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Abstract—We consider resource allocation under partial feed-
back in a spatially correlated MIMO link, when the ARQ
protocol is implemented at the MAC layer. We propose a design
framework, which makes use of results from random matrix
theory (RMT), to find the rate as well as the input covariance
matrix that maximize the long term goodput. We consider
partial feedback in terms of positive/negative acknowledgment
bits (ACK/NAK), which comes essentially for free since they
are always present in the signaling of the upper layers. We
provide explicit expressions of the long term goodput, which,
in association with a RMT based approximation of the mu-
tual information enable us to optimize the resource allocation
problem. Interestingly, the simulations show that the asymptotic
optimization analysis is still valid for MIMO sizes as small as
2x2.

Index Terms—MIMO, resource allocation, random matrix
theory, ARQ, partial feedback.

I. BACKGROUND AND MOTIVATION

RESOURCE allocation is a widely studied subject (e.g.
[1] and references therein) for which the assumptions

may be of two kinds: perfect channel state information at the
transmitter (CSI-T), and partial CSI-T, also known as partial
feedback. Only the latest is acceptable from a practical point
of view as soon as the number of degrees of freedom in the
system gets large (MIMO, wideband or/and multi-user systems
for example).

The objective of this paper is to present a design framework
to optimize the long term goodput by using the ACK/NAK bits
provided by ARQ. This can be viewed as a cross-layer design
in the sense that physical layer parameters are optimized based
on (ARQ) information provided at the MAC layer [2]. We
apply results from Random Matrix Theory (RMT) to estimate
the average received SNR and determine the rate and the
input covariance matrix to maximize the goodput. To the
best of the authors’ knowledge, RMT results have never been
applied to the resource allocation problem for MIMO-ARQ
systems. Importantly, general considerations about the optimal
transmission scheme without perfect CSI-T (training-based
methods, blind methods, error-rate based methods. . . ) are out
of the scope of this paper. The proposed framework can be
seen as a proof of concept that acknowledgment bits can be
used for the resource allocation problem in a MIMO-ARQ
setup, although it is probable that optimal solutions would be,
e.g., mixed training-ARQ based.
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Rate adaptation based on partial CSI-T for point to point
SISO channels with HARQ has been investigated in [3]. It was
shown that HARQ can provide an important rate advantage as
compared to a non HARQ scheme when there is not enough
channel selectivity. Rate adaptation for goodput optimization
is also considered in [4], [5] for SISO and MIMO links
respectively. Finally, in [6], a probe intervall is developped
to perform rate-adaptation in wireless SISO links with ARQ
feedback. Also, in contrast with [5], the work presented in
this paper provides the following three original contributions:
1) Spatial correlation is taken into account. 2) Results from
RMT are exploited to derive analytical formulations. 3) SNR
is estimated based on the ARQ feedback bits.

This paper is organized as follows. After the problem for-
mulation in section II, in section III we provide and evaluate an
approximated analytical formulation of the long term goodput,
based on RMT. We then present and evaluate our framework
for resource allocation in section IV and V respectively, and
conclude in section VI. Notations: Bold letters denote vector
or matrix quantities, superscript H the hermitian transpose and
superscript ∗ the optimum.

II. PROBLEM FORMULATION

We consider a point to point nt × nr correlated MIMO
link, under the frequency-flat block-fading scenario. At block
number k, the �-th received data symbol is

y� =

√
ρ

nt
Hkx� + n�

where x� ∈ Cnt is the input vector, Hk ∈ Cnr×nt is
the channel matrix, n� ∈ Cnr is the unit variance white
Gaussian noise vector and the received SNR ρ is assumed to
be constant over T � 1 blocks. Spatial correlation follows the

