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Abstract—In this work we address the problem of power allocation for
interfering transmitter-receiver pairs so that the probability that each
queue length exceeds a specified threshold is fixed at a desired value.
One application is satisfying QoS requirements in a dense cellular
network. We deal with this problem using heavy traffic approximation
techniques which lead to an asymptotic model of a (controlled) stochas-
tic differential equation. The proposed power control strategy consists
of allocating most of the power according to the states of the channel
and a smaller fraction according to the queue lengths, for which we
find a closed-form expression. We first consider a scenario where all
channel realizations and queue lengths are known instantaneously to
every transmitter. Then, the algorithm is extended to the case where only
local SINR feedback is available and when queue length information is
shared with delays among the transmitters. These models and results
are also extended to the case where the transmitters are equipped
with multiple antennas. Finally, the applicability in practical system
settings are discussed and simulation results are provided to illustrate
the performance of the proposed method.

1 INTRODUCTION

The explosive growth of video and data applications
demands over wireless networks poses a serious chal-
lenge to mobile operators. A promising way to deal
with this demand is the concept of Small Cell Networks,
which are dense cellular networks with low power base
stations and frequency reuse one [3]. One of the key
issues arising in such networks that intercell interference
is severe, as there are now many base stations close
to each other. Cooperation between the base stations
of a cellular network has been shown to mitigate the
intercell interference and increase spectral efficiency [4],
[5]. However in practice this is not always feasible due to
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limitations in backhaul capacity. Moreover, the incoming
traffic at the base stations is not taken into account in
these works. As in practical cases the traffic arrives with
random patterns and the users have requirements in
terms of Quality of Service (such as delays, bit error
rates etc.), a better approach is to make the resource
allocation at the base stations adapted to the real-time
traffic characteristics and queue states.

In this paper we will consider a system with K
transmitters, each having L antennas and operating in
the same frequency band W , each of them serving
one receiver. The additional challenge here is that links
interfere with each other so the queue length of one
transmitter depends also on the power (and beamform-
ing) allocations of the other transmitters. This setting can
correspond to small cells employing the same subcarriers
to serve the users. The objective is to minimize the
total power over an infinite time horizon such that
the probability that the queue size at each transmitter
exceeding a threshold is fixed (unlike the approach in
the references cited where the objective is to minimize a
single function of all the queue lengths). This goal may
correspond to fixing a data loss probability (for finite
buffers at the transmitters) in some desired values or
some delay requirement, which is a crucial QoS aspect in
multimedia applications. In delay-constrained cases we
can argue that due to Little’s law the (average) delay is
proportional to the queue length therefore bounding the
delay below a desired threshold is equivalent to bound-
ing the queue length below a threshold corresponding
to the delay bound. Since the incoming traffic and chan-
nels evolve randomly however, such a constraint is not
possible to hold, thus we will consider the following
probabilistic QoS metric for the queue length at each
transmitter k

Pr
{
qk(t) > qthrk

}
= δk, (1)

which means setting a buffer (equivalently, delay) outage
probability in some values that can be tolerated by
the application. In this work we tackle the problem
by proposing a power control strategy so that these
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constraints are met, based on heavy traffic asymptotic
modelling. The approach is then to divide the power
into two parts: equilibrium and reserve powers. The
equilibrium power problem consists in allocating the
power according to the channel states so that on average
the transmission rate is equal to the arrival rate. In the
literature, this type of problems has been widely studied
for both single and multiple antennas systems (one can
refer to [6],[7] for more details). The main challenge
in this paper is in the modelling and allocation of the
reserve power. An immediate approach to optimally con-
trol the reserve power would be to formulate the prob-
lem using optimal control theory and HJB (Hamilton-
Jacobi-Bellman) framework. However the constraint (1)
makes the problem very hard and solutions are not
even guaranteed to be tractable. In addition, the system
(under some control policies) may not be ergodic. Even
if the system is stationary and ergodic, finding a closed
form expression of the stationary distribution function
of the queue evolution is not easy. This is due to the
interaction between the different users’ queues through
the interference. In this paper, we tackle the above
problem as follows. We first show that the queues of the
users in the heavy traffic regime can be modeled as a re-
flected multidimensional stochastic differential equation
(SDE). Then, taking advantage of the specific structure
of the reflection matrix, we propose a control policy
that decouples the multidimensional SDE into several
parallel SDEs and ensures that an invariant measure for
each of these SDEs exists. Using results from probability
theory, we can obtain a closed form expression of the
stationary distribution function of the dynamics of each
SDE which allows finding a relation between the reserve
power allocated and the overflow probability in (1).
Notice that the value of the reserve power allocated
by our algorithm compared to the equilibrium power
is very small (as we will show later in this paper). In
other words, the sub optimality gap between our reserve
power approach and other optimal control approach
(e.g. using HJB) is small in many scenarios.

Regarding the problem of simultaneous transmissions
over interfering channels, substantial work has been
done in power allocation so that the Signal-to-Noise
Ratio at each receiver is above a specified threshold. In
[8] such an algorithm, which is totally distributed, has
been proposed and in subsequent years modifications
and extensions have been made; for an extensive survey
of power control algorithms with target SNR refer to
[6] and references therein. This approach however is not
suited for the traffic nature of data and video streaming
applications, as they do not adapt to the traffic, queue
states and/or the specific requirements of the application
requested. In this direction, in [9] a scheduler based on
H-infinity control was proposed in order to regulate the
buffers of small cell base stations around a target length.
In [10], the problem of power control for VBR video
streaming over a cellular network is concerned, with
the assumption that the videos requested are stored at

the base stations (therefore stochastic traffic dynamics
are not taken into account). The authors investigate
the problem of throughput maximization under over-
flow and underflow constraints at the receivers’ playout
buffers and propose an optimal centralized and a near
optimal decentralized algorithm under some feasibility
assumptions for the SINR.

The authors in [11] consider dynamic scheduling (in-
side the cell) and power allocation (for intercell interfer-
ence mitigation) so that a function of the queue lengths
that corresponds to the average delay in the system
is minimized. The problem is formulated as a Markov
Decision Problem, and an online learning algorithm is
used for the solution. The proposed algorithm is semi-
decentralized in the sense that a central controller sets
the transmission power levels but the scheduling deci-
sion is taken at each base station. For a survey of the
use of such tools in resource allocation problems see [12]
and references therein. However, in these problems the
objective is to optimize a single objective function subject
to constraints on the expected values of the queues,
which are weaker then the overflow probabilities we
consider here. In addition, these techniques requite the
solution of the Bellman equation which in general can be
solved off-line only numerically at a high computational
cost, and learning algorithms for on-line implementation
may converge slowly (especially when the number of
users and queue capacity are large).
Another line of work regarding resource allocation in
wireless networks is done by using Lyapunov drift
techniques (see [13], [12] and references therein). These
works address the problem of minimizing a cost func-
tion for the network while keeping the queues stable.
However, in our work we are interested in satisfying
individual QoS constraints for each user, in a form which
is much stronger than requiring just stability of the
queues. Finally, another approach is to convert the de-
lay constraints into equivalent rate constraints, however
queue lenght information is not taken into account and
it works well for relatively large delays [12].

The approach followed in this paper is based on the
heavy traffic asymptotic modelling of a network. Initially
used for the analysis of queues and queuing networks,
it consists of examining the system’s behaviour as the
arrival rates become almost as big as the service rates.
It turns out that the models in this asymptotic case
become more tractable to handle and their study can
reveal useful information for the system’s behaviour
even when this condition does not hold. Also, due to its
tractability, the heavy traffic asymptotic regime can be
used to find analytically a control policy in the network
(e.g. routing policy, transmission scheduling, service rate
adjustment etc.); this policy then can be applied in non-
asymptotic situations of the network, with some proper
modifications (see [14] and references therein).

