
HAL Id: hal-01098933
https://hal.science/hal-01098933

Submitted on 30 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementing Reasoning Modules in Implicit Induction
Theorem Provers

Sorin Stratulat

To cite this version:
Sorin Stratulat. Implementing Reasoning Modules in Implicit Induction Theorem Provers. Interna-
tional Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2014),
Sep 2014, Timisoara, Romania. �hal-01098933�

https://hal.science/hal-01098933
https://hal.archives-ouvertes.fr

Implementing Reasoning Modules in Implicit
Induction Theorem Provers

Sorin Stratulat
LITA, Department of Computer Science

Université de Lorraine
Ile du Saulcy, Metz, 57000, FRANCE
Email: sorin.stratulat@univ-lorraine.fr

Abstract—We detail the integration in SPIKE, an implicit
induction theorem prover, of two reasoning modules operating
over naturals combined with interpreted symbols. The first
integration schema is à la Boyer-Moore, based on the combination
of a congruence closure procedure with a decision procedure
for linear arithmetic over rationals/reals. The second follows a
‘black-box’ approach and is based on external SMT solvers. It is
shown that the two extensions significantly increase the power of
SPIKE; their performances are compared when proving a non-
trivial application.

I. INTRODUCTION

In [1] it has been shown that concrete induction-based
theorem provers can be built by implementing abstract rules
with reasoning modules. The abstract rules express the declar-
ative part of the reasoning and can be considered as the logical
components of the provers since they define what information
can be soundly used during proof derivations, for example
the induction hypotheses. On the other hand, the reasoning
modules represent their operational components that define
how new formulas can be derived from existing ones, based
on the information provided by the abstract rules.

In this paper, we discuss two integration schemas of
reasoning modules in SPIKE [1]–[3], an automated first-order
theorem prover based on implicit induction. The first follows
ideas from [4]. It allows for a tight cooperation between the
prover and the reasoning modules. Compared with the previous
schema, the reasoning modules can provide in addition new
information in terms of logical consequences of the given
input, which can be further used by the prover in subsequent
steps of the proof.

The second integration schema follows a ‘black box’
approach such that the conjectures to be proved, together with
other information (axioms, induction hypotheses) useful for
proving the conjecture, are processed by an external tool, in
our case an SMT solver. The answers provided by the tool
back to the prover are rather limited; they can inform SPIKE
only if the conjecture is true, false or has an unknown truth
value.

The rest of the paper has 3 sections. Section II introduces
the backgrounds of reasoning by implicit induction and de-
scribes the SPIKE prover. Section III details two extensions
of SPIKE, following the above integration schemas, with
reasoning modules operating over naturals combined with
interpreted symbols, then compare the performances of their
implementations when tested on a non-trivial application. The
last section concludes.

II. THE SPIKE PROVER

In the following, we present the syntax and semantics
of SPIKE specifications, as well as the underlying induction
principle and the SPIKE’s inference system.

Syntax. SPIKE can reason on many-sorted conditional spec-
ifications built from quantifier-free conditional equalities, de-
noted by axioms, that define function symbols. In addition, a
(disjoint) set of constructor function symbols is attached to
each sort. We denote by F the disjoint union between the
sets of constructor and defined function symbols, and by V
a denumerable set of variables. Each variable from V has a
sort and the profile of each function f from F is sorted, of
the form f : s1 × . . .× sn → s, where s1, . . . , sn, s are sorts.
In this case, we say that f has the sort s. The set of terms
built from function symbols from F and variables from V
is denoted by T (F ,V). If S is a denumerable set of sorts,
by T (F ,V)s∈S we can recursively define the set of terms
of sort s, which can be either a variable of sort s or a non-
variable term of the form f(t1, . . . , tn), where f has the profile
f : s1×. . .×sn → s and t1 (resp., t2, . . . tn) is in T (F ,V)s1∈S
(resp., T (F ,V)s2∈S , . . . , T (F ,V)sn∈S). Therefore, T (F ,V)
can be defined as tT (F ,V)s∈S , i.e., the disjoint union of
the sets of terms of same sort, by considering all the sorts
occurring in S.

An (unconditional) equality is a binary relation between
two terms l and r of same sort, denoted by l = r. A conditional
equality is represented under the form of the implication
l1 = r1 ∧ . . . ∧ ln = rn ⇒ l = r, where the conclusion
l = r and each li = ri (i ∈ [1..n]) from the condition
part are unconditional equalities. SPIKE accepts specifications
built on free constructors, for which there is no equality
relation between any two different constructor symbols. A
term or equality is ground if it has no variables. The equality
l1 = r1 ∧ . . . ∧ ln = rn ⇒ l = r can be oriented into the
rewrite rule l1 = r1 ∧ . . . ∧ ln = rn ⇒ l → r if l is greater
than r (w.r.t. an ordering over terms) as well as any li and ri,
for any i ∈ [1..n]. In SPIKE, the ordering over terms is the
recursive path ordering (rpo) with status [5], denoted in the
following by <t.

