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⋄ Ecole supérieure d’électricité (Supélec), Gif-sur-Yvette, France

∗ Mathematical and Algorithmic Sciences Lab, Huawei France R&D, Paris, France.

Abstract—This work aims at designing a low-complexity precoding

technique in the downlink of a large-scale multiple-input multiple-output
(MIMO) system in which the base station (BS) is equipped with M

antennas to serve K single-antenna user equipments. This is motivated

by the high computational complexity required by the widely used
zero-forcing or regularized zero-forcing precoding techniques, especially

when K grows large. To reduce the computational burden, we adopt

a precoding technique based on truncated polynomial expansion (TPE)

and make use of the asymptotic analysis to compute the deterministic
equivalents of its corresponding signal-to-interference-plus-noise ratios

(SINRs) and transmit power. The asymptotic analysis is conducted in the

regime in which M and K tend to infinity with the same pace under the

assumption that imperfect channel state information is available at the
BS. The results are then used to compute the TPE weights that minimize

the asymptotic transmit power while meeting a set of target SINR

constraints. Numerical simulations are used to validate the theoretical
analysis.

I. INTRODUCTION

Large-scale multiple-input multiple-output (MIMO) systems (also

known as massive MIMO systems) are considered as one of the most

promising technology for next generation wireless communication

systems [1]. The use of an excess number M of antennas at the

base station (BS) provides the system with many degrees of free-

dom to substantially reduce multi-user interference [1]. In downlink

transmissions, this is usually accomplished using linear precoding

techniques whose complexity, however, increase substantially when

the number K of user equipments (UEs) grows large. Among the

different techniques, the most popular ones rely on zero-forcing (ZF)

or regularized zero-forcing (RZF) approaches [2]–[8]. In [6], it is

proved that RZF precoder has the same performance of the optimal

one [9] if the regularization parameter is properly designed and

the same signal-to-interference-plus-noise ratio (SINR) constraints

are imposed for all UEs. Unfortunately, both ZF and RZF involve

the computation of the inverse of a matrix, which poses serious

challenges towards its practical implementation especially when K
grows large and the propagation channel changes relatively fast in

time. A possible solution to overcome this issue is proposed in [4] in

which the authors make use of the truncated polynomial expansion

(TPE) technique to reduce the computational complexity required by

matrix inversion. In [4], the polynomial coefficients are designed so

as to maximize the achievable rate subject to a power constraint. It is

worth observing that TPE techniques have been also applied in other

contexts such as channel estimation [10] and multi-user detection

[11], [12]. In all cases, the main advantage of TPE is a substantial

complexity reduction with respect to linear processing techniques (see

[4] for more details on this).

Research reported in this publication was supported by the King Abdullah
University of Science and Technology (KAUST). It has also received funding
from ERC Grant 305123 MORE. L. Sanguinetti is funded by the People Pro-
gramme (Marie Curie Actions) FP7 PIEF-GA-2012-330731 “Dense4Green”.

In this work, we aim at designing the TPE precoding scheme

presented in [4] to minimize the power minimization while satisfying

SINR constraints under the assumption that imperfect channel state

information (CSI) is available at the BS. The analysis is conducted

in the asymptotic regime in which M and K tend to infinity with

the same pace. This allows us to simplify the design methodology

since in the asymptotic regime performance metrics converge to

deterministic quantities, which can be well-approximated using tools

borrowed from random matrix theory [2], [4], [5]. These tools are

used henceforth to derive deterministic equivalents of SINRs and

transmit power. The latter are eventually used to determine the

optimal TPE coefficients minimizing the transmit power under the

set of SINR constraints.