In the context of wireless communications, heavy traf-
fic models have been used to analyze the performance of
the MaxWeight and Exponential scheduling algorithm in
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[15] and [16] respectively. Moreover, authors in [17] have
studied the performance of a throughput-optimal rate
allocation in a two-user MIMO system (with a common
channel for the users) when the incoming traffic is nearly
equal to the rate of each user. This was generalized in
[18] for multiple antennas at the transmitter, each serving
one user. In both cases the behaviour of the queues
turns out to be a multidimensional Brownian motion
constrained in the positive orthant. Also, in [19], it is
proved that for the latter case and time-varying channels
the policy of assigning rates at the boundary of the
capacity region is asymptotically optimal in the sense
that it minimizes a weighted sum of packets in the queue
in heavy traffic; moreover, this quantity is proven to be
a reflecting Brownian motion with regime switching.

The first application of the heavy traffic approach to
the power control problem was made by [20], where
it was used to derive an optimal power control in the
setting of a single base station serving many users via
time-varying but orthogonal channels. In that work,
each user is preassigned one channel and the authors
assumed total power constraints and that power can
be reallocated from one channel to another. The control
policy was specified numerically. Simulation results of
this policy can be found in [21]. Also, in [22] an optimal
power control was derived for the point-to-point link
over a fading channel. It was shown that the delay-
optimal policy is a simple single-threshold one and
simulations results show that the resulting cost is very
close to the one obtained by solving the original control
problem. In the latter three works, heavy traffic condition
is imposed by preallocating suitable amount of power
according to the channel state and then allocating a
(much smaller) amount or reserve power according to
channel states and queue lengths. Indeed, without this
additional reserve power allocation the delay becomes
unbounded [22], [23].

The main contributions of this paper are: (i) Deriva-
tion of a heavy traffic asymptotic model for this system
of K interfering wireless links for transmitters equipped
with single and multiple antennas, (ii) Derivation of
a closed-form power (and beamforming in the case of
multiple-antenna transmitters) control policy under per-
fect channel and queue state information so that the ob-
jectives (1) are met and (iii) Modification of the obtained
algorithms in less demanding information patterns. We
derive the analytical model of the system under heavy
traffic conditions in Sections 2 and 3, extending the
results of [20] and [22]. The main issue in our case is
that the transmitting power of each base station affects
the rates of all other wireless links, therefore the queue
length processes are coupled. Then, once we obtain the
Stochastic Differential Equation (SDE) that models the
evolution of queues, we apply a special form of linear
control to the reserve power to actually decouple the
evolution of queues and meet the QoS requirement in
Section 4. In that Section we also discuss an implemen-
tation of the algorithm in more decentralized settings,

where channel states are not known and the case where
queue length information becomes available with delays.
All the analysis till there is done for continuous time
and an asymptotic system as a parameter n goes to
infinity; in Section 5 we examine the effect of operating
in timeslots and how the parameter n can be chosen in a
practical system to actually implement the power control
policies. The performance of the control algorithms is
then illustrated via simulation of a simple system in
Section 6. In this section we also illustrate via simulations
the effect of delayed queue state information. Finally,
Section 7 concludes the paper.
Notations
Throughout this paper, bold uppercase letters are used
to denote matrices, while bold lowercase letters de-
note column vectors. Non-boldface letters denote scalars.
Therefore, x will denote the column vector with elements
xk and ‖x‖ its Eucledean norm. Superscripts T and H
over a matrix or vector denotes its transpose and its
hermitian respectively, superscript (n) denotes the n-th
element of a sequence and superscript # denotes the
pseudoinverse of a matrix , i.e. A# = AH

(
AAH

)−1.
Also, I{A} denotes the indicator function, [a]+ denotes
max(a, 0), erfc(x) the complementary error function, i.e.
erfc(x) = 2√

π

∫ +∞
x

e−t
2

dt, erfc−1(x) the corresponding
inverse function. Finally, w−→ denotes weak convergence.

2 SYSTEM MODEL AND HEAVY TRAFFIC CON-
DITIONS

We consider a system of K transmitters each with L
antennas serving one receiver and using bandwidth W .
For notational simplicity, we index the transmitters and
receivers so that transmitter k serves user k. Let then
gij(t) denote the power gain of the channel between
transmitter j and user i at time t. Each of these chan-
nel gains is assumed to evolve independently of the
others as an ergodic finite state Markov chain (for the
case of single antenna this model is widely used for
fading wireless channels [24]). Under this assumption,
the matrix H(t) = [hij(t)] of all channel gains at time t
will also evolve as an ergodic finite state Markov chain
with, say, MH possible states and let us index the states
as SH = {1, ...,MH}. We shall denote the event that the
channel gains are in the m-th state as H(t) = Hm.

The corresponding ergodic probability distribution for
each state will then be denoted as πm, and let Eπ {}
denote the expectation over this probability distribu-
tion. In our setting no transmitter cooperation, e.g. in
the form of joint transmission or space-time coding,
is assumed. Therefore, at receiver k, the received sig-
nals from a transmitter other than k are regarded as
interference. In addition, each transmitter will perform
a power/beamforming allocation at each time slots.
Notice that time sharing and scheduling are not con-
sidered in this paper since they require the existence
of a central entity that assign the users to time slots.
Existence of such entity is not possible in our context
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since we are examining a system with distinct transmit-
ters, each of which communicating only with its own
receiver. The interference is treated as Gaussian noise,
thus when transmitter k uses beamformer vk , the rate
rk(v1(t), ...,vK(t),G(t)) over the corresponding link will
be assumed as the Shannon rate, that is [25]

rk(v1, ...,vK ,H) = Wlog2

(
1 +

|vHk (t)hkk|2

σ2 +
∑
i6=k |vHi (t)hik|2

)
.

(2)
In the above, W is the bandwidth and σ2 is the
noise variance. The power of transmitter k is given by
pk(t) = vHk (t)vk(t). In the case of transmitter having
single antenna, each channel can be characterized only
by its power gain, gki(t) and the transmitted power
is controlled directly. Thus, the received power in the
channel from transmitter k to receiver i is pk(t)gki(t).
The rate rk(p(t),G(t)) is given by rk(p(t),G(t)) =

Wlog2

(
1 + pk(t)gkk(t)

σ2+
∑
i6=k pi(t)gik(t)

)
. For each queue we sup-

pose that the instantaneous arrivals ak(t) at time t are
i.i.d., with mean λk and (finite) variance σ2

a,k, and are
independent of the arrivals at the other queues and the
channel process.

In this work the heavy traffic asymptotic modelling
will be used. Informally this means that the average
transmission rate at each transmitter will be almost equal
to the mean rate of the incoming traffic. Formally, as it is
fairly standard in the relevant literature [14], a sequence
of systems parametrized by n is created and the system
in the limit as n → ∞ is taken and examined (with
time and state variables scaled appropriately). More
specifically, the interpretation of the parameter n is such
that at any time interval ∆t there are O(n∆t) arrivals,
thus n can be seen as the order of magnitude of the
arrivals and taking the limit as it goes to infinity implies
that in the heavy traffic situations there are too many
arrivals in the transmitters. Let a(n)

k (t) denote the arrival
process at transmitter k at the n-th system and ζ

(n)
k (t)

the corresponding inter-arrival times. Then, for every
transmitter k we make the following assumptions [22]:

Assumption 1: The inter-arrival intervals satisfy the
following:

1) |ζ(n)
k (l)|2 are uniformly integrable.