Kronecker model, that is Hk = R
1
2
r ΘkR

1
2
t , the elements of

Θk being i.i.d. ∼ CN (0, 1), Tr{Rt} = nt and Tr{Rr} = nr.
For a uniform antenna array, classical correlation models
are parameterized by the distance d between two adjacent
antennas, reflecting the fact that they depend almost entirely on
the geometrical structure of the antenna arrays.1 At the MAC
layer, the ARQ protocol feedbacks a one-bit ACK in case of
successful packet reception and a one-bit NAK otherwise. One
ARQ packet lasts one block of data (slow-fading scenario),
and we assume perfect error detection at the receiver. We
also consider strong channel coding so that the source of

1In the sequel, we use the spatial correlation model presented in [7] in
which the the correlation matrices are Toeplitz matrices which are based on
the vector

(
1, e−

d
λ , . . . , e−(n−1) d

λ

)
, where λ is the wavelength.
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Fig. 1. Optimal goodput of a 2x2 MIMO system from Monte-Carlo
simulation (exact) and Gaussian approximation (app.), with high ( d

λ
= 0.5)

and low ( d
λ

= 5) spatial correlation.

transmission errors is limited to the outage of the mutual
information. As a result, the packet error rate is

ε (ρ,R,K) = Pr

[
log2 det

(
Inr +

ρ

nt
HkKHH

k

)
< R

]
(1)

where the transmission rate, R, and the covariance of the input,
K = E{x�x

H
� }, are kept constant within a block. Since, in

accordance with the block-fading scenario, successive packet-
outages are independent, the long term goodput is :

G =
R

E {X} = R
1− ε (ρ,R,K)

1− ε (ρ,R,K)
M

(2)

where X is the geometrically distibuted discrete random
variable representing the number of transmission attempts
of each packet and M is the maximum number of ARQ
retransmissions (which we consider to be ∞ in the sequel,
for simplicity of the analysis). For a given ρ, Rt and Rr,
the goodput G is a function of the transmission rate R and
the input covariance matrix K. In this paper, we design a
framework for resource allocation, in which the transmitter
exploits the ARQ feedback bits to estimate ρ, and determinates
R and K to maximize G based on the estimated ρ̂ of ρ.

III. RANDOM MATRIX THEORY BASED GAUSSIAN

APPROXIMATION

Here, we show that the first and second order asymptotic
approximations of the mutual information of large dimensional
multi-antenna channels provided in [8] can be used as a tool
for our resource allocation problem, under both high and low
spatial correlation, even if the number of antennas at the
transmitter and at the receiver is kept as low as 2. First, we
recall these approximations, which are given for K = Int

(generalization to K �= Int is examined in section IV). Then,
we examine how the optimized goodput is impacted by these
approximations.

First order approximation of the mutual information of large
MIMO channels (from [8], theorem 1):

E

{
log2 det

(
Inr + ρ

nt
HkH

H
k

)}
= μI

(
ρ,D, D̃

)
+O

(
1
nt

)
as

nt, nr → ∞2, where D and D̃ are the diagonal matrices of
eigenvalues of Rr and Rt respectively, and

μI

(
ρ,D, D̃

)
= log2 det

(
Int + ρδD̃

)
+

log2 det
(
Inr + ρδ̃D

)
− ntρδδ̃ log2 (e)

(3)

where
(
δ, δ̃

)
is the unique positive solution of the system
⎧⎪⎨
⎪⎩
δ = 1

nt
trD

(
Inr + ρδ̃D

)−1

δ̃ = 1
nt

trD̃
(
Int + ρδD̃

)−1

Second order approximation of the mutual information of
large MIMO channels (from [8], theorem 2):

log2 det(Inr+ ρ
nt
HkH

H
k )−μI(ρ,D,D̃)

σI(ρ,D,D̃)
converges in dis-

tribution to N (0, 1) as nt, nr → ∞2, where

σ2
I

(
ρ,D, D̃

)
= − log2

(
1− ρ2γγ̃

)
(4)

and

γ =
1

nt
trD2

(
Int + ρδ̃D

)−2

γ̃ =
1

nt
trD̃2

(
Int + ρδD̃

)−2

Therefore, for K = Int , one can write

G (ρ,R,K) ≈ R

⎛
⎝1−Q

⎛
⎝μI

(
ρ,D, D̃

)
−R

σI

(
ρ,D, D̃

)
⎞
⎠
⎞
⎠ (5)