New terms and equalities can be built from replacing
(subsets of their) variables with terms of the same sort,
by the means of substitutions. A substitution is a mapping
t{xi 7→ ti}, where the variable xi and the term ti have the
same sort. It is ground if each replacing term is ground. If σ is
a substitution and t a term or equality, then tσ is an instance
of t.

Semantics. Let Ax be the set of axioms of a given SPIKE
specification and M a set of Herbrand models of Ax. An
(unconditional or conditional) equality is aM-consequence (or
just consequence) of a set of equalities Φ, denoted by Φ |=M
φ, if φ is valid in the model m whenever ψ is valid in m, for
any ψ ∈ Φ and m ∈ M. An equality φ is M-valid (or just
valid), denoted by |=M φ, iff it is a consequence of Ax.

In the following, we consider M as being the singleton
built from the initial model of Ax. The consequence relation
is referred to as inductive. An equality is a counterexample
if there is a ground instance of it which is not valid. We say
that an equality has a counterexample if there is a ground
instance of it which is a counterexample. A set of equalities
has a counterexample if there is an equality from the set that
has a counterexample.

The induction principle. SPIKE implements an instance of
the Noetherian induction principle. Given (E , <) a non-empty
well-founded poset of equalities to prove, the formula-based
instance of the Noetherian induction principle [6] states that
if, for any equality δ ∈ E ,

⋃
γ∈E,γ<δ{γ} |=M δ then ∀ρ ∈

E , |=M ρ. The principle allows that, during the proof of an
equality conjecture, smaller formulas can be used in terms of
induction hypotheses (IHs), which makes it a natural choice
for reasoning on proofs requiring lazy and mutual induction
steps. The proof method used by SPIKE is an application of
this principle, called implicit induction, suggested in [7] and
formally presented in [8]. In SPIKE, < is a multiset extension
of <t.

The inference system. The inference system is a set of
inference rules representing transitions between pairs of sets
of equalities of the form (E,H) ` (E′, H ′), where E,E′ are
two sets of conjectures and H,H ′ are two sets of premises.
The application of such a rule replaces a (current) conjecture
φ with a potentially empty set of new conjectures Φ. This can
be summarized as (E ∪ {φ}, H) ` (E ∪ Φ, H ′). Moreover, φ
may be added as a premise in order to participate to further
inference steps. Therefore, H ′ can be either H or H ∪ {φ}.
An implicit induction derivation for a set of equalities E0 is
any sequence of the form (E0, H0) ` · · · ` (En, Hn) ` . . .
resulted from successive applications of inference rules starting
from (E0, H0). A proof is a finite derivation (E0, H0) ` · · · `
(En, Hn) for which H0 and En are empty sets.

The induction principle can be applied to validate a proof
(E0, ∅) ` · · · ` (∅, Hn) by considering E as the set {φσ |
φσ is ground and φ ∈

⋃
iEi} and the inference system as

reductive, i.e., for any ground instance φτ of the current
conjecture φ from any step (E∪{φ}, H) ` (E∪Φ, H ′) of the
proof, either i) φτ is valid, or ii) φτ is a counterexample and
there is a smaller or equal counterexample in E ∪H ∪ Φ. In
addition, we assume that any premise does not have minimal
counterexamples in E . It can be easily noticed that any
reductive system is sound, i.e., |=M E0. Otherwise, if E0 is
not valid, E should have a counterexample. Since < is well-
founded, there is a minimal counterexample τ in E . The proof
ends with an empty set of conjectures, therefore there is a
last proof step where φ is the current conjecture, of the form
(E∪{φ}, H) ` (E∪Φ, H ′), and φ has a counterexample equal
to τ . On the other hand, the inference system is reductive,
so there is a counterexample smaller than τ in E ∪ Φ, as

E ∪ Φ ∪H does not have counterexamples equal to τ , hence
in E . Contradiction.

Concrete reductive inference systems, for which the
premises do not have minimal counterexamples, can be
built using a methodology based on contextual cover sets
(CCSs) [1]. We denote by the context C the pair of sets
of equalities (C1, C2). We say that the set of equalities Ψ
contextually covers the set of equalities Φ in C, denoted by
Φ vC Ψ, iff C1≤φσ∪C2<φσ∪Ψ1

≤φσ |=M φσ, for any φ ∈ Φ and
ground instance φσ. When Φ = {φ}, we say that Ψ is a CCS
of φ. When Φ is empty, the CCS is empty, and when Ψ1

≤φσ
is replaced in the definition by Ψ1

<φσ , then the CCS is strict
and denoted by Φ @C Ψ.

The core of the methodology is an abstract inference
system made of two rules: ADDPREMISE and SIMPLIFY, as
shown in Fig. 1.

1-ADDPREMISE : (E ∪ {φ}, H) ` (E ∪ Φ, H ∪ {φ})
if {φ} @(H, E) Φ

1-SIMPLIFY: (E ∪ {φ}, H) ` (E ∪ Φ, H)
if {φ} v(E∪H, ∅) Φ

Fig. 1: Abstract inference rules.