2) There exist constants ζ̄(n)
k , ζ̄k and σk such that

E
{
ζ

(n)
k (l)

}
= ζ̄

(n)
k → ζ̄k and

limn→∞ E

{(
1− ζ

(n)
k (l)

ζ̄
(n)
k

)2
}

= σk

3) The inter-arrival processes are independent of the
channel processes.

The above assumption is roughly equivalent to saying
that, for our case, a(n)

k (t) → ak(t) , where a
(n)
k (t) have

mean rate λ
(n)
k → λk and σ

(n)
a,k → σa,k. We would like

to stress that that λk and σa,k are finite for every user
k. Also, denote v

(n)
k (t) the power beamforming vector

at time t for transmitter k of the n-th system. Define

v(n)(t) the column vector containing these beamforming
vectors.

A difference in our case with respect to conventional
heavy traffic models in wireline networks is that the
channels are changing, therefore the time scaling must
be done based on the rate on which the channels change
rather than the arrival rates. Following [20] and [22], we
also parametrize the number of channel changes with the
integer n and assume that the channels change also fast
but at a slower rate than the incoming traffic. Thus, at a
time interval ∆t there will be O(nν∆t) channel changes,
for a 0 < ν < 1. Now, let qk(t) denote the queue length
of transmitter k at time t,and x

(n)
k (t) the scaled version

as follows:
x

(n)
k (t) =

1

n
ν
2
qk(nνt). (3)

The heavy traffic condition regarding the arrival and
departure rates will be for every k [22]:

lim
n→∞

(
λ

(n)
k − Eπ

{
rk(v(n)(t))

})
n
ν
2 = θk < 0,∀k ∈ {1, ...,K},

(4)
The meaning of the constant θk in the equation is that
this limit is finite. More specifically, the equation implies
that the service rates are bigger than the respective
arrival rates, so that the system is stable, but the gap
between them closes as O

(
1/n

ν
2

)
. As n → ∞, the

gap between the arrival and service rates becomes very
small, thus activating the heavy traffic condition In order
for (4) to hold, the beamforming vectors appearing inside
the limit have to be of the form

v
(n)
k (t) = v̄k(H(n)(t)) +

1

n
ν
2

v′k(x(n)(t),H(n)(t)). (5)

In the above expression v̄k(H(n)(t)) is such that

λk = Eπ
{
rk(v̄(H(n)(t)))

}
,∀k ∈ {1, ...,K}. (6)

From the two equations just presented, it follows that
the resource allocation policy consists of two parts: One,
denoted v̄a, the column vector of all the beamforming
vectors of the first part of (5), based only on the channel
states so that the average rate equals the average rate of
the incoming traffic (therefore in a sense of equilibrium)
and another one, modelled by u = [v′1(t)T , ...,v′K(t)T ]T

in (5), based on the queue lengths and probably the
channel states. Throughout this work we assume that
the arrival rates belong to the rate region achieved by
beamforming/power control only, and the main objec-
tive is finding a small reserve power such that the QoS
constraints (1) are satisfied. In other words, when a
power control policy following this rule is implemented,
the equilibrium power that corresponds to the realization
of the channels at this time is computed and a much
smaller additional reserve power so that the total rate is
very close to the arrival rateis allocated according to a
rule based mainly on the queue lengths. Taking also into
account that n → ∞, (5) implies that at each time t the
actual beamforming used by each transmitter is varying
slightly around the equilibrium according to the queue
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lengths so that the probabilities that the queue length
exceeds a threshold are indeed the desired ones. In
the topology of interference channels we are examining
here, the limiting factor is interference rather than power
constraints so we do not consider such constraints. How-
ever, note that if there are power constraints such that
(6) cannot hold for some users, these queues will be
unstable. On the other hand, since the reserve power
is very small, a reasonable power restriction would be
to add a fraction of the equilibrium power to the peak
power for each user.

Examining (6) further, we can see that there are many
possible approaches for the equilibrium power alloca-
tion. For example, one may to allocate v̄(t) so that for
any possible state of the channels the rate at each link k
will be equal to λk, or another approach is to solve the
problem of minimizing the expectation over the channel
states of total power used with the constraint that (6)
is satisfied. As a final remark, unlike the networks
considered in the classic heavy traffic literature where
the service rates are fixed, in our case the service rates
are controlled, depending on the power allocation. This
means that the system is actually forced to operate in
the heavy traffic regime, with beamforming being as
described in (5) and (6) for some large enough scaling
parameter n.

Finally, some comments with respect to notation are in
order. The beamforming vectors are all stacked in the col-
umn vector v(t) with KL elements. Therefore, element
i of this vectors corresponds to transmitter k′(i) = di/Le
and its antenna indexed by l′(i) = i − (k′(i) − 1)L. The
same holds for the equilibrium and reserve beamforming
vectors.

3 CONVERGENCE TO AN SDE
In this section the actual model of the limit system (as
n → ∞) in heavy traffic will be obtained as a con-
trolled Stochastic Differential Equation. The derivations
make use of the weak convergence methods applied in
[20] and [22]. We consider the case when the channel
coefficients are real numbers. This is done mainly for
mathematical convenience. A way to use the results and
methods of this subsection for this more realistic model
(with complex channel coefficients) is to examine the
power control problem separately for the sine and cosine
parts of the signal; then the problem is reduced to two
subproblems with real channel coefficients each, and
each subproblem is solved with the same way presented
in the paper. Our main result follows :

Theorem 2: Consider K interfering links with L anten-
nas at each transmitter. As n → ∞ the vector-valued
process of the scaled queue lengths of (3) is given as,

x(t) = x(0)−
∫ t

0

f(u(s))ds+ Σw(t) + z(t). (7)

In the above, w(t) is a vector of K independent standard

Wiener processes, f is the vector of the functions

fk(u(t)) =

MH∑
m=1

πm

LK∑
j=1

ak,j (Hm)uj(t) (8)

where ai,j(Hm) = ∂ri(v̄a(Hm))
∂vj

. The matrix Σ = [σij ]

satisfies
ΣΣT = ΣaΣ

T
a + ΣdΣ

T
d (9)

with Σa = diag(σa,k) while the elements of the covari-
ance matrix ΣdΣ

T
d = [sij ] are given as

sij = 2E
{∫ +∞

0

r̂i(0)r̂j(t)dt

}
, (10)

where r̂k(t) = (rk (v̄(H(t)))− λk). Finally, the elements
of z(t) are given as

zk(t) =

−min
s≤t

xk(0)−
∫ t

0

fk(u(s))ds+

K∑
j=1

σkjwj(t)


+

.

(11)
Proof: Please refer to the Appendix for the proof.

It is interesting to note that, despite most of the cases
discussed in the literature (e.g. [20], [14]), in our case
the queue lengths are not directly coupled due to the
reflection. Generally, the actual reflection term consists
of the above process multiplied from the left by a matrix
R, denoted in literature as the reflection matrix. The
diagonal elements of the reflection matrix are ones, while
the off-diagonal elements represent data being routed for
transmission to queues that are empty (in other words,
if a queue is empty, then it serves some of the data from
other non-empty queues). In our case no sort of such
cooperation between the transmitters is assumed, so the
reflection matrix is the identity. This property will play
an important role in selecting the reserve control policy
in Section 4.

From now on we will consider the case with single
antenna transmitters in order to simplify the notation.
This case follows from Theorem 2 putting L = 1, and
we have only power control.In this case the channel
gains are scalars gij(t) with G(t) the corresponding
channel gain matrix, having MG possible states. Note
that this model can also accommodate the case where
the beamforming direction is fixed at the direction of the
equilibrium vector and the reserve part only changes its
magnitude.

