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Abstract—In this paper we study the stability region of the
2-user MISO broadcast channel where the transmitter employs
Zero Forcing precoding when both users are scheduled, taking
into account the time overheads needed for uplink channel
training. We show that, with proper signalling design, combining
a decentralized policy with the baseline centralized one for user
selection can increase the stability region of the system.

I. INTRODUCTION

The use of multiple antennas and scheduling in the transmit-

ters have been recognized as powerful means to increase the

rate regions and performance of wireless systems. However, to

fully achieve the potential of these techniques, channel state

information is crucial. This can be done only by feedback

or training from the receivers, thus consuming resources

(time/bandwidth) . In current standards, like LTE, subset of

users can feed back their channel states at each time and they

are selected/scheduled by the base station i.e. in a centralized

manner [1]. This can be done based on the statistics of the

channels of the users. Unfortunately, using such centralized

schemes, some scheduled users may have poor current channel

states and some users with good current channel states may

not be scheduled (i.e. may not feed back), which reduces the

system performance. On the other hand, each user knows

its own current channel state, and therefore decentralized

feedback policies where the users decide based on their

current channel states may improve the system performance.

This must be done properly as the decentralized policies

require additional signalling information that may decrease

drastically the improvement. In this paper, we indeed show

that, by designing the signalling properly, combining ideas

(and enhancing them) from decentralized scheduling policies

can improve the stability region of a downlink system with

a multiple antenna transmitter using Zero Forcing precoding.

Our system works in Time Division Duplexing (TDD) mode

and takes into account the timing needed for users to train the

channel.

It is worth noting that recent works [2], [3] have shown that,

in a network with simple physical layer (e.g. on-off channel,

finite discrete channel states,...), decentralized algorithms like

the recently proposed Fast CSMA [4] can achieve good per-

formance. In addition, results in [5], [6], show that up-to-date

channel state information, which is known at the receivers, is
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more crucial than accurate queue length information, at least as

far as stability is concerned. The scenario considered in this

paper is more complicated as compared to the recent work

on decentralized scheduling. In fact, in scheduling problems

[7] (e.g. OFDMA or TDMA), a user can directly estimate its

bit rate using the current channel state. In multi-user MIMO

systems, the bit rate of each user depends on the channel states

of all users and the user cannot simply estimate its bit rate

using its current channel state. This highly complicates the

analysis.

Limited feedback in multi-user MIMO systems has been

the subject of a intense research in the last years, see for

example [8] and [9] and references therein. Most works

however focus on sum-rate maximizations, ignoring the aspect

of having incoming traffic destined for the receivers. The most

relevant work is [10], where the authors study the impact

of quantized channel state feedback on the stability regions

experienced by the users of a MISO system using Zero Forcing

beamforming. However, they consider a centralized scheme

where the transmitter selects the users to be scheduled based

only on the queue lengths. On the contrary, in our paper we

examine the stability region of three approaches in a system

where channel estimation is done in TDD mode (i.e. via uplink

training from the receivers) and where every user that trains

the channel will get scheduled. The motivation is that, since in

TDD the training overhead does not depend on the number of

antennas and channel reciprocity can be exploited, it is most

promising approach when multiple antennas are used 1.

All three policies take into account the training and signal-

ing overhead. The first approach is centralized, in the sense

that the transmitter decides which user will be scheduled (i.e.

will train) at every slot. The second approach, which we term

as ”decentralized”, is to let the users decide which of them

should actually feed back via some contention/coordination

scheme. The main idea behind this approach is that every user

can know its channel state, therefore a user with a very bad

channel state will choose not to feed back (contrary to what

can happen in the centralized approach). More specifically, in

this case, the transmitter specifies the number of users to be

scheduled and lets the users decide in a decentralized manner

who will be the ones that will actually get scheduled in the

slot. Combined with some (infrequent) signalling regarding

the users queue lengths from the base station, we will see in

1Note also that, even if feedback is done in FDD mode the transmitter must
wait to collect the feedback from the receivers before precoding [8]



2

the following that properly combining the decentralized and

centralized approaches leads to a bigger achievable stability

region than using the centralized approach alone.

