxSINR. The power constraint per BS is Pt =1 8 .2 dBm and the impairments parameters are κt = κr = 10 100 and 20 log 10 (κ (NL) t )= 15.2 dBm. We generated one user drop, and the corresponding sum rate evolution is shown in Fig. 1. The proposed method converges, and it is clearly important to take hardware impairments into account in order to achieve good performance.

Next, we vary the hardware impairments parameters in (4) for Pt =1 8 .2 dBm. We generated 100 user drops, and 10 small-scale fading realizations per drop. The iterative methods were run until the relative change in achieved sum rate was less than 10 -3 . The results in Fig. 2 that the impairments-ignoring schemes are heavily affected by the non-linearity, but the impairments-aware performance is kept steady.

With the same setup, we study performance as a function of transmit power. We specialize to η(x)=κtx and vary κt = κr and the transmit power Pt. The results in Fig. 3 demonstrate that impairments-aware WMMSE outperforms the other methods, but WMMSE with ignorant BSs and aware UEs performs almost equally well. Impairments-ignoring WMMSE performs worse for larger transmit powers, due to the fact that it maximizes an incorrect objective. Both WMMSE and MaxSINR performs around 3 times better than TDMA, and impairments-ignoring TDMA has very similar performance to impairments-aware TDMA. Further, it can be seen that the achieved high-SNR slopes are zero for all schemes, as predicted by theory [START_REF] Björnson | Capacity limits and multiplexing gains of MIMO channels with transceiver impairments[END_REF].

CONCLUSIONS

The concept of interference alignment has by many been seen as a saviour, due to its ability to achieve the maximum high-SNR scaling of the sum rate in multicell MIMO networks. However, due to the residual hardware impairments, the high-SNR scaling eventually becomes zero, for both coordinated beamforming and traditional TDMA. As shown in this work, applying impairmentsaware resource allocation techniques inspired by IA still outperforms impairments-aware TDMA with a large margin.
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 1 Fig. 1. Sum rate evolution (one realization) for Pt =1 8 .2 dBm, κt = κr = 10 100 and 20 log 10 (κ (NL) t )=15.2 dBm. loss of 20 dB. The BS antenna array boresights are aimed towards the center of the triangle, and the BS antenna gain is 12 ✓ 35 •

TDMAFig. 3 .

 3 Fig.3. Sum rate for η(x)=κtx when varying transmit power and impairment parameters.
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  , averaged over the Monte Carlo realizations, showFig. 2. Sum rate for Pt =1 8 .2 dBm when varying impairment parameters. Note the scale of the vertical axis.
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