An interesting thing to note is that we can further
simplify the model by considering that the reserve power
depends only on the queue lengths. This is reasonable
because we can argue that the goal of the reserve power
is to regulate the queue lengths while the equilibrium
allocation takes care of the channels. In this case we have
the following result:

Corollary 3: Consider a reserve control policy that does
not depend on the channel states. Then the asymptotic
model reduces to

dx(t) = Bu(x(t))dt+ Σdw(t) + dz(t) (12)
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Proof: In differential form (with the differentials
being in the sense of Ito calculus) we have

dx(t) = −f(u(t))dt+ Σdw(t) + dz(t) (13)

with an initial condition x(0) = x0.
If u(t) does not depend on the channel state,

we can change the order of the sums in (8),
so fi(u(t)) =

∑MG

m=1 πm
∑K
j=1 ai,j(Gm)uj(x(t)) =∑K

j=1 uj(x(t))
∑MG

m=1 πmai,j(Gm) thus, defining

bij = −
MG∑
m=1

ai,j(Gm)πm, (14)

we get fi(u(t)) = −
∑K
j=1 bijuj(x(t)). Defining the ma-

trix B = [bij ], we can write this relation in vector form
as f(u(t)) = Bu(x(t)). This implies that (13) takes the
form (12), essentially completing the proof. Moreover,
the elements of the matrix B, from (14) are

bii = −
MG∑
m=1

πmW ln(2)
gii(Gm)∑K

k=1 gki(Gm)p̄k(Gm) + σ2

bij =

MG∑
m=1

πmW ln(2)
gii(Gm)

σ2 +
∑K
k=1 gki(Gm)p̄k(Gm)

×

gji(Gm)p̄i(Gm)(
σ2 +

∑
k 6=i gki(Gm)p̄k(Gm)

) , i 6= j

Note that in this case, the total transmission power takes
still into account both the CSI, through the equilibrium
part, and the queue states, through the reserve part. For
the multiple antenna case the model will be similar, just
with B being a K-by-KL matrix.

As a final remark for this Section, let us point out that
the whole procedure of rescaling time and queue lengths,
taking the limit as this scaling factor goes to infinity and
using central limit theorems implies that the Stochastic
Differential Equation (13) is an averaged model of the
system over the random environment and traffic, where
statistics up to second order are used.

4 A CONTROL POLICY

4.1 Defining equilibrium and reserve control poli-
cies with perfect information

As it can be seen by (5) the resource allocation policy
consists of two parts: determining the equilibrium power
allocation according to the state of the channels and
then determining the reserve power allocation according
to the channels and queue lengths in general. In this
work, we will set the equilibrium power allocation such
that the rates at each possible state of the channels are
equal to the mean rates of the incoming traffic. This
is equivalent to the problem of maintaining a constant
SINR γ̄k for each user k for each channel state such
that λk = W log2 (1 + γ̄k). Therefore, the equilibrium

power allocation policy is obtained by solving the fol-
lowing system of linear equations for each Gm and
∀k ∈ {1, ...,K}:

1

γ̄k
gkk(Gm)p̄k(Gm)−

∑
i 6=k

gik(Gm)p̄i(Gm) = σ2 (15)

Here we assume that the channels and incoming traffic
characteristics are such that (15) are feasible. If not, then
we may still be able to find a suitable equilibrium power
allocation; however the general problem in this case
is very difficult. Also, methods using time-sharing and
scheduling would need the existence of a central au-
thority to schedule transmissions, which is not assumed
in this paper. In addition other methods would not be
amendable to distributed implementation, as described
in the next subsection. In the case of multiple antennas at
the transmitters, the problem of finding an equilibrium
beamformer so that the corresponding rate is λk for each
link can be solved by the algorithm presented in [7].

The reserve power allocation will depend only on the
queue lengths, thus the queue dynamics are governed by
a stochastic differential equation of the form (12). Note
that because the equilibrium allocation given by (15) is
such that the corresponding rates are the same for each
channel state, there is no randomness in the equilibrium
rates therefore there must be Σd = 0. In order to find this
reserve power allocation policy we will initially work
with the asymptotic model (as n → ∞) and impose no
constraints on uk(x(t)). All these having been said, we
have the following;

Proposition 4: With the equilibrium allocation given as
a solution to (15), the overflow requirements for the
asymptotic system can be satisfied by the following
policy:

u(x(t)) = B−1Cx(t), (16)

with C = diag (−|ck|) and |ck| = 1
2

(
σa,k
xthrk

erfc−1 (δk)
)2

.In
the above, xthrk is the corresponding threshold in the
asymptotic regime.

Proof: Let us first start by establishing the proba-
bilistic framework of the stochastic differential equation
in (12). Let (Ω,F , {Ft}t≥0,P) be a complete probability
space satisfying the usual hypotheses, i.e., Fo contains
all the P-null sets of F and {Ft}t≥0 is a right continu-
ous filtration of σ-algebras. The Wiener Process w(t) =

(w1(t), . . . , wK(t))
T
t≥0 is {Ft}t≥0-adapted with stationary

and independent increments. The Wiener process is also
independent of the initial state x0 which is an Fo-
measurable random variable with finite second moment.
The reflection process z(t) = (z1(t) . . . zK(t))

T
t≥0 is a

continuous non-decreasing {Ft}t≥0-adapted RK+ valued
process and each zk(t) increase only when xk(t) = 0. We
define our control policy in the class of Markov feedback
control (i.e. the control depends on x(t)). It is well known
that the existence of Markov control is related to the exis-
tence of solution for the corresponding SDE. First we will
examine the effects of the proposed equilibrium policy
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given by solving (15). Since the corresponding rates are
equal to each channel state, there is no randomness in the
equilibrium rates therefore the diffusion matrix is now
just Σ = Σa. Taking that into account and applying the
proposed controller, the states are decoupled as

dxk(t) = −|ck|xk(t)dt+ σa,kdwk(t) + dzk(t). (17)

Our control policy makes the evolution of the queues
decoupled which is very useful to ensure the existence of
a solution to the SDE. Since the states are decoupled and
using the reflection direction in (11), we can show that
the controlled process x(t) is positive recurrent. Using
the main result of [26], the controlled process in (17) has a
unique invariant probability measure which is absolutely
continuous with respect to the Lebesgue measure, i.e. has
a density that can be obtained using the Fokker-Planck

equation as φ(xk) =

√
|ck|
πσ2

a,k
e−|ck|x

2
k/σ

2
a,k . According to

the ergodic properties of recurrent diffusion processes,
we can use the above density of the invariant measure
to compute the overflow of the controlled stochastic
process x(t)

Pr
{
xk(t) > xthrk

}
= erfc

(
xthrk

√
2|ck|

σa,k

)
. (18)

Replacing the overflow probability with its desired value
and solving (18) completes the proof.

Note that the control policy regarding the reserve
power is a closed form expression of the queue lengths.
Given that the equilibrium power allocation is precom-
puted and under the assumption of complete queue
and CSI knowledge this implies that at each time the
control policy can be implemented in one shot instead
of having an iterative algorithm (as it is done e.g. in
[11]). In addition, let us point out that the above results
are in the steady state, i.e. in the sense that the process is
running for an infinite time horizon. Moreover, looking
at (8) we can observe that the drift term of the Stochastic
Differential Equation of the limit model is in fact an
expectation over the ergodic distribution of the channel
gains process, therefore the overflow probabilities calcu-
lated here are approximations - but quite accurate ones
for many cases as we will see in the simulations section.