Note: Due to space constraints, the proofs of intermediate

results are not presented here but can be found in [11].

II. SYSTEM MODEL
A. Physical Layer

In this work we consider a single transmitter serving 2
single-antenna receivers with N ≥ 2 antennas and total

transmit power available P . Time is slotted. Channels are i.i.d.

in time and users, following Rayleigh block fading, that is

the channel of user k can be written as an N -dimensional

complex vector hk(t) ∼ CN (0, ḡIN ) where CN denotes the

complex normal distribution. The noise power at each receiver

is assumed σ2. In this setting, in a slot, the transmitter can

serve either one or both receivers. We will focus on the case

of Zero Forcing precoding if both receivers are served. Thus,

if only receiver k is scheduled then the signal for this user

will be precoded with the vector wk(t) =
√
P hk(t)

||hk(t)||
and

with wk(t) =
√

P
2

(IN−||hj(t)||
−2hj(t)h

H
j (t))hk(t)

||(IN−||hj(t)||
−2hj(t)hH

j
(t))hk(t)|| if both

receivers are served. Power is split equally among users for

tractability purposes; in general joint scheduling and power

allocation for multiuser MIMO is a very challenging problem

even with perfect CSI acquisition at no cost. A scheduled

receiver can be served by a rate of R bits per channel use if the

corresponding SNR exceeds the threshold for correct decoding

Ŝ. The transmitter needs the realizations of the channel states

for the scheduled receiver(s) in order to calculate the precoder.

Here we assume that this is done via uplink training with

sequence length of β channel uses per user. In addition, we

assume that there is no error in the channel estimation; this can

be argued if the power of the training sequence is high enough.

For this reason, a downlink pilot βp is sent in the beginning of

each slot to allow receivers estimate their channel magnitude.

B. Queuing model and impact of training

Each of the receivers has an incoming traffic process ak(t),
which is an integer-valued process, measured in bits, i.i.d.

in time and independent across users with E{ak(t)} = λk

and ak(t) < Amax for some finite constant Amax, which

is assumed known to the transmitter and receivers. Data for

receiver k is stored in a respective buffer until transmission

and let qk(t) denote its size in bits at the beginning of slot t.
Denote now zk(t) as the schedule in timeslot t, that is

zk(t) = 1 if user k is scheduled for this timeslot (i.e. if user k
has actually reported its channel to the base station). Let τ(t)
the number of channel uses used for training and signalling

in the slot t. If the rate supported to user k at timeslot t is

rk(W(t),H(t)) bits per channel use, we have

qk(t+ 1) = [qk(t)− (Ts − τ(t))rk(W(t),H(t))zk(t)]
+

+ ak(t), t ≥ 0.
(1)

What we are interested in is the aspect of stability of the

system. Formally we have:

Definition 1. A queueing system with K queues is called

strongly stable if: limt→+∞ sup 1
t

∑t−1
t′=0 E{qk(t′)} < +∞.

If the arrivals and service rate processes are such that

the Markov chain is irreducible and aperiodic with a single

communicating class, strong stability is equivalent to positive

recurrence of the chain [12]. In this work we are interested in

this form of stability, therefore ”stable” will imply ”strongly

stable” in the rest of the paper.

The arrival processes involved in the above definition have

fixed mean arrival rates, which leads to the concept of a

stability region.

Definition 2. The stability region Λ of the system is the set

of mean arrival rate vectors λ = [λ1, ..., λK ]T for which the

system is strongly stable.

For the rest of the paper, when describing stability regions

we will mean that the system is stable in the interior of the

calculated region (thus behaviour on the boundary will not

be examined - usually for the boundary points the system is

stable in at least a weaker sense, i.e. mean rate stable [12]).