II. SYSTEM DESCRIPTION AND SIGNAL MODEL

We consider a single-cell massive MIMO system in which the BS

is equipped with M antennas and serves K single antenna UEs,

which are randomly selected from a larger set. The location of UE k
is characterized by its distance dk from the BS (located in the centre

of the cell for simplicity). We denote by βk the average large-scale

channel attenuation due to pathloss and shadowing at distance dk and

assume that it is the same for all BS antennas.1 The channel vector

hk for UE k is modeled as:

hk =
√

βkzk (1)

where zk ∼ CN (0M×1,Φ) and Φ ∈ C
M×M stands for the channel

covariance matrix, which is assumed to be the same for all UEs. We

assume that imperfect channel state information (CSI) is available at

the BS. This is modelled for UE k by [2]:

ĥk =
√

βk ẑk =
√

βk(
√

1− τ 2zk+τvk) =
√

1− τ 2hk+
√

βkτnk

(2)

where vk, ẑk ∼ CN (0M×1,Φ) and nk = Φ
1

2vk ∼ CN (0M×1,Φ)
stands for additive Gaussian noise. The scalar parameter τ ∈ [0, 1]
indicates the quality of CSI: τ = 0 corresponds to perfect CSI

whereas τ = 1 corresponds to statistical channel knowledge. For

notational convenience, we call Ĥ = [ĥ1, · · · , ĥK ], which can be

written in matrix form as

Ĥ = ẐB
1

2 (3)

where B = diag (β1, · · · , βK) and Ẑ = [ẑ1, · · · , ẑK ]. We denote by

G = [g1, · · · , gK ] the precoding matrix and call s = [s1, · · · , sK ]
the vector containing all UE data symbols. Consequently, the received

signal at UE k can be expressed as:

yk = h
H

kgksk +
K∑

n=1,n6=k

h
H

kgnsn + nk. (4)

1This is reasonable since the distances between UEs and BS are much
larger than the distance between the BS antennas.
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Let Gk be the matrix G with column gk removed. Then, the SINR

at UE k can be expressed as:

SINRk =
hH

kgkg
H

khk

hH

kGGHhk − hH

kgkg
H

khk + σ2
. (5)

Using the truncated polynomial approximation presented in [4], the

precoding matrix G is designed as follows:

GTPE =

J−1∑

k=0

wk

(
1

K
ĤB

−1
Ĥ

H

)k
Ĥ√
K

P
1

2 (6)

where P = diag(p1, · · · , pK) with pk being the power allocated

to UE k, w = [w0, · · · , wJ−1]
T is a design vector and J is the

polynomial degree, which allows (if properly selected) to obtain

different precoding techniques. Observe that in designing GTPE we

have assumed knowledge of the large-scale fading matrix B. This

is a reasonable assumption since the large-scale fading attenuations

change slowly with time (relative to the small-scale fading) and thus

can be accurately estimated at the BS. Plugging (6) into (5) yields

SINRk =
Kpkw

TAkw

wTBkw + σ2
(7)

where the matrices Ak and Bk are defined as:

[Ak]ℓ,m =
β2
k

K2
z

H

k(
1

K
ĤB

−1
Ĥ

H)ℓẑkẑ
H

k(
1

K
ĤB

−1
Ĥ

H)mzk

[Bk]ℓ,m =
βk

K
z

H

k(
1

K
ĤB

−1
Ĥ

H)ℓĤPĤ
H(

1

K
ĤB

−1
Ĥ

H)mzk − [Ak]ℓ,m.

The corresponding transmit power turns out to be [4]

PTPE = tr(GTPEG
H

TPE) = w
T
Ew (9)

where the (ℓ,m)-th element of the matrix E is computed as:

[E]ℓ,m =
1

K
tr




(
ĤB

−1ĤH

K

)ℓ

ĤPĤ
H

(
ĤB

−1ĤH

K

)m


 .

(10)

The large system analysis is used to compute the asymptotic expres-

sions or deterministic equivalents of the SINRs and transmit power

defined above.

