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Ejder Baştuğ⋄, Mehdi Bennis⋆ and Mérouane Debbah⋄,
⋄ Alcatel-Lucent Chair - SUPÉLEC, Gif-sur-Yvette, France

⋆ Centre for Wireless Communications, University of Oulu, Finland
{ejder.bastug, merouane.debbah}@supelec.fr, bennis@ee.oulu.fi

Abstract—The surge in video traffic and shift toward on-
demand content consumption is straining mobile operators’
networks to a breaking point. In this article, we investigate the
problem of mobile data offloading for beyond 4G networks from
a caching perspective. Leveraging notions of prediction, storage,
and social networking, it is shown that peak traffic demands can
be substantially reduced by proactively serving predictable user
demands, through caching at the network edge (i.e., base stations
and users’ devices). Notably, we focus on two caching scenarios
which exploit the spatial and social structure of the network.
Firstly, in order to alleviate backhaul congestion, we propose a
mechanism whereby files are proactively cached during off-peak
demands based on file popularity and correlations among users-
files patterns. Secondly, leveraging social networks and device-
to-device (D2D) communications, we propose a procedure that
exploits the social structure of the network by predicting the set of
influential users to cache strategic contents and disseminate them
among their social ties. Numerical results show that important
gains are incurred, with backhaul savings and a higher ratio of
satisfied users of up to 22% and 26%, respectively. Higher gains
can further be obtained by increasing the storage capability at
the network edge.

Index Terms—5G, small cell networks, proactive caching,
backhaul offloading, D2D communications, social networks.

I. INTRODUCTION

The rapid proliferation of smartphones has substantially en-
riched the mobile experience, leading to new wireless services,
including multimedia streaming, web-browsing applications
and socially-interconnected networks. Currently, mobile video
streaming accounts for 50% of mobile data traffic and is
expected to have a 500-fold increase over the next ten years
[2]. At the same time, online social networking (Facebook,
Twitter, Digg, etc.) is the second largest contributor to this
traffic with a 15% average share [3]. These new phenomena
compel mobile operators to redesign their networks and seek
more advanced techniques in a cost-effective manner.

One way of taming these unrelenting demands is via
the deployment of small cell networks (SCNs) [4], [5], by
deploying short-range, low-power, and low-cost small base
stations (SBSs) underlaying the macrocellular network. The
gist of SCN studies revolve around self-organization, inter-cell
interference coordination (ICIC), traffic offloading [6], energy-
efficiency, etc (see [5] and references therein). These studies
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are based on the classical networking paradigm, referred to
as reactive, in which users’ requests are immediately served
upon arrival or dropped causing outages. Hence, in order to
cater for peak traffic demands expensive high-speed backhaul
deployments are required, leading to substantial operational
expenditures (OPEX). These key observations mandate a novel

networking paradigm taking into account recent advances in
storage, context-awareness, and social networking [7].

The novel networking paradigm is proactive in that network
nodes (i.e., base stations and handhelds/smartphones) exploit
users’ context information and predict users’ demands to
satisfy their quality-of-service (QoS) requirements [8]. This
paradigm goes beyond current cellular networks which have
been designed under the precepts of dumb user terminals
with limited storage and processing capabilities. Exploiting
the smartness of these sophisticated devices can substantially
enhance the way contents are predicted before users actually
request them by storing them at the network edge1. As a
result, significant resource savings are achieved, minimizing
operational and capital expenditures [5].

The idea of caching has recently received tremendous atten-
tion. In [9], the idea of femtocaching was proposed in which
BSs have low-bandwidth backhaul links and high storage
capabilities. [10] explored the notion of proactive resource
allocation exploiting the predictability of user behavior for
load balancing. The scaling law of the outage probability is
derived as a function of a prediction time window using large
deviation theory. In a similar vein, [11] studied the asymptotic
scaling laws of caching in device-to-device (D2D) in which
users collaborate by caching popular content. Nevertheless,
while interesting, these works do not address the dynamics
of proactive caching under uncertainty, overlooking aspects of
context-awareness and social networks. This article aims at
filling the void in the dynamics of proactive network caching.

Our key observation is that given the vast amount of
information often available, and the fact that human behavior
can be predicted, users’ future requests can be inferred upon
[12]. In this paper, we propose a proactive caching framework
leveraging context-awareness and storage constraints at the
network edge to alleviate peak data demands and offload
traffic. Specifically, by exploiting the predictability of future
demands, popular contents are proactively cached before users

1Network edge refers to both small cell base stations (SBSs) and user
terminals (UTs).
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actually request them. Further, whenever D2D communication
is possible, the proposed caching approach exploits users’
social ties (relationships and influences within their social
community), physical proximity and users’ storage for content
dissemination.