Informally, a system is stable when the average service rate

of each user is bigger than the corresponding mean arrival

rate. Equation (1), thus, implies that training affects essentially

the service rate, and thus the stability region, in two ways:

First, more time devoted to training leads to lower service

rate for the users actually scheduled in the timeslot. On the

other hand, if more users participate in the training, more users

can get scheduled in a timeslot, thus overall a user can get

higher mean service rate. The focus of the paper is, thus, this

tradeoff and how to efficiently design user selection strategies

to achieve large stability regions. In our model scheduling

user(s) is equivalent to deciding which users will participate

in the uplink training in every timeslot.

III. PROPOSED POLICIES

In this Section we detail the scheduling policies to be

considered. Figures 1,2,3 illustrate their operation. These poli-

cies are generally based on a modification of the celebrated

max weight algorithm [13], by trying to minimize the drift

of a given quadratic Lyapunov function. Since the channel

realizations are unknown to the transmitter, decisions have to

be taken based on the channel distributions. If F receivers

are served, the following result will be useful to calculate the

average rates:
Proposition 1. It holds [11]:

p̄(1) = P{SNRk > Ŝ|F = 1} = 1−
γ
(

Ŝ
ḡ
;N

)

Γ (N)

p̄(2) = P{SNRk > Ŝ|F = 2} = 1−
γ
(

2σ2

ḡP
Ŝ;N − 1

)

Γ(N − 1)
.

On the above, Γ(N) is the Gamma function, γ(x;N) the

lower incomplete Gamma function with parameter N .

A. Centralized policy

In this policy, in every slot t the transmitter selects either

one or both the receivers to be scheduled. In the latter case,

there is an overhead of 2βc channel uses to broadcast the IDs

of the two users and in the former, of βc +1 to broadcast the

ID of the scheduled user and a signal that the control period

is over.

The expected service that a receiver gets if both users are

scheduled or if this receiver only is scheduled at timeslot t is

given by
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µ̄c(2) = (Ts − (βp + 2βc + 2β))p̄(2)R,

µ̄c(1) = (Ts − (1 + βp + βc + β))p̄(1)R
(2)

,respectively. The set to be scheduled at stot t is then chosen

at the beginning of this slot by the rule that follows:

• Fc(t) = {1, 2}, if (q1(t) + q2(t))µ̄c(2) ≥
max{q1(t), q2(t)}µ̄c(1)

• Fc(t) = {argmax{q1(t), q2(t)}}, otherwise .

This policy is actually the one achieving the largest stability

region of all centralized policies: this can be proved by

Lyapunov drift analysis and is not presented here.

B. Decentralized Policy
The main observation here is that the user knows its current

channel but not its queue length. Our idea is to let the transmit-

ter use slot mT,m = 0, 1, ... to broadcast the queue lengths to

the receivers. Here T > 1 is an (arbitrarily large) finite integer.

For all slot between times mT + 1 and (m + 1)T − 1, the

users have an outdated information of their queues (i.e. only

q(mT )). Since the control rate is limited in practice, the broad-

casted q(mT ) should be quantized. We propose the following

quantization scheme: Define Q = max{TsR(T−1), TAmax},

which is the biggest difference that can possibly happen to

a queue between slots (m − 1)T and mT . Then, at slot

mT , the length of each queue belongs to one of the intervals

[lQ, (l + 1)Q), l = 0, 1, .... For each queue, the broadcasted

message contains first information about if it has stayed in

the same interval as in the previous broadcast or moved to

any of the adjacent ones; the additional part comprises of

the place of the quantized queue length inside the interval

assuming uniform quantization. The quantized queue length of

user k in the beginning of slot mT will be denoted as q̂k(m).
The transmitter then decides the number F (m) of users to get

scheduled in the next T − 1 slots. Depending on F (m), we

have the following possibilities:

1)Contention procedure:If F (m) = 1, in each of these

slot the receivers are given a contention period of τc channel

uses to decide which one is to be scheduled based on the

(quantized and outdated) queue length information they have

and the realization of their channels. This can be done using

a contention scheme, assuming contention in continuous time

e.g. like [4], where each user waits until time τc
q̂k(m)rk(t)