Finally, let us point out that the form of the power con-
trol policy is heuristic such that the overflow constraints
(1) are satisfied. Restricting the reserve power to depend
only on the queue lengths and be linear with respect
to them simplified the problem quite substantially. In
principle it is possible that another choice of this control
may still lead to the desired result with respect to the
individual QoS constraints while minimizing some cost
function. However, the resulting optimal control prob-
lem is intractable to solve analytically, and a solution
satisfying the constraints (1) is not even guaranteed to
exist. Also, as we will see in the simulations, the reserve
power is much smaller than the equilibrium power so
the heuristic performs well in terms of energy efficiency.

For the multiple antenna case the procedure is the same,
with the only difference that in the control policy there
needs to be the pseudoinverse of the corresponding
matrix B.

4.2 Control policy with local SINR feedback
So far, we have assumed that at each time slot there is
full knowledge of the realizations of all the channels and
queue lengths and the calculation of the transmission
powers was done based on that knowledge. However,
this assumption is unrealistic in practice. In this sub-
section we will examine the case where each receiver
can send SINR feedback to its corresponding transmitter
but other than that no information on the channels
is available. Taking into account that the equilibrium
power allocation is such that the corresponding rate
is constant, we can use the algorithm proposed in [8]
to find the equilibrium power allocation without the
need for knowledge of all channel realizations. More
specifically, for a system adjusting the power in discrete
time, in the beginning of each time slot we can dedicate
a time τ where the transmitters find the equilibrium
power. In order to do that ,each transmitter k requires
only the SINR feedback from its corresponding receiver
and runs the following iterative process

pk(i+ 1) =
γ̄k
γk(i)

pk(i), (19)

where i denotes here the iteration of the algorithm, γ̄k
the target SINR of user k and γk(i) the SINR at this
user after the power update of iteration i. It is shown
in [8], [6] that, for a given but unknown realization
of the channels, this algorithm indeed converges to
the equilibrium values corresponding to these channels
and moreover this convergence is very fast (the rate of
convergence is exponential). This analysis implies that
the only real time information truly needed to implement
the proposed power control policy are the queue lengths
at the beginning of each time slot (they are still required
to compute the reserve power). Also, the statistics of the
channels and incoming traffic processes are still needed
in order to find the parameters in the SDE that models
the evolution of the queue lengths.

As a result of the training period, the actual data
transfer is taking place for a duration of (Ts − τ) in a
time slot of duration Ts, instead of its whole duration. A
way to take this into account is to adjust the bandwidth
in (2) appropriately, i.e. if W

′
is the physical available

bandwidth, the rates and all parameters in the models
are calculated using bandwidth

W =
Ts − τ
Ts

W
′
. (20)

In the above, τ is assumed fixed and taken such that it
is enough for the algorithm given by (19) to converge.

For the case of multiple antenna transmitters, each
transmitter can acquire the channel realization of its
respective receiver. See [7] for an algorithm requiring
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little information exchange between transmitters and
[27] for a decentralized algorithm to achieve the desired
equilibrium rates.

4.3 Control policy in the case of delayed queue state
information
Another major issue for the practical implementation of
our control policy is the requirement that each transmit-
ter is aware of all the queue lengths instantaneously. A
more realistic assumption would be that each transmitter
knows its own instantaneous queue state and has access
to delayed information about the queues of the others.
For example this can correspond to a Small Cell Network
setting where the base stations exchange information
using a backhaul of limited capacity. We will assume
though that each transmitter knows the statistics of
the arrivals to the other transmitters. To simplify the
analysis, we will assume that the delay in sharing the
queue length information is the same for any pair of
transmitters, i.e. at time t, transmitter i has access to the
queue length of transmitter j at time t− τd.

Let us define the observation of the queue length of
transmitter i at time t as x̂i(t) = xi(t−τd) and the vector
of the observations of the queue states at transmitter i
as x̂k(t). Then the following holds

Proposition 5: In the case where the queue state infor-
mation is exchanged with delay τd and the control of
Section 4 is applied, the asymptotic model evolves as

dx(t) = Cx(t)dt+ BDL (x̃(t)− x(t)) dt+ Σdw(t) + dz(t).
(21)

The matrix DL is given as the matrix L = B−1C with its
diagonal elements replaced by zeros, x̃(t) = xk(t− τd).

Proof: Denoting L = [lij ], the control using the
delayed observations is given by uk(t) = lkkxk(t) +∑
i6=k lkixi(t − τd). In a vector form, and using L =

diag{lkk}+ DL we get u(t) = diag{lkk}x(t) + DLx̃(t) =
Lx(t) + DL (x̃(t)− x(t)). Replacing in (12) and taking
into account that L = B−1C we get the stated result.

An observation that can be made is that in the case of
delayed queue length information, a term proportional
to the difference between the vector of observations
(delayed versions) of the queues and the vector of the
actual queue lengths e(t) = x̃(t) − x(t) is added to the
original evolution of the queue lengths.

In order to analyze the impact of the delay, consider
the case where this delay in information sharing is
infinite. In this case, no information about the queue
lengths is in fact shared among the transmitters so their
estimations cannot be updated. Thus, the estimation vec-
tor in (21) will be a constant x̃ (which can correspond for
example to an initial estimation). In this case, replacing
x̃(t) = x̃ in (21), we get that the state evolves according to
the equation dx(t) = (BDLx̃−Ax(t))dt+Σdw(t)+dz(t),
where A = [aij ] = C−BDL. This case is the worst case
scenario, as each transmitter gets no information at all
about the evolution of the queue lengths of the others,

and can be used to find the upper bound of the overflow
probabilities for any estimation scheme (as the general
case with a finite delay is very difficult to be analyzed).
Denote φ(t,x) as the density of the joint probability
distribution of the queue lengths at time t. Then, from
the theory of Stochastic Differential Equations, it follows
the corresponding Fokker Planck equation:

∂

∂t
φ(t,x) = −

K∑
i=1

aiiφ(t,x) +

K∑
i=1

σ2
a,i

2

∂2

∂x2
i

φ(t,x) (22)

with the appropriate initial conditions for t = 0 and at
the reflecting barrier (i.e. at all points x with at least
one element zero) [28]. This equation can be solved
only numerically and the invariant measure as t → ∞
can be taken. Then, using the marginal distributions
we can obtain numerical results for the queue overflow
probabilities.

A way to use this is to adjust the threshold ap-
propriately: If the overflow probability at some trans-
mitters are larger than desired, we can decrease the
corresponding thresholds and derive the control policy
for these decreased thresholds. The overflow probability
then for the initial (bigger) thresholds will be smaller.
This procedure can be repeated until we get acceptable
overflow probabilities for the initial desired thresholds.

For the case where the delay in information sharing
is not infinite, a simple heuristic approach is that each
transmitter calculates the transmission power with the
queue length vector being replaced with the vector of
the most recent information about the queue states this
transmitter has. While there are no information yet about
the queue at a transmitter i, the transmitter k uses the
standard deviation of the incoming traffic at i properly
modified taking into account the time slot duration, i.e.√
Tsσ2

a,i, as an estimation of the queue length. This
scheme will intuitively perform better than the worst
case scenario (with no queue length information of other
transmitters) described earlier, however it is very diffi-
cult to analyze.