III. ASYMPTOTIC ANALYSIS OF TPE PRECODING

From (7) and (9), it follows that the deterministic equivalents of

SINRk and PTPE require to find the asymptotic approximations of the

matrices Ak, Bk and E. To this end, we observe that Ak, Bk, E

are respectively (up to a scaling factor) the higher order derivatives

of

Xk(t, u) =
1

K2
z

H

kQ(t)ẑk ẑ
H

kQ(u)zk (11)

Zk(t, u) =
1

K
z

H

kQ(t)ĤPĤ
H
Q(u)zk (12)

Y (t, u) =
1

K
tr
(
Q(t)ĤPĤ

H
Q(u)

)
(13)

evaluated at t = u = 0. In particular, it turns out that:

[Ak]ℓ,m =
β2
k(−1)ℓ+m

ℓ!m!
X

(ℓ,m)
k (14a)

[Bk]ℓ,m =
βk(−1)ℓ+m

ℓ!m!
(Z

(ℓ,m)
k −KpkX

(ℓ,m)
k ) (14b)

[E]ℓ,m =
(−1)ℓ+m

ℓ!m!
Y (ℓ,m)

(14c)

where X
(ℓ,m)
k , Z

(ℓ,m)
k and Y (ℓ,m) denote the derivatives of Xk(t, u),

Zk(t, u) and Y (t, u) evaluated at t = u = 0. Therefore, the

problem boils down to determining the deterministic equivalents

for Xk(t, u), Zk(t, u) and Y (t, u) and taking their derivatives at

t = u = 0. This approach has been pursued in [4] with the

only difference that in [4] the large scale fading attenuation has not

been included in the channel model. This means that some attention

must be paid when applying the results from [4] to the problem

at hand since the effect of the large scale fading cancels out only in

(ĤB
−1Ĥ)k. Skipping the mathematical details for space limitations,

it turns out that the asymptotic equivalents for Y (ℓ,m) and Z
(ℓ,m)
k are

in the same form of those computed in [4] once tr(P) is replaced

with tr(PB). In doing so, the following lemma can be proved (to

ease understanding the same notation of [4] is used):

Lemma 1. In the asymptotic regime, the following convergences hold

true:

X
(ℓ,m)
k −X

(ℓ,m) a.s−−−−−−−→
M,K→+∞

0

where X
(ℓ,m)

= aℓam with

aℓ =
√

1− τ 2

ℓ∑

k=0

(
n

k

)

δ(k)f (ℓ−k)

while the expressions of δ(k) and f (ℓ−k) are provided in [4].

Moreover, we also have:

−KpkX
(ℓ,m)
k + Z

(ℓ,m)
k − tr (PB) b(ℓ,m) a.s−−−−−−−→

M,K→+∞
0

and

Y (ℓ,m) − tr (PB) c(ℓ,m) a.s−−−−−−−→
M,K→+∞

0

where the expressions of b(ℓ,m) and c(ℓ,m) take the same values as

those derived in [4].

Let a be the J × 1 vector defined as [a]
ℓ
= aℓ and call B and

C the J × J matrices whose elements are given by [B]ℓ,m = b(ℓ,m)

and [C]ℓ,m = c(ℓ,m). Then, the following result is obtained:

Corollary 1. For any k:

(
‖Ak −Ak‖, ‖Bk −Bk‖

) a.s−−−−−−−→
M,K→+∞

0

and

‖E −E‖ a.s−−−−−−−→
M,K→+∞

0

where:

[
Ak

]
ℓ,m

=β2
kaa

T,
[
Bk

]
k
= βk tr (PB)B

and

[
E
]
= tr (PB)C.