We now compare the rate optimized goodput G∗|K=Int
=

max
R

R (1− ε (ρ,R, Int)) obtained by Monte-Carlo simulation

(exact) to that given by the approximation (5). Fig. 1 presents
G∗|K=Int

vs ρ for nt = nr = 2, ρ varying from -10 dB
to 25 dB and d

λ ∈ {0.5, 5} (thus covering both high and
low spatial correlation [7] senarios). We can see a very good
match between the exact and approximated curves, even if the
number of antennas is as low as 2× 2.

IV. RESOURCE ALLOCATION FRAMEWORK

Resource allocation is performed over two phases, without
using any training sequence. Hence, useful data is transmitted
over both phases. R and K are derived in such a way that
ρ is estimated in phase I and the goodput is maximized in
phase II. Both phases exploit RMT-based approximations (5).
We begin our discussion with phase II.

Phase II (Tp + 1 ≤ k ≤ T ): Noting that the optimal
value of K in terms of outage is not known in general, the
problem of determining the one that maximizes the goodput
seems prohibitive. We concentrate on a suboptimal solution
that consists in 1) adopting the ergodic capacity achieving
covariance matrix structure, which is known to correspond to
K = UtΣUH

t , where Ut is the eigenvector matrix of Rt, see

2but the ratio tends to a constant.That is nr (nt) is a sequence of integers
such that 0 < lim inf

nt→∞
nr(nt)

nt
≤ lim sup

nt→∞
nr(nt)

nt
< ∞.
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references [9], [10], and 2) optimizing the goodput3 through
power allocation over the eigenvalues ζ (i), i = 1, . . . , nt

(Σ = diag(ζ(i))) and optimization of the rate R. Note that
a similar approach was used in [11] where the form of the
covariance matrix that achieves the capacity in the Rayleigh
fading case was used to investigate the capacity under Ri-
cian distribution. Noting that log2 det

(
Inr +

ρ̂
nt
HkKHH

k

)
=

log2 det
(
Inr +

ρ̂
nt
H

′

kH
′H
k

)
, where H

′

k = D
1
2ΘD̃

1
2Σ

1
2 ,

this goodput optimization problem can be formulated as the
problem 1 below:

Problem 1 (Goodput optimization):

G∗ (ρ̂) = max
R,Σ

R

⎛
⎝1−Q

⎛
⎝μI

(
ρ̂,D, D̃Σ

)
−R

σI

(
ρ̂,D, D̃Σ

)
⎞
⎠
⎞
⎠

subject to R ≥ 0,

Tr (Σ) ≤ nt.

We solved it numerically using active-set nonlinear program-
ming tools.

Phase I (1 ≤ k ≤ Tp): Unlike estimation techniques based
on training sequences (that do not contribute in useful data
transmission), the packets not in outage during phase I do
contribute to the goodput. We modify the algorithm developed
in [6] in the context of SISO transmission of uncoded QAM
(shown to converge to an efficient and consistent estimator)
whose general principle, adapted to our context, is: iteration
k corresponds to the transmission of one packet, at a rate Rk,
and with input covariance Kk = UtΣkU

H
t . At each iteration,

ρ̂ is updated based on the ARQ bit (denoted Fk , equal to 1 in
case of NAK and to 0 otherwise) that is fed back in relation
to that packet, and so are the rate and the input covariance
matrix. The updating equations are derived so that the Cramér-
Rao lower bound is achieved by the estimator 4 [12]. In more
details: 1. At block index k = 1, choose arbitrarily a rate R1

and an SNR estimate ρ̂1, and compute Σ1 according to

Σ1 = arg max
Σ

R1

⎛
⎝1−Q

⎛
⎝μI

(
ρ̂1,D, D̃Σ

)
−R1

σI

(
ρ̂1,D, D̃Σ

)
⎞
⎠
⎞
⎠

s.t. Tr (Σ) ≤ nt.