This paper is structured as follows. The system model and
problem formulation of both caching scenarios are presented
in Section II. Numerical results are given in Section III, and
the impact of various parameters of interest on the figures of
merits are discussed. We finally conclude in Section IV.

II. PROBLEM FORMULATION

Consider a scenario formed by M SBSs M = {1, ...,M}
and N UTs N = {1, ..., N}. Each SBS m ∈ M is connected
to a central scheduler (CS) via a limited backhaul link with
capacity cm, whereas user n ∈ N is connected to its serving
SBS via a wireless link with capacity cm,n. In addition, when
deemed feasible, users can establish D2D communications
with other users within their communication range2. The D2D
link capacity between users n and n′ is c̈n,n′ . The scenario
under study is depicted in Fig. 1.

Assume that user n downloads contents from a library of F
files, F = {1, ..., F}, with probabilities Pn = {pn,1, ..., pn,F }.
The files in the library F have lengths of L = {l1, ..., lF }
respectively, with bitrates B = {b1, ..., bF }. Further, assume
that there are R number of file requests made by users
during T time-slots. A request r ∈ R = {1, ..., R} is served
immediately and is said to be satisfied, if the rate of delivery
is higher than the file bitrate, such that:

lr
t′r − tr

≥ br, (1)

where lr ∈ L is the length of the requested file, tr (t′r) is the
start (end) time of the delivery, respectively, and br ∈ B is the
bitrate of file fr ∈ F . Therefore, the file satisfaction ratio can
be defined as:

η(R) =
1

R

∑

r∈R

1

{

lr
t′r − tr

≥ br

}

, (2)

where 1 {...} is the indicator function which returns 1 if the
statement holds and 0 otherwise.

The goal of the network operator is to keep this ratio
above a target QoS, while reducing the backhaul delivery cost.
To achieve this, we closely examine two cases of proactive
caching.

A. Backhaul Offloading via Proactive Caching

The importance of the backhaul has increased dramatically
over the last couple of years. Indeed, traffic requirements
have increased due to the all-IP flat network architecture, thus
making backhaul the main network bottleneck.

Let us now suppose that the total backhaul link capacity
is less than the total wireless link capacity between SBSs
and UTs, such that

∑

m∈M cm ≪
∑

m∈M

∑

n∈N cm,n.
This assumption stems from the fact that SBSs may not

2D2D communications are assumed to be network-controlled.

have sufficient high-speed backhaul connections. Since the
bottleneck is the backhaul, a smart way of minimizing the
backhaul usage is to proactively cache contents at the SBSs,
during low-peak demands. Indeed, if the SBSs pre-cache the
contents before users’ actual requests arrive, corresponding
UTs can immediately be served from their SBSs.

Suppose that the backhaul rate during the content delivery
for request r at time t is λr(t). Then, the backhaul load can
be defined as:

ρ(R) =
1

R

∑

r∈R

1

lr

t=t′r
∑

t=tr

λr(t). (3)

Further, assume that SBS m has a storage capacity of sm
and the amount of storage usage at time t is κm(t). There-
fore, the backhaul minimization problem subject to backhaul,
storage and QoS constraints is written as:

minimize
t′r,r∈R

ρ(R) (4)

subject to λr(t) ≤ cm, ∀m ∈ M,

κm(t) ≤ sm, ∀m ∈ M,

η(R) ≥ ηmin, ∀r ∈ R,

where ηmin is the minimum target satisfaction ratio. Solving
(4) is computationally intractable, and thus, similar to [8] a
heuristic solution is used by storing popular files in the caches
of SBSs. Here, each SBS m tracks, learns and builds its
users’ demand profiles to infer on their future requests. Let
Pm denote the discrete file probabilities of users serviced by
SBS m, referred to as popularity matrix where rows represent
users and columns represent file popularities/ratings. A perfect
knowledge of Pm would allow SBSs to precache contents,
nevertheless, in practice, this matrix is not perfectly known,
large and sparse. Inspired from the Netflix paradigm [13]
and using supervised machine learning tools, a distributed
proactive caching procedure is proposed by exploiting users-
files correlations to infer on the probability that user n requests
file f .