5 DISCRETE TIME IMPLEMENTATION ISSUES

So far we worked on continuous time models whereas
in the real communications system time is slotted and
power allocation decisions are taken into discrete time
instances. More specifically, let the duration of each
timeslot of the unscaled system be Ts; this implies that
at the n-th system of the sequence the timeslot duration
will be T (n)

s = Tsn
−ν . Then, in the general case where

the equilibrium allocation is such that Σd 6= 0, the
departure process converges to a Wiener process with
covariance matrix given as s′ij = TsEπ {r̂i(0)r̂j(0)} +

2TsE
{∑+∞

l=1 r̂i(0)r̂j(l)
}

(see e.g. [20]). The expectations
are taken again with respect to the distribution of the
channels and r̂j(l) are the discrete time versions of the
corresponding quantities given by (57) in the Appendix.
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The analysis and explanation of the above equation is
the same as in continuous time.

The derivation of the control policy was concerned
with an asymptotic system model. However, it has to
be modified in order to operate on a real system, so
the results obtained for the asymptotic case have to be
converted into results for the unscaled system. This will
be done using (3) and (5), where this scaling parameter n
is now a ”big enough” finite number. By the definition
that at a time interval δt there are O(nδt) arrivals, we
can argue that in practical cases n can be the order
of magnitude of the average bit rates of the incoming
traffic in the system. Also, as far as the exponent ν
is concerned, once n is fixed it can be obtained using
the fact that during period with duration equal to the
coherence time, Tcoh, there must be only one channel
change, thus nνTcoh = 1.

In the specific control policy presented in the previous
section, the equilibrium rates are the same with the mean
rates so the covariance matrix of the limit Wiener process
that corresponds to the departure process will be zero
regardless of the fact that the system operates in time
slots. Note however that we have the assumption that
the channel change slower than the arrival process, so
we can assume that the channel stays the same within
a timeslot. Based on the previous analysis, at the ”real”
system where the queue lengths are q(l) at the beginning
of timeslot l and the channel gain matrix is at state
m, the power allocated for the duration of this timeslot
will become (applying time slotting and unscaling in the
results of Section 4): p(l) = p̄(G(l)) + B−1C

′
q(l) where

C
′

= diag(|c′k|) is obtained by Proposition 4 replacing
the scaled queue length threshold with its real unscaled
value, qthrk . Note also that since in (18) both quantities
inside the probability are scaled ones, this is also the
probability of the unscaled queue lengths exceeding their
respective unscaled thresholds.

From section 4 it is implied that it is possible to find
a control policy of the type discussed for any values of
the queue thresholds and overflow probabilities, which
intuitively not the case. In fact, some limitations are
given by the following proposition:

Proposition 6: Consider a time slotted system with
slots of length Ts for data transmission that operates up-
dating the power allocation at the start of each time slot
as described in this Section. Then, for each transmitter k,
the achievable queue length thresholds to be exceeded
with probability δk are bounded as

qthrk ≥ σa,k
2

√
Tserfc

−1 (δk) (23)

Proof: The discrete time dynamics of the real system
can be approximated from (17) taking into account the
form of the expression for the total power as ( nk(l) is
the discrete time AWGN process with unitary variance):
qk(l + 1) = [(1− |c′k|Ts) qk(l) + Tsσa,knk(l)]

+. For the
above difference equation not to diverge, there must be
|1− |c′k|Ts| ≤ 1 , therefore |c′k| ≤ 2

Ts
. Replacing |c′k| using

the analysis in section 4, we get the stated relation.
This threshold bound is an approximation and it illus-

trates the effect of the discrete time operation in an actual
system. The same results hold for the multiple antenna
case. The results in this Section are based on heuristics
and are approximate. Obtaining exact results for the
initial discrete time system is, as far as we are aware
of, generally an open issue in the area of analysing and
designing systems via traffic approximations. However,
these approximate results provide useful insights.

6 SIMULATION RESULTS

In order to illustrate the results of the power control
method presented in sections 4 and 5, let us consider
a simple scenario with 3 interfering transmitter - re-
ceiver pairs, using a the same spectrum with bandwidth
5MHz. For simplicity, consider that each channel gain
has only two possible values. Also, the arrivals at each
transmitter were set as Poisson processes with mean
rates 1, 1.5 and 2 Mbps. The overflow thresholds are
500, 750, 1000 bits at each transmitter respectively and
the overflow probability is 0.01 for all transmitters. The
coherence time of the channels is set to 20ms, corre-
sponding to slow fading channels like in indoor and low
mobility environments. The time slot duration is 2ms,
motivated by the shortest scheduling interval in HSDPA,
thus the channel stays the same for 10 consecutive power
configurations. The noise variance was set to 0.01 at each
receiver.

Based on the above settings and the analysis in Section
5, for the simulated system a reasonable value of n can
be n = 1000000, the order of magnitude of the incoming
traffic at all users, and ν can be such that nνTcoh = 1 ,
thus ν = 0.283.

The maximum equilibrium power is 0.0083W , while
all the equilibrium powers are in the order of magnitude
of mW . The expected values of the equilibrium pow-
ers over the ergodic distribution of the channel gains
matrix are found to be 0.0043W, 0.0062W, 0.0081W for
transmitters 1, 2 and 3 respectively. The average reserve
powers used where found (by simulations) to be around
0.7× 10−5W, 0.7× 10−5W, 0.8× 10−5W .

Our proposed method is compared with the policy
where all powers take their equilibrium values according
to the channel states, and the following heuristic power
allocation strategies: One with the power at each trans-
mitter being constant for every queue length and channel
state and equal to the expectation of the equilibrium
power over the ergodic distribution of the channel gain
matrix plus the average reserve power presented above
and one with the power being the one given adding
the equilibrium allocation. In the presentation of the
results, the former will be denoted as ”Static power
allocation” and the latter as ”Channel-aware power al-
location”. These configurations were made to ensure
that the amount of power available in the heuristic
schemes is approximately the same as the power used in
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our proposed method, thus making a fair comparison.
We will show the results concerning the queue of one
transmitter, the one for Link 1, as all the results are very
similar.

The performance of the aforementioned power alloca-
tion policies for each queue are shown in Figure 2. The
static power allocation performs aite bad as it does not
take into account at all the channel states and the queue
lengths. As far as the equilibrium power allocation is
concerned, the bad performance is explained because
the traffic and the queue lengths are not taken into
account. Analyzing this policy further, (12) implies that
putting the vector of the reserve powers u equal to
zero, the queue lengths behave like reflecting Wiener
processes. This is illustrated in our simulation setting
in Figure 3. In Figure 2 it is clearly illustrated that
assigning slightly more power in the equilibrium power
for each channel state, as it is done in the channel-
aware power allocation scheme defined earlier, leads to
a much better performance, even if this extra power is
really small. This was also expected as an increase in
all the powers leads to an increase in the average rates.
The equilibrium power allocation is exactly the point
where the mean arrival rates equal the mean service
rates thus even a small increase of the mean service rates
is enough to stabilize the system. Achieving a better
performance than the static power allocation case was
also expected due to the transmission powers adapting
to the channel conditions. Finally, we can observe that
our proposed method of power allocation does even
better, illustrating the additional advantage of taking the
queue lengths into account when allocating the reserve
power. Moreover, the overflow ratio is very close to the
desired one, which implies the validity of the asymptotic
model in a practical system operating under heavy load.

In Figure 3 we can also see the evolution of the queue
length over time for a simulation run. We can observe
that the queue length under the proposed power control
method behaves in a much more controlled manner
compared to the equilibrium power allocation and is
below its respective threshold for most of the time.
Finally, Figure 4 depicts the power allocated using our
proposed policy and the equilibrium power allocation
for the transmitter of Link 1 for the first 100 instances
of a simulation run. We can see that the total allocated
power varies slightly around the equilibrium power
level in each channel state, which clearly demonstrates
the effect of allocating some extra power according to the
queue lengths. We can see that this variation around the
equilibrium power is indeed very small, thus confirming
the assumption of very small reserve power.