Transmit packet 1 at a rate R1, with input covariance Σ1, and
read the feed-backed bit F1.

2. For block indexes 2 ≤ k ≤ Tp:
a) Update

ρ̂k = ρ̂k−1 +
Fk−1 − ε(ρ̂k−1, Rk−1,UtΣk−1U

H
t )

(k − 1)β × ε′(ρ̂k−1, Rk−1,UtΣk−1UH
t )

where ε′
(
ρ,R,UtΣUH

t

) def
= ∂

∂ρ ε
(
ρ,R,UtΣUH

t

)
. β ∈

(0, 1] controls the tradeoff between the speed of conver-
gence and the variance of the estimation error.

3Since Rt and Rr depend almost entirely on the geometry of the antenna
array, they are very little sensitive to receiver mobility, and can be assumed
to be (almost) constant over � T blocks. Therefore, we consider that they
are known at the transmitter without any penalty in the rate.

4We denote by Φ(ρ, R,Σ) the Fisher information relative to Fk(
Φ(ρ, R,Σ)

def
= E

fk

{
∂
∂ρ

log Pr[Fk = fk|ρ,R,Σ]
})

.
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Fig. 2. Illustration of the trajectory of the SNR estimator. β ∈ {0.5, 1} and
d
λ

∈ {0.5, 5}.

b) Choose Rk and Σk as

(Rk,Σk) = arg max
R,Σ

Φ(ρ̂k, R,Σ)

s.t. R ≥ 0,Tr (Σ) ≤ nt

c) Transmit packet k at a rate Rk, with input covariance Σk,
and read the feed-backed bit Fk.

The optimized goodput, averaged over both phases, can be
written:

G∗
av =

1

T

Tp∑
k=1

Rk (1− Fk) +
T − Tp

T
×G∗ (ρ̂)

where 1
T

∑Tp

k=1 Rk (1− Fk) is the contribution of phase I to
the goodput and G∗ (ρ̂) is the result of problem 1.

V. PERFORMANCE RESULTS

We first evaluate the performance of the goodput optimiza-
tion scheme of phase II against uniform power allocation (PA)
and beamforming (BF) 5, assuming ρ̂ = ρ. The evolution
of the goodput with d

λ is represented on Fig. 2. The curves

5uniform: K = Int ; BF: all the power is allocated to the maximum
eigenvalue of Rt.
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confirm the intuition that K∗ → Int in low correlated environ-
ments, and K∗ → BF in highly correlated environments. For
intermediate correlation, our proposal K∗ outperforms both
K = Int and BF.

The trajectory of the SNR estimator in phase I is illustrated
in Fig. 3. We arbitraritly fixed R1 = 1 bps/Hz and ρ̂1 = 5 dB
(ρ = 0 dB). For β = 0.5, we can see that it takes less time
to go to the steady state than for β = 1, but the estimator
variance is higher. Also, the rate of convergence is higher in

the presence of high spatial correlation ( dλ = 0.5) when β = 1.
In order to investigate the impact of the SNR estimation

on the goodput, Fig. 4 represents G∗
av as a function of d

λ for
β ∈ {0.5, 1}, Tp = 100 and T = 1000, as well as G∗(ρ)
for comparison purpose. We observe that G∗

av reaches around
80-90% of G∗

av depending on the value of β (which could be
improved by optimizing beta).

VI. CONCLUSION

In this paper we designed a framework for rate and input
covariance matrix optimization, when only ARQ feedback is
present, in a spatially correlated environment. We exploited
results from RMT to provide a convenient formulation of the
goodput which was used in the optimization process. Extend-
ing the work provided in [6], we proposed a two phases alloca-
tion framework, both contributing to useful data transmission,
where the SNR is inferred from binary ACK/NAK feedback
and used as an input to the goodput optimization problem.
Possible extension of this work is to consider mixed training-
ARQ based solutions for the resource allocation problem.
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