The proposed caching procedure is composed of a training
and prediction step. In the training step, each SBS m builds
a model based on the available information of the popularity
matrix Pm. This is done by solving a least square minimiza-
tion problem, in order to calculate the estimated file popularity
matrix P̂m, as follows:

min
{bn,bf}

∑

n,f

(

rnf − r̂nf

)2

+ λ
(

∑

n

b2n +
∑

f

b2f

)

, (5)

where the sum is only over the (n, f) user/file pairs in the
training set where user n actually rated file f (i.e., rnf ), and
the minimization is over all the N + F parameters, where
N is the number of users and F the number of files in the
training set. In addition, r̂nf = r̄ + bn + bf is the baseline
predictor where bf models the quality of each file f relative
to the average r̄ and bn models the bias of each user n
relative to r̄. Finally, the weight λ is chosen to balance between
regularization and fitting training data.

In the numerical setup, the regularized singular value de-
composition (SVD) was chosen for its numerical accuracy (see
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Figure 1: An illustration of the studied network deployment. A central scheduler communicates with M SBSs via backhaul
links. In addition to their cellular connections, D2D communication among socially-connected users is depicted.

[14] for comparisons of collaborative filtering (CF) methods).
Regularized SVD based CF constructs P̂m as the low rank
version of Pm. Since the entries of Pm are partially known,
the construction of P̂m is done via gradient descent, by
exploiting the least-squares property of the singular value
decomposition. Subsequently, the proactive caching decision
is made based on the estimated file popularity matrix P̂m.

B. Social-Aware Caching via D2D

Another mean of offloading traffic is by caching contents
at the user’ cache and harnessing D2D communications for
content dissemination. The goal is to reduce the load of the
SBSs (and the backhaul load as a consequence). By exploiting
the interplay between users’ social relationships and physical
proximity, each SBS tracks and learns the set of influential
users using the social graph. In particular, when a user requests
a particular file, the SBS determines whether one of the
influential users has the requested file. If so, it directs the
influential user to communicate the file to the requesting user
via D2D. Otherwise, if the file is not cached by the influential
user, the SBS transmits the file directly to the requesting user
from the infrastructure network.

Now, assume that UT n has storage capacity s̈n and the
amount of its storage usage at time t is κ̈(t). Assume also
that the total rate of the SBSs during the content delivery of
request r at time t is λ̇r(t), and the D2D rate is λ̈r(t). The
small cell load can be defined as:

ρ̈(R) =
1

R

∑

r∈R

t=t′r
∑

t=tr

λ̇r(t)

λ̇r(t) + λ̈r(t)
. (6)

Similar to (4), the D2D caching optimization problem can
be formulated as:

minimize
t′r,r∈R

ρ̈(R) (7)

subject to λ̇r(t) ≤ cm,n, ∀m ∈ M, ∀n ∈ N ,

λ̈r(t) ≤ c̈n,n′ , ∀(n, n′) ∈ N ,

κ̈n(t) ≤ s̈n, ∀n ∈ N ,

η(R) ≥ ηmin ∀r ∈ R.

In order to solve (7), the set of influential users needs to
be identified. This can be done by exploiting the social

relationships among users via the notion of centrality metric
[15]. The centrality metric measures the social influence of
a node on how well it connects the network, whereby a
higher value means a more influential node to its social
community. In this work, we use the eigenvector centrality. Let
G = (N , E) denote the corresponding social graph composed
of N nodes which can be described by its adjacency (or D2D
connectivity) matrix AN×N with entry an,n′ , n, n′ = 1, ..., N
equals 1 if link (or edge) c̈n,n′ exists, or 0 otherwise. Let the
eigenvalues of A be λ1 ≥ ... ≥ λN in decreasing order and
the corresponding eigenvectors be v1, ...vN . The eigenvector-
centrality is basically the eigenvector v1 which corresponds to
the largest eigenvalue λ1. A clustering method (i.e., K-means)
is then applied for community formation.