As a next step, a simple system with transmitters
with multiple antennas is simulated in order to ver-
ify the theoretical results and illustrate the impact of
multiple antennas in the operation of the system. For
computational purposes, we consider a network of two
links for the cases where the transmitters have one, two
and three antennas. The channels from each antenna to

each receiver are assumed i.i.d. two state Markov chains
and the incoming traffic processes are again Poisson
distributed with mean rates 1 and 2 Mbps for links 1
and 2 respectively. We set the respective thresholds to
500 and 1000 bits and the desired overflow probability
to 0.01. For any given number of antennas, both beam-
forming control methods (i.e. fixed direction for a given
realization of channel states and direction of the reserve
vector depending on the queue length) are considered,
operating both for the same instances of incoming traffic
and channel realizations.

A result from these simulations is that for each sim-
ulation run and a given number of antennas (that is
the same traffic and channel realizations) the overflow
ratios were the same for each beamforming method
used. Indeed, from the theoretical analysis it holds that
for any beamforming method presented here, the control
is such that evolution of the queues follows the same
equation (17). Moreover, Figure 5 shows the Cumulative
Distribution Function of the overflow probabilities over
the simulation runs; that is in for each curve the y axis
shows the ratio of simulation runs where the overflow
ratio was smaller than the corresponding point of the
curve at x axis. We can see that the overflow ratio
was indeed very close to the desired one. These results
illustrate the validity of the asymptotic approach in a
practical system. Regarding the evolution over time, it
is similar as in the case with 3 links and one antenna
(see Figure 3).

Figure 6 depicts the average total power consump-
tion of the system in each simulation run for each of
the cases examined. In the cases of multiple antennas,
the average power used was almost the same for the
two beamforming methods, so we present just one plot
for each number of antennas. These results imply that
adding more antennas at the transmitters, under the as-
sumption that the corresponding paths are independent,
increases the energy efficiency of the system for the same
requirements in terms of buffer overflows.

Finally, we study through simulations the effect of
delayed queue state information in our algorithm. For
simplicity, all the delays in information sharing between
the transmitters are set to be the same. Performance in
terms of overflow ratios are given in Fig. 7 as the CDFs
over the simulation runs (in the same sense as in Fig. 5).
As we can see in this figure, as the delay in information
sharing increases the overflow ratios tend to be higher.
However, especially for small delays, the differences are
still relatively small. Also, even for relatively high delay
in information sharing the overflow ratios tend to be
not very far from the desired one. Thus we can argue
that knowing the incoming traffic statistics at each base
station, our proposed scheme seems to be quite robust
in cases of delayed information sharing.

7 CONCLUSIONS
In this paper we have used the heavy traffic approxi-
mation in order to model and propose algorithms for



11

the power allocation problem for interfering wireless
links, which results in an asymptotic but tractable way to
analyze the problem and derive some control strategies.
The objective was to keep desired overflow probabili-
ties at each queue assuming that the channels change
according to an ergodic finite state Markov chain. The
allocated power is split into two: a part that is allocated
according to the channels and a much smaller part that
is allocated according to the backlogs at the queues at
each time, for which closed form expression as a function
of the queue lengths was derived. The advantage of
the algorithm is that it can be implemented in one
shot at the beginning of each time slot. This work was
also extended for the case when the transmitters have
multiple antennas, where beamforming methods were
proposed following the same approach. Even though the
model derived and used is an approximation, simulation
results have shown that for reasonable thresholds and
overflow probabilities, direct application of the policy
derived from the asymptotic system can give quite ac-
curate results. In addition, simulation results imply that
the algorithm is quite robust in the case of delayed queue
state information.

APPENDIX
PROOF OF THEOREM 2
In order to prove the convergence of the scaled queue
to an SDE, we adopt an approach similar to the one
used in [20] [22]. Recall that [20] deals with centralized
power control in a multiuser downlink system with
orthogonal transmissions among users (no interference)
and single antenna system. [22] deals with power con-
trol for a point-to-point single antenna and single user
wireless channel. Given the form of the beamforming
vectors, we can write the rates at the n−th system as
r

(n)
k (va(t),m) = rk(v̄(Hm) + 1

n
ν
2

u(x(t),m)) and expand
it in a Taylor series around v̄(Gm) as n → ∞. We will
then get

r
(n)
k (t) =rk(v̄(Hm))+

1

n
ν
2

LK∑
i=1

∂

∂vi
(rk(w̄a(Hm)))ui(x(t),Hm) +O (n−

ν
2 )

(24)

Denoting rk(w̄(Hm)) = r̄k(Hm) (as in fact these rates
depend only on the channel state), we can write the rate
(24) as

r
(n)
k (t) = r̄k(Hm) +

1

n
ν
2

LK∑
i=1

ak,i(Hm)ui(x
(n)(t),Hm).

(25)
If dk(l) are the amounts of data transmitted from

transmitter k at timeslot l, we have qk(l + 1) = [qk(l) +
ak(l) − dk(l)]+. Denoting now Ak(t) , Dk(t) the arrivals

and total bits that could have been transmitted (if the
queue was always full) up to time t respectively, we get

qk(t) = [qk(0) +Ak(t)−Dk(t)]+. (26)

Now let us construct the sequence of systems whose
limit will be eventually the heavy traffic model of the
system. Recall that x(n)

k (t) = 1

n
ν
2
qk(nνt) and also let us

define the centered around the mean rates versions of
the total arrival and data transmission processes as :

Ā
(n)
k (t) =

1

n
ν
2

∫ nνt

0

(a
(n)
k (s)− λk)ds (27)

and

D̄
(n)
k (t) =

1

n
ν
2

∫ nνt

0

(
r̄k(H(n)(s))− λk

)
ds (28)

respectively. Also define the scaled amount of data trans-
mitted due to only the reserve allocation up to time t
(assuming always full queue) as

F
(n)
k (t) =

1

nν

∫ nνt

0

MH∑
m=1

I{H(n)(s)=Hm}

LK∑
i=1

ak,i(Hm)ui(x(s),Hm))ds.

(29)

In this case, we can rewrite (26) as

x
(n)
k (t) = x

(n)
k (0)− F (n)

k (t)− D̄(n)
k (t) + Ā

(n)
k (t) + z

(n)
k (t).

(30)
In the above, z(n)

k (t) are processes to satisfy the phys-
ical constraint that each of the scaled queue lengths
x

(n)
k (t) is nonnegative.
We will now, similar to [20, 22], examine the conver-

gence as n → ∞ of each one of the terms in the above
equation separately.

.1 Arrival Process
Given that a(n)

k (s) are i.i.d. in time and that a(n)
k (s) →

ak(s) where ak(s) has finite mean λk and variance σ2
a,k,

from an extension of the Functional Central Limit The-
orem [11] it holds that as n → ∞, Ā(n)

k (t) converges
weakly to a Wiener process with zero drift and variance
σ2
a,k:

Ā
(n)
k (t)

w−→ σa,kwa,k(t). (31)

In the above, wa,k(t) denotes the standard Wiener pro-
cess.

The above convergence happens for every k and re-
calling that incoming traffic flows are independent, the
vector containing these arrival processes as elements
converges weakly as

a(n)(t)
w−→ Σawa(t) (32)

where Σa = diag (σa,k) and wa(t) is a vector of indepen-
dent standard Wiener processes.