: if

both have the same timer, e.g. the user with the smallest ID

is scheduled. Another alternative, that can be used thanks to

our model, is to divide the contention period into minislots

(TDMA manner) where each receiver sends a signal in its

corresponding minislot if its SNR is above the threshold Ŝ. If

both receivers send a signal, in their corresponding minislots,

then the receiver with the largest broadcasted queue length

gets scheduled for training (this analysis/comparison can be

done independently by each receiver since the queue lengths

of all receivers are broadcasted). Otherwise, if only one user

sends a signal in a minislot, then this user will be scheduled for

training. Then, the user to be scheduled sends its ID to the base

station, taking βc channel uses, and trains. Using the above

”decentralized” procedure, the user that will eventually get

served in the slot will be the one with the maximum product

of quantized queue length at mT times achievable rate. Due

to our model here, denoting SNR
(1)
k (t) = P ||hk(t)||

2

σ2 , the user

k∗(t) to be scheduled will be

• If ∀k = 1, 2 holds SNR
(1)
k (t) > Ŝ, then k∗(t) =

argmax[q̂1(mT ), q̂2(mT )] and user 1 in case of a tie.

• The user for which SNR
(1)
k (t) > Ŝ otherwise

The scheduled receiver will always be given rate of R bits per

channel use, except in the case where no one has sufficiently

high SNR, in which no receiver can be scheduled anyway.

Defining the permutation k(1), k(2), where q̂k(1)(mT ) ≥
q̂k(2)(mT ), the average service rates of these users under

F = 1 for the next T − 1 slots are

µ̄
d,(1)
k(1) (t) = (Ts − (βp + τc + β))p̄(1)R := µ̄d(1)

µ̄
d,(1)
k(2) (t) = (Ts − (βp + τc + β))p̄(1)(1− p̄(1))R.

(3)

2) F(m)=2:Both users train just after the coordination

period. The average rate per slot for each user in this case

will be µ̄d(2) = (Ts − (βp + τc + 2β))p̄(2)R (4)
Based on the above, the transmitter decides at t = mT the

number of users to get scheduled for the next T − 1 slots by:

• F (m) = 2, if: (q̂k(1)(m) + q̂k(2)(m))µ̄
d,(1)
k(1) (t) ≥

(q̂k(1)(m) + q̂k(2)(t)(1− p̄(1))µ̄
d,(1)
k(1) (t)

• F = 1 otherwise: In this case, the contention procedure

is followed. .

C. Mixed Policy

The mixed policy is a combination of both the ideas

behind the centralized and decentralized policies. As in the

decentralized policy, slot mT is used to broadcast signalling

regarding the quantized queue lengths and the action that

specifies how scheduling will be done in the next T − 1 slots.

The transmitter can choose in the signalling slot one of

the following actions: F = {1}, F = {2}, F = {1, 2} and

F = 1. In the first three actions the receiver(s) specified train

directly in the uplink for the T − 1 slots after the signalling

slot, without any control or contention/uplink of the IDs phase.

In the case of F = 1 one receiver is scheduled according

to the contention procedure explained in III-B. In detail, for

the rates at a slot t corresponding to each of the base station

actions and assuming q̂k(1)(m) ≥ q̂k(2)(m) we have for t ∈
{mT + 1, ...,mT + T − 1}:

E {µ1(t)} = (Ts − (βp + β))p̄(1)R,µ2(t) = 0, ifF = {1}
E {µ1(t)} = 0, µ2(t) = (Ts − (βp + β))p̄(1)R, ifF = {2}
E {µ1(t)} = E {µ2(t)} = (Ts − (βp + 2β))p̄(1)R,F = {1, 2}
E
{

µk(1)(t)
}

= µ̄d(1),E
{

µk(2)(t)
}

= (1− p̄(1))µ̄d(1), F = 1

We define further

µ̄m({k}) = (Ts − (βp + β))p̄(1)R,

µ̄m({1, 2}) = (Ts − (βp + 2β))p̄(2)R.
(5)

The mixed policy selects, at every slot mT , the following

action to maximize
∑2

k=1 q̂k(m)E
{

µk(t)}:

• F = {k(1)}, if:

q̂k(1)(mT )µ̄m({k}) >
max

[

(q̂1(mT ) + q̂2(mT ))µ̄m({1, 2}),
(q̂1(mT ) + (1− p̄(1))q̂2(mT ))µ̄d(1)

]

• F = {1, 2}, if: (q̂1(mT ) + q̂2(mT ))µ̄m({1, 2}) ≤
max

[

q̂k(1)(mT )µ̄m({k}),
(q̂1(mT ) + (1− p̄(1))q̂2(mT ))µ̄d(1)

]
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• F = 1 if: (q̂1(mT ) + (1− p̄(1))q̂2(mT ))µ̄d(1) > max
[

q̂k(1)(mT )µ̄m({k}), (q̂1(mT ) + q̂2(mT ))µ̄m({1, 2})
]

.

IV. STABILITY RESULTS

This Section contains the main result of the paper, namely

the stability regions of the policies considered. Theorem 2

gives the analytical characterization, where CH denotes the

convex hull. The regions are shown graphically in Fig. 4.
Theorem 2. The stability regions for the centralized, decen-

tralized and mixed policies are
a)Λc = CH

{

(0, µ̄c(1)), (µ̄c(2), µ̄c(2)), (µ̄c(1), 0)
}

,

b)Λd =

(

1− 1

T

)

CH
{

(0, µ̄d(1)), (µ̄d(1)(1− p̄(1)),

µ̄d(1)), (µ̄d(2), µ̄d(2)), (µ̄d(1), µ̄d(1)(1− p̄(1))), (µ̄d(1), 0)
}

,

c)Λm =

(

1− 1

T

)

CH
{

(0, µ̄m({k})), (µ̄d(1),

(1− p̄(1))µ̄d(1)), (µ̄m({1, 2}), µ̄m({1, 2})),
((1− p̄(1))µ̄d(1), µ̄d(1)), (µ̄m({k}), 0)

}

,

respectively.
The rest of this Section is devoted to the proof of the

stability region for the decentralized policy. The proofs for

the other regions can be done similarly and are omitted due to

lack of space. Define q̃(m) = q(mt). This defines a system

that, for every step m takes the values of the original system

”sampled” every T timeslots q(mT ). It can be proven that the

stability regions of both are the same [11], therefore we will

restrict our attention to q(m) for the rest of the analysis.

The proof consists in four parts. For the first two parts we

compute the stability region for policies that select all the time

F = 2 and F = 1. In the third, we prove that the decentralized

policy achieves the convex combination of the two and finally

we prove the converse.

Step 1: We first find the stability region if F = 2 for every

signalling slot mT . In this case, the mean rate a user gets for

each data slot is µ̄d(2). Thus, for the system q̃(m), the mean

arrival rate for user k is Tλk and the mean service rate is

(T − 1)µ̄d(2), thus the stability region here is

λk < T−1
T

µ̄d(2), ∀k = 1, 2.

Step 2: We then find the stability region if F = 1 in every

signalling slot. We define a hypothetical policy where the

transmitter knows from the start of a data slot the achievable

rates for both users and, based on this knowledge, chooses

one of the two users to train and get scheduled, probably at

random (while keeping the same time for data transmission in

the slot as the corresponding in the decentralized policy). More

concretely, if only one user can support the rate R then this

user should be scheduled, otherwise if both support the rate R
then user 1 gets scheduled with some probability π1 and user

2 with a probability π2. In this case, taking into account the

model for the system q̃(m) the mean arrival rates λ1, λ2 that

can be supported by the system are the one for which there

exist probabilities π1, π2 such that (the quantities in the right

hand side are the mean rates given to each user):
Tλk < (T − 1) ((1− p̄(1))µ̄d(1) + πkp̄(1)µ̄d(1))

:= (T − 1)µ̂d,k.
(6)