Once the set of influential users is identified, the challenge
is to disseminate contents within each social community, as a
function of users’ social ties and physical proximity. Given the
large volume of available contents, assume that F = F0+Fh,
where Fh represents the set of contents with viewing histories
and F0 is the set of contents without history. Suppose that
each user is interested in one type of available contents F .
Let πf denote the probability that content f is selected by a
given user, which by assumption follows a Beta distribution
β(α/F, 1), defined as prior [16]. Therefore, the selection result
of user n, defined as the conjugate probability of the Beta
distribution follows a Bernoulli distribution. It turns out that
the resulting user-file partition is reminiscent to that of the
Chinese restaurant process (CRP) [16]. CRP is based upon a
metaphor where the objects are customers in a restaurant, and
the classes are the tables at which they sit. More precisely, in a
restaurant with a large number of tables, each with an infinite
number of seats, customers enter the restaurant sequentially,
and each one chooses a table at random.

In the CRP with parameter β, each customer chooses an
occupied table with a probability proportional to the num-
ber of occupants, and chooses the next vacant table with
probability proportional to β. Specifically, the first customer
chooses the first table with probability β

β
= 1. The second

customer chooses the first table with probability 1

1+β
, and

the second table with probability β
1+β

. After the second
customer chooses the second table, the third customer chooses
the first table with probability 1

2+β
, the second table with
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probability 1

2+β
and the third table with probability β

2+β
. The

process continues until all customers have seats, defining a
distribution over allocations of people to tables. Therefore,
the decisions of subsequent customers are influenced by the
previous customers’ feedbacks, in which customers learn from
the previous selections to update their beliefs on the files and
the probabilities with which they choose their files.

With that in mind, the behaviour of the proactive D2D
caching procedure is analogous to the table selection in an
CRP. If we view the social network as a Chinese restaurant,
the contents as the very large number of files, and the users
as the customers, we can interpret the contents dissemination
process online by an CRP. That is within every social com-
munity, users sequentially request to download their sought-
after content, and when a user downloads its content, the
recorded hits are recorded (i.e., history). In turn, this action
affects the probability that this content will be requested by
others users within the same social community, where popular
contents are requested more frequently and new contents less
frequently. Let ZN×F be a random binary matrix indicating
which contents are selected by each user, where znf = 1 if
user n selects content f and 0 otherwise. It can be shown that
[16]:

P (Z) =
βF ′

Γ(β)

Γ(β +N)

F ′

∏

f=1

(mf − 1)! (8)

in which Γ(.) is the Gamma function [17], mf is the number
of users currently assigned to content f (i.e., viewing history)
and F ′ is the number of partitions with mf > 0.

III. NUMERICAL RESULTS

In this section, we evaluate the performance of proactive
caching and provide key insights under two different scenarios.

A. Backhaul Offloading via Proactive Caching

The parameters for the numerical setup are given in Table I.
For simplification, the link and storage capacities are assumed
to be equal. Three regimes of interest are considered: (i) low
load, (ii) medium load, and (iii) high load.

Over a time duration T , R numbers of requests are gener-
ated. The arrival times of user requests are drawn uniformly at
random, and the requested files are sampled from the ZipF(α)
distribution. At t = 0, the popularity matrix is constructed
perfectly. Out of 20% of the elements of this matrix are
removed uniformly at random and the remaining elements of
the matrix are used for training in CF. These removed entries
are then predicted using the regularized SVD [18]. After the
popularity matrix estimation, proactive caching is applied by
storing the most popular files subject to the SBSs’ storage
constraints. Having these files locally in the cache of SBSs
and starting from t = 0, the delivery is carried out by each
SBS until all requests are served. Random caching is used as
a baseline procedure, referred to as reactive.

Three parameters of interests are considered for the perfor-
mance plots of both proactive and reactive caching approaches:
(i) number of requests R, (ii) total cache size S, and (iii)
ZipF distribution parameter α. To see the percentages of

Parameter Description Value

T Time slots 1024 seconds

M Number of small cells 4

N Number of user terminals 32

F Number of files 128

lf Length of file f 1 Mbit

bf Bitrate of file f 1 Mbit/s
∑

m cm Total backhaul link capacity 2 Mbit/s
∑

m

∑
n cm,n Total wireless link capacity 64 Mbit/s

R Number of requests 0 ∼ 2048

S Total cache size 0 ∼ lf × F

α ZipF parameter 0 ∼ 2

Table I: List of parameters for the numerical setup of the
proactive small cell networks.

differences between the proactive and reactive approaches,
plots are normalized. The evolution of the satisfaction ratios
and backhaul loads are shown in Fig. 2. Each subfigure
represents the impact of one parameter for a given regime
while the other parameters are kept fixed.