12

.2 Service Process
In order to find the limit of the departure pro-
cess, we will follow a method similar as before.
More specifically, we can write (28) as D̄

(n)
k (t) =

1

n
ν
2

∫ nνt
0

∑MH

m=1 I{H(s)=m}r̄k(m)ds−λkn
ν
2 t. We define now

r̃k(t) =
∑MH

m=1 I{H(t)=Gm}r̄k(Hm) ; then by the definition
of the indicator function the vector r̃(t) is a finite state
Markov chain evolving as the channels with values
r̄(Hm) when the channel processes are at state m. Denote
now also

r̂(t) = r̃(t)− λ. (33)

Taking into account the equilibrium power allocation,
we have λk = E {r̂k(t)} and following [20] we have that
the above converges weakly to a K-dimentional Wiener
process with covariance matrix Sd = [sij ] such that

sij = 2E
{∫ +∞

0

r̂i(0)r̂j(t)dt

}
.

By comparison, this process is exactly the multidimen-
tional process that has D̄

(n)
k (t) as its k-th element. So

denoting Σd = [σij ] such that ΣdΣ
T
d = Sd, we have for

each k

D̄
(n)
k (t)

w−→
K∑
j=1

σkjwd,j(t) (34)

where wd,j(t) independent standard Wiener processes.
It has to be noted here that, unlike the centered arrival

processes, the centered transmission processes are not
independent in the limit. That was expected because
essentially they depend upon the same process (the one
that governs the channel gain matrix). The elements of
the covariance matrix of the limiting Wiener process are
actually integrals of the temporal correlation between the
centered processes at the queues and actually depend on
the temporal correlation of the Markov chain modelling
the channel gains. In the case that channel gains were
i.i.d. over time, only the correlation at the same time
instance (t= 0) would appear. However, as the Markov
chain is ergodic, from some time onwards will have
reached its invariant distribution and the correlations
with the initial time would be zero. Finally, for the
special case where the equilibrium allocation is such that
r̄k(m) = λk for every k and m, the centered departure
process is just the zero process.

As far as the reserve power is concerned,
in the limit as n → ∞ , applying the
Functional Law of Large Numbers we obtain
F

(n)
k (t)

w−→
∫ t

0

∑MH

m=1 πm
∑LK
i=1 ak,i(Hm)ui(x(s),Hm)ds.

With fk(u(s)) given as in (8), this implies

F
(n)
k (t)

w−→
∫ t

0

fk(u(s))ds. (35)

For completeness, we present the expressions
for the coefficients ak,i(Hm): a′k,i(Hm) =

W ln (2)
2h

(l′(i))
k′(i)k(Hm)|w̄H

k (Hm)hk′(i)k(Hm)|
σ2+

∑K
j=1 |w̄H

j (Hm)hjk(Hm)|2 , for k′(i) = k

and a′k,i(Hm) = −W ln (2)
2h

(l′(i))
k′(i)k(Hm)|w̄H

k (Hm)hkk(Hm)|2

σ2+
∑K
j=1 |w̄H

j (Hm)hjk(Hm)|2 ×
|w̄H
k′(i)(Hm)hk′(i)k(Hm)|

σ2+
∑
j 6=k |w̄H

j (Hm)hjk(Hm)|2 , for k′(i) 6= k.

.3 Reflection Process
In order to complete the model, we have to examine
the processes z(n)

k (t). As mentioned earlier, z(n)
k (t) must

be such that the queue lengths remain nonnegative,
thus defining what exactly happens at the time instance
when the queue of transmitter k is empty (i.e. there are
no data to send to its receiver). In our system setting
each transmitter serves only its own receiver and the
equilibrium power is assigned even if the queue is empty
at the power allocation instance. Therefore, when a base
station is allocated power when its queue is empty, the
power is wasted and the process z(n)

k (t) corresponds to
just the amount of data that could have been sent during
this transmission; this amount has to be subtracted from
the result of the other terms in (30):

z
(n)
k (t) =

1

nν/2

∫ nνt

0

(r
(n)
k (s)− a(n)

k (s))I{x(n)
k (s)=0}ds.

The above implies that this process increases only when
x

(n)
k (t) hits zero. The reflection process that satisfies these

requirements is [21]

z
(n)
k (t) = max

{
0,−min

s≤t

{
x

(n)
k (0) +A

(n)
k (s)−D(n)

k (s)
}}

.

(36)
Indeed, note that max{0,−mins≤t{x(n)

k (0) − D
(n)
k (t) +

A
(n)
k (t)}} ≥ −

(
x

(n)
k (0)−D(n)

k (t) +A
(n)
k (t)

)
. Replacing

in (30), we get that x
(n)
k (t) ≥ x

(n)
k (0) − D

(n)
k (t) +

A
(n)
k (t) −

(
x

(n)
k (0)−D(n)

k (t) +A
(n)
k (t)

)
= 0, therefore

the scaled queue lengths are kept nonnegative. We
now focus on the cases where x

(n)
k (t) tends to

become negative if no reflection was present. Let
t1 the smallest time instance where x

(n)
k (t−) = 0

such that x
(n)
k (t1) < 0, that is when the process of

scaled queue lengths hits zero with a direction to get
negative. Therefore x

(n)
k (0) + A

(n)
k (t1) − D

(n)
k (t1) < 0.

Then, for t < t1, z(n)
k (t) = 0 and for t = t1 we

have z
(n)
k (t1) = −(x

(n)
k (0) + A

(n)
k (t1) − D

(n)
k (t1)) > 0,

therefore the process increases the first time x(n)
k (t) hits

zero with a direction to get negative. Now consider
some time instance ti > t1. Then we will have
z

(n)
k (t) = −mint1≤s≤t

{
x

(n)
k (0) +A

(n)
k (s)−D(n)

k (s)
}

.

If x
(n)
k (ti) > 0 then x

(n)
k (0) − D

(n)
k (ti) + A

(n)
k (ti) >

mint1≤s≤ti

{
x

(n)
k (0) +A

(n)
k (s)−D(n)

k (s)
}

, therefore

z
(n)
k (.) does not increase. On the other hand, if at
ti the scaled queue length process (with reflection
term up to but not including ti tends to become
negative there is x

(n)
k (0) − D

(n)
k (ti) + A

(n)
k (ti) <

mint1≤s<ti

{
x

(n)
k (0) +A

(n)
k (s)−D(n)

k (s)
}

, therefore

z
(n)
k (.) increases to −(x

(n)
k (0) −D(n)

k (ti) + A
(n)
k (ti)) (it is
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an increase because in this case the expression inside the
minimization is negative). For the cases where x

(n)
k (t)

hits the barrier at zero but immediately after it turns
positive, the reflection does not change. We have thus
shown that the reflection term (36) keeps indeed the
queue lengths nonnegative and can increase only when
the queue length hits zero.

Following the discussion in subsections A and B, as all
terms in the above expression converge weakly as n →
∞, z(n)

k (t)
w−→ zk(t) accordingly, and actually becomes the

amount of data that could have been transmitted in the
asymptotic system if the queue was not empty at time t.

.4 Further Analysis of the Equation

So far we have shown that under heavy traffic conditions
a properly scaled version of the queue lengths converges
weakly to

x(t) = x(0)−
∫ t

0

f(u(s))ds+ Σawa(t) + Σdwd(t) + z(t).

By assumption, the arrival processes are independent of
the channel processes so the corresponding Wiener pro-
cesses are independent. Therefore, we have Σawa(t) +
Σdwd(t) = Σw(t), where w(t) is a standard K-
dimentional Wiener process and Σ satisfying (9).
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