Since 0 ≤ π1 + π2 ≤ 1, this is the algebraic representation

of the convex hull of the points (0, T−1
T

µ̄d(1)), (T−1
T

(1 −

p̄(1))µ̄d(1),
T−1
T

µ̄d(1)), (T−1
T

µ̄d(1),
T−1
T

(1 − p̄(1))µ̄d(1)),
(T−1

T
µ̄d(1), 0). Let us now prove that their region is indeed

achievable by the decentralized policy. For any vector λ inside

this region, denoting µ̃d
k(m) be the random variable represent-

ing the service receiver k gets at a slot of {mT +1, ...,mT +
T − 1}, we can show, after some calculations [11], that the

drift of the quadratic Lyapunov function V (x) = x2
1 + x2

2 is,

for a constant B̃: ∆V (q̃(m)) ≤ B̃ +
T
∑2

k=1 q̃k(m)λk − (T − 1)
∑2

k=1 q̃k(m)E
{

µ̃d
k(m)|q̃(m)

}

.

Recall that q̂(m) is vector containing the quantized versions

of the queue lengths at the beginning of the signalling slot,

therefore |q̂k(m)− q̃k(m)| ≤ Q. Defining

C̃ = B̃ + TQ
∑2

k=1 λk + (T − 1)KQR we then get:

∆V (q̃(m)) ≤
C̃ +

∑2
k=1 q̂k(m)

(

Tλk − (T − 1)E
{

µ̃d
k(m)|q̃(m)

})

≤ C̃ +
∑2

k=1 q̂k(m) (Tλk − (T − 1)µ̂d,k) ≤
C̃ − ǫ

∑2
k=1 q̂d,k(m) for some ǫ > 0. The second inequality

follows because in the decentralized policy the user with the

maximum q̂k(m)E
{

µ̃d
k(m)|q̃(m)

}

is eventually selected. The

last inequality follows from (6). The drift is negative for
∑2

k=1 q̂k(m) > C̃/ǫ =⇒ ∑2
k=1 q̂k(m) > 2Q + C̃/ǫ,

thus, from the Foster-Lyapunov criterion, the system under

the decentralized policy achieves indeed the stability region

given by (6).

Step 3: Here we prove that Λd is achievable by the decentral-

ized policy. Consider a randomized policy between F = 1
and F = 2 with probabilities π(F = 1) and π(F = 2)
(independent on anything), respectively and the randomized

hypothetical policy for the case of F = 1 given in the above

paragraph. The mean arrival rates supported under this policy

should then be such that there exist these probabilities while

satisfying the conditions

Tλk < (T − 1)
(

π(F = 1)
(

(1− p̄(1))µ̄d(1)

+ πkp̄(1)µ̄d(1)
)

+ π(F = 2)µ̄d(2)
)

:= (T − 1)µ̂′
d,k.

(7)

Since 0 ≤ π1 + π2 ≤ 1 and in addition it holds that
0 ≤ π(F = 1) + π(F = 2) ≤ 1, the region defined by

the above equations is the convex hull of the two regions

for F = 1 and F = 2, thus Λd. Under the decentralized

policy, using the same calculations as above, the drift of the

quadratic Lyapunov function becomes ∆V (q̃(m)) ≤ C̃ +
T
∑2

k=1 q̂k(m)λk − (T − 1)
∑2

k=1 q̂k(m)E{µ̃d
k(m)|q̃(m)} ≤

C̃ +
∑2

k=1 q̂k(m)(Tλk − (T − 1)µ̂′
d,k) ≤ C̃ − ǫ

∑2
k=1 q̂k(m)

for some ǫ > 0, where the second inequality follows

from the fact that by definition of the policy the quantity
∑2

k=1 q̂k(m)E{µπ
k (m)} is maximized and the third from (7).

By the same reasoning as above, the decentralized policy

stabilizes the system, i.e. achieves Λd.