1) Impact of number of requests: The satisfaction ratio
decreases with the increase in users’ requests. This is evident
as the amount of capacity and storage resources are limited.
However, the proactive caching outperforms the reactive ap-
proach in terms of satisfaction ratio. On the other hand, the
reactive approach generates less load on the backhaul in the
case of very small number of requests. This situation can
be explained by the cold start phenomenon where the CF
cannot draw any inference due to non-sufficient amount of
information about the popularity matrix. Therefore the random
caching for a fixed library size outperforms the proposed
approach at low load. However, as users’ requests increase,
the proactive approach minimizes the backhaul load outper-
forming the reactive approach, after which the gains level off.

2) Impact of cache size: It can be seen that as the total
storage size of small cell base stations increases, the satisfac-
tion ratio approaches 1 and the backhaul load tends to 0. This
cannot be easily achieved in practice as it requires storing all
file requests whereas SBSs have limited storage. Therefore,
for reasonable values of cache size, it can be seen that the
proactive caching outperforms the reactive case in terms of
satisfaction ratio and backhaul load.

3) Impact of popularity distribution: As the popularity of
some files increases as compared to others (i.e., α increases),
the gain of the proactive caching becomes higher compared to
the random approach in all regimes. Going from the low load
regime to the high load regime, the gains further improve.

B. Social-Aware Caching via D2D

To see the impact of the parameters of interest, wireless link
capacities are equally divided among users. The total D2D link
capacity is shared among users according to their social links.
The parameters used in the numerical setup are summarized
in Table II.
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Figure 2: Backhaul Offloading via Proactive Caching: Dynamics of the satisfied requests and backhaul load with respect to
the number of requests, total cache size and ZipF parameter.

Parameter Description Value

T Time slots 1024 seconds

M Number of small cells 4

K Number of communities 3

N Number of user terminals 32

F Number of files 128

lf Length of file f 1 Mbit

bf Bitrate of file f 1 Mbit/s
∑

m

∑
n cm,n Total SBSs link capacity 32 Mbit/s

∑
n

∑
n′,n′ 6=n c̈n,n′ Total D2D link capacity 64 Mbit/s

R Number of requests 0 ∼ 9464

S Total D2D cache size 0 ∼ lf × F

β CRP parameter 0 ∼ 100

Table II: List of parameters for the numerical setup of the
social networks aware caching via D2D.

At t = 0, user selection and their requests’ arrival times
are sampled uniformly at random for a time interval T . The
social graph is synthetically generated by using the preferential
attachment model [19]. The eigenvector centrality is used to
infer on the set of influential users in the social network, where
users are formed into K clusters via K-means clustering [20].

Within every social community, the file popularity distribution
is sampled from the CRP(β) and the proactive caching is
carried out by storing popular files within each community.
Similarly, random caching is used as a baseline.

Three parameters are of interest: (i) number of requests R,
total D2D cache size S and CRP concentration parameter
β. The results are normalized for ease of comparison. As
in the previous case, similar evaluation metrics are used.
The evolution of the satisfaction ratio and small cell load
with respect to these parameters are plotted in Fig. 3. In the
following, we discuss the impact of these parameters:

1) Impact of number of requests: As the number of requests
increases, the satisfaction ratio decreases rapidly, whereas the
small cell load decreases at a low pace. It can be clearly seen
that the proactive caching approach outperforms the reactive
approach in all regimes.

2) Impact of D2D cache size: As the D2D cache size
increases, it can be seen that the satisfaction ratio increases
while the the small cell load decreases. Moreover, the incre-
ment in cache size improves the performance of the reactive
approach, however the gains of the proactive caching approach
are higher.

3) Impact of CRP concentration parameter: In the case
of an increment in β (i.e., the number of files grows), the
satisfaction ratio and the small cell load tend to be constant
under the reactive approach. On the other hand, the proactive
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Figure 3: Social-Aware Caching via D2D: Dynamics of the satisfied requests and small cell load with respect to the number
of requests, total cache size and CRP concentration parameter β.

caching approach exhibits a better performance, and the gap
between the proactive and reactive approaches gets smaller as
β increases. This is a by-product of the increasing file library
size with a fixed cache size.

IV. CONCLUSION

In this paper, we studied a novel proactive networking
paradigm where caching plays an important role. The proactive
caching solution exploits users’ predictable demands, storage,
and their social relationships to minimize peak mobile data
traffic demands. It was demonstrated that precaching strategic
contents at the network edge engenders significant backhaul
offloading gains and resource savings. Our future work will
explore distributed MIMO caching and multicast caching.
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