IV. ASYMPTOTIC OPTIMIZATION OF TPE PRECODING

The asymptotic analysis above is used in the sequel to compute the

weighting vector w in (6) that minimizes the transmit power while

satisfying SINR constraints. Mathematically, this amounts to solving

the following optimization problem:

P1 : min
w,p

tr(PB)wT
Cw (15)

subject to w
T
Fkw ≥ γk

βk

σ2 k = 1, . . . ,K (16)

where Fk = Kpkβkaa
T − γk tr(PB)B. Note that not all vectors

γ = [γ1, · · · , γK ] are feasible. Indeed, a necessary and sufficient

condition can be established using the same approach as in [14]. To

this end, note that the constraints can be written in matrix form as:

(I−D(γ)G)p ≥ v (17)
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where ≥ stands for the element-wise comparison of vectors and p =
[p1, · · · , pK ]T, D(γ) = diag(γ1, · · · , γK) whereas

[v]
k
=

γkσ
2

Kβ2
kw

TaaTw
,

[G]i,j =
βjw

TBw

KβiwTaaTw
.

From Lemma 1 of [14], the following necessary and sufficient

condition can be derived:

Lemma 2. A set γ is feasible if and only if there exists a vector w

satisfying

r(GD(γ)) < 1 (18)

where r(·) computes the spectral radius of the enclosed matrix.

Based on the above lemma, the following result is established.

Corollary 2. A vector γ = [γ1, γ2, . . . , γK ]T is feasible if and only

if

γ =
1

K

K∑

k=1

γk < a
T
B

−1
a. (19)

Proof: Since matrix G is non-negative with rank 1,

r(GD(γ)) = tr(GD(γ)). The vector γ is feasible if and only if

there exists w ∈ R
J×1 such that:

wTBw

wTaaTw

1

K

K∑

i=1

γk < 1

or equivalently:

max
w

wTaaTw

wTBw
> γ.

The necessary and sufficient condition follows by noticing that

maxw
wTaaTw

wTBw
= aTB−1a.

Next, we assume that the feasibility condition in Corollary 2 is

always satisfied. In these circumstances, the optimal power vector

p⋆ is such that the SINR constraints are satisfied with equality. From

(17), we obtain:

p
⋆ =

(
IK −D(γ)G

)−1
D(γ)v. (20)

The objective function of P1 is thus given by:

tr
(
Bdiag

(
(I−D(γ)G)−1

v
))

w
T
Cw.

Recalling the definitions of v and G given above it follows that when

the constraints are satisfied with equality, the objective function of

P1 becomes irrespective to the norm of w. This means that solving

P1 requires to determine the optimal direction of w. However, this is

a challenging task since P1 is not convex. To overcome this problem,

we sum the constraints and perform the optimization with respect to

u =
√

tr(P⋆B)w. In doing so, we obtain

P2 : min
u

u
T
Eu (21)

subject to u
T
aa

T
u− γuT

Bu ≥ κσ2
(22)

with κ given by

κ =
1

K

K∑

k

γk
βk

. (23)

As the optimization of P2 is performed on a larger set, the optimal

solution of P2 is the same as that of P1 since we assume the

feasibility condition to be satisfied. Moreover, one can further work

out the constraint of P2 to make it convex. To this end, note that one
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Fig. 2. Transmit power vs. rate per user when K = 30, M = 60, τ = 0
and Φ = IM .

can assume (without loss of generality) that the optimal vector u∗

satisfies aTu⋆ ≥ 0, thereby leading to the following convex equivalent

constraint:

a
T
u ≥

√
γuTBu+ κσ2. (24)

With this new constraint at hand, the lagrangian corresponding to P2

takes the form:

L(u, λ) = u
T
Eu+ λ(γuT

Bu+ κσ2 − (aT
u)2) (25)

with λ > 0. From the Karush-Kuhn-Tucker conditions, we know that

the optimal weight vector and the optimal Lagrange multiplier satisfy

Eu⋆ + λ⋆γBu⋆ = λaaTu⋆ from which one gets

u
⋆ = (E+ λ⋆γB)−1λ⋆

aa
T
u
⋆

(26)

and

λ⋆ =
1

aT(E+ λ⋆γB)−1a
. (27)

In summary, the optimal u⋆ is found to be collinear with the vector

(E+ λ⋆γB)−1a whereas the Lagrange coefficient λ⋆ is the unique

positive solution of (27).