Step 4: Now we prove the converse, that is any mean arrival

rate vector λ for which the system under the decentralized

policy is stable lies in the interior of the set Λd. To do that

assume any λ such that the system under the decentralized

policy is stable. It holds that the system evolves an ape-

riodic Markov chain with countable state space (Z2
+) and

a single communicating class, thus strong stability implies

ergodicity of the chain, therefore existence of an invariant

distribution π(q) [12]. The mean service rate receiver 1 gets

is limM→∞
1
M

∑M−1
m=0

∑mT+T−1
t=mT+1 µ1(t) =



5

(T − 1)
(

µ̄d(1)φ1,1+(1− p̄(1))µ̄d(1)φ1,2+ µ̄d(2)φ1,2

)

where

φ1,1 =
∑

q∈Z
2
+
:F (q)=1,q̂1≥q̂2

π(q),

φ1,2 =
∑

q∈Z
2
+
:F (q)=1,q̂1<q̂2

π(q) and

φ1,3 =
∑

q∈Z
2
+
:F (q)=2 π(q) and similar for receiver 2.

This means that the vector of mean service rates (per slot)

is indeed written as a convex combination of the corner

points of Λd. By assumption the system is stable therefore

Tλk < limM→∞
1
M

∑M−1
m=0

∑mT+T−1
t=mT+1 µk(t) for both users.

Combining the above,we get that λ ∈ Λd.

V. COMPARISON AND DISCUSSION

In the centralized policy the scheduling is based only

on the queue lengths on the beginning of each slot. This

has the benefit of knowing the ”priority” a user has to get

scheduled in real time. On the other hand, letting the users

decide according to their instantaneous channel states leads

to scheduling eventually a user with good channel condition

(in the case where the base station selects F = 1). The idea

behind the mixed policy is to combine the strong points of the

decentralized and centralized policies. In fact, for a suitable

choice of T the mixed policy can lead to a greater stability

region than the centralized:

Proposition 3. A sufficient condition for the mixed policy to

achieve a bigger stability region than the centralized policy is

T > max

[

Tc − βp − β

1 + βc

,
Tc − βp − 2β

2βc

]

.

In this case, Λm ⊇ ρ(T )Λc with

ρ(T ) = T
T−1 min

[ Tc−βp−β

Tc−(βp+βc+1+β)
Tc−βp−2β

Tc−(βp+2βc+2β)

]

.

The idea of the proof is to show expansion on the directions

of the axes and λ1 = λ2; expansion in all the other directions

then follows from the shapes of the policies. This proof uses

only points achieved by the periodic centralized policy. That

is, the increase comes from the fact that a smaller overhead

for training and signalling in the data slots is needed and the

necessary overhead for scheduling is in the slots mT instead.

The use of decentralized scheme in the mixed policy helps

enlarge the stability region above the lines connecting the point

((1− 1/T )µ̄m({1, 2}), (1− 1/T )µ̄m({1, 2})) with the points

on the axes (refer to Fig. 4) thus yielding more gains with

respect to the centralized region for traffic demands in these

directions. As T → ∞ this increase is bounded and the bound

depends only on the parameters of the system; this limit is the

highest stability region the mixed scheme can achieve. Finally,

increasing T leads to bigger stability region, but it may also

lead to bigger delays and slower convergence of the system to

its stationary behaviour.
VI. CONCLUSIONS

In this paper we have demonstrated that a feedback/training

policy that combines decentralized schemes for user selec-

tion along with the traditionally applied centralized ones

can achieve greater stability region in the case of a MISO

broadcast system. This suggests that, in future systems, de-

centralized methods should be considered for feedback and/or

user scheduling along with the traditional centralized ones.

REFERENCES

[1] S. Sesia, I. Toufik, and M. Baker, LTE, The UMTS Long Term Evolution:

From Theory to Practice. Wiley, 2009.

Timeslot Ts

DL pilot

βp

Control

βcF + 1

UL training

βF

Data transmission

Ts − (βp + βcF + βF )
Fig. 1. Illustration of the operation of the centralized policy

Timeslot Ts

DL pilot

βp

Cont.
τc

IDs UL

βcF

UL training

βF

Data transmission

Ts − (βp + τc + βcF + βF )
Fig. 2. Illustration of the operation of the decentralized policy

[2] S. Lakshminarayana, B. Li, M. Assaad, A. Eryilmaz, and M. Debbah, “A
fast-CSMA based distributed scheduling algorithm under SINR model,”
in IEEE ISIT, Princeton, NJ, USA, 2012, pp. 1598–1602.
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