V. NUMERICAL RESULTS

Numerical results are now used to assess the performance of the

proposed TPE precoding technique. We assume that the UEs are

uniformly distributed in the coverage area, which is assumed to be



4

60 70 80 90 100

10−0.8

10−0.6

10−0.4

10−0.2

100

Number of BS antennas M

A
v
er

ag
e

tr
an

sm
it

p
o
w

er
[W

at
t]

TPE (a = 0.26)

TPE (a = 0.51)

TPE (a = 0.76)

Fig. 3. Transmit power vs. M when K = 30, τ = 0.1 and [Φ]i,j = a
|i−j| .

circular with radius D = 250m and minimum distance Dmin =
35m. The large scale fading is dominated by the path-loss and is

modeled as βk = d0/d
η
k where dk ≥ Dmin and η ≥ 2 is the path-loss

exponent whereas the constant d0 regulates the channel attenuation

at distance Dmin. We set η = 3.76 and d0 = 10−3.53. Moreover, the

transmission bandwidth is fixed to W = 20 MHz and the total noise

power Wσ2 is −97.8 dBm.

We begin by investigating the performance of TPE for different

values of J . As a benchmark, we use the RZF precoding scheme

illustrated in [6], which is shown to be optimal when the channel

covariance matrix Φ = is set to IM and perfect CSI is available. Fig.

1 plots the average transmit power in Watt vs. M when K = 30 and

the SINR constraints γk are set equal to γk = 2rk − 1 with rk being

randomly taken from the interval [1,2] bit/s/Hz. The RZF precoding

and the TPE precoding guarantee almost the same performance even

for small values of J and the gap of performance is decreasing when

M grows large. Observe that J = 0 corresponds to the maximum

ratio transmit (MRT) precoding technique. Fig. 2 plots the average

transmit power when J = 3 and the same rate r must be satisfied

to each UE. This amounts to setting γk = γ = 2r − 1 for k =
1, . . . ,K. In particular, we assume that r spans the interval from 0.4
to 2.4 bit/s/Hz. As seen, TPE requires the same power as RZF for all

investigated values of rates. This is however achieved with a reduced

complexity as illustrated in [4].

We proceed investigating the performance of the TPE precoding

technique when τ = 0.1 and [Φ]
i,j

= a|i−j|. Fig. 3 reports the

average transmit power as a function of M for different values of

a when J = 3. As seen, the average transmit power increases as

the correlation coefficient a becomes larger. This is due the fact

that increasing a reduces the degrees of freedom of the channel

and consequently forces the BS to use more power for serving the

UEs. Fig 4 investigates the impact of the correlation factor a on the

feasibility of the SNR constraints. Similar to Fig. 2, we consider

the case in which the same rate r must be satisfied for all UE, i.e.,

γk = 2r − 1, and plot the average transmit power for r spanning the

interval from 0.4 to 8 bit/s/Hz. As expected, increasing the correlation

factor reduces the feasibility region of the SNR constraints.

VI. CONCLUSIONS

In this work, we have focused on the design of a linear TPE

precoding scheme to minimize the power consumption while sat-

isfying SINR constraints under the assumption of imperfect CSI.

The design has been conducted in the asymptotic regime in which

M,K → ∞ with the same pace. In particular, we have determined
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Fig. 4. Transmit power vs. rate per user when K = 30, M = 60, τ = 0.1
and [Φ]i,j = a|i−j| , J = 3.

the optimal weights that minimize the total asymptotic transmit power

while meeting a set of target SINR requirements. Comparisons have

been made with the optimal RZF precoding technique under the

assumption of perfect CSI. While exhibiting a lower complexity, the

TPE scheme has been shown to achieve almost the same performance

of the optimal RZF precoding. Numerical results have been also used

to evaluate the impact of imperfect CSI and of the correlation among

BS antennas.
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