Each rule defines the set of new conjectures Φ as a CCS
of the current conjecture φ, by explicitly stating the content
of the context. It can be noticed that the current conjecture
of ADDPREMISE does not have minimal counterexamples, so
the rule adds it as a premise. SIMPLIFY does not satisfy this
property but allows bigger contexts. A very useful instance of
SIMPLIFY is when Φ is empty, also referred to as the DELETE
rule. It can be noticed that more complex abstract inference
rules can be built. In [1], it was shown that abstract inference
rules can build in two steps the CCS of the current conjecture,
thanks to the compositional properties of CCSs and that they
define the biggest contexts compared to similar abstract rules
proposed in the literature.

According to the methodology, any concrete inference
rule is built as an instance of one of the abstract rules by
implementing its elementary CCSs, i.e. the CCSs that are not
built with composition operations, by the means of reasoning
modules. A reasoning module can produce a CCS with a
particular reasoning technique using as IHs formulas from the
context defined by the instantiated abstract rule. A reasoning
module M can be characterised by a function fM defined
as fM (φ, C) = Φ, where Φ is a CCS of φ in the context
C. The main reasoning techniques used by SPIKE are based
on rewriting, case analysis and variable instantiations. Since
any proof ends with an empty set of conjectures, a class of
interest is represented by the reasoning modules that build
empty CCSs.

III. IMPLEMENTING REASONING MODULES FOR
NATURALS COMBINED WITH INTERPRETED SYMBOLS

We will detail the implementation of two reasoning mod-
ules for naturals combined with interpreted symbols using: i)
a tight integration schema à la Boyer-Moore [4] with home-
made components, and ii) a ‘black-box’ approach based on an

external SMT solver. Both reasoning modules take as input an
equality, as well as information from the context of the CCS
defined by implemented abstract rule, negate the equality and
validate it if an inconsistency is detected. We further point
out the major role they played during the validation of the
conformity algorithm for a telecommunications protocol.

A. Integrating the reasoning module à la Boyer-Moore

The reasoning module is built from the cooperation be-
tween a decision procedure for the quantifier-free theory of
equality, Tge, and a decision procedure for linear arithmetic
over rationals/reals, Tla. It served as a case study to validate
an approach integrating decision procedures in a proof envi-
ronment mixing induction and rewriting techniques [9]. The
equality given as input is valid if, after its negation, one of the
decision procedures returns inconsistent.

The components. The cooperation schema is defined by
transitions between states, called C-structures. A C-structure
consists of constraint stores containing equalities, rewrite rules
and linear inequalities issued from the negation of the equality
given as input.

Definition 1 (C-structure): Let C be a conditional equal-
ity. A C-structure is a data structure consisting of the quadruple
〈CR || A || G || L〉, where

• CR is built from unconditional rewrite rules;

• A consists of atomic formulas issued from the negation
of C;

• G contains unconditional equalities and disequalitites;

• L is the pair (P • IE), where P has linear inequalities
and IE stores the (implicit) equalities issued from P after
applying the decision procedure for Tla.

The variables from the negation of C are existentially
quantified and will not be instantiated during the cooperation
process but treated as constants. The terms (resp. equalities)
from a constraint store can be considered as ground terms
(resp. ground equalities) defined over the initial set of function
symbols extended with these constants.

Example 1: Let C be the conjecture from Example 5.2
of [10] (also presented in [11]):

(p(x) = True ∧ z ≤ f(max(x, y)) = True ∧
0 < min(x, y) = True ∧ x ≤ max(x, y) = True ∧
max(x, y) ≤ x = True) ⇒ z < g(x) + y = True.

The C-structure is initialized by

〈 CR : ∅
A : {p(x) = True, z ≤ f(max(x, y)) = True, 0 <

min(x, y) = True, x ≤ max(x, y) =
True, max(x, y) ≤ x = True, z < g(x) + y =
False}

G : ∅
L : (∅ • ∅)〉

The cooperation schema allows to normalize monomials
from P and equalities from IE with rewrite rules from CR.
We denote by linearize the procedure to transform an atomic
formula into a conjunction of linear inequalities. It returns

the empty set if no transformation has been operated on the
input; in this case, we say that the input is non-linearizable,
otherwise it is linearizable. The decision procedure for Tla
will be applied on the linear inequalities from P based on
the Fourier-Motzkin variable elimination method [12] over
rationals and implemented by the function arith. It returns
inconsistent if an unsatisfiable linear inequality (for example,
1 ≤ 0) is generated. A set of implicit equalities is returned if
the inequality 0 ≤ 0 is produced by the method. The decision
procedure is incomplete because a consistency reported with
an interpretation over rationals can be an inconsistency with
an interpretation over naturals. In spite of this limitation and
its doubly exponential complexity, it has been chosen for
its simple implementation. The disjunction operations, mainly
resulted when processing disequalities, can be avoided as ex-
plained in the following. It can be noticed that the negation of
the equality l1 = r1∧. . .∧ln = rn ⇒ l = r can be represented
as the conjunction l1 = r1 ∧ . . . ∧ ln = rn ∧ l 6= r. For the
case when the linearization of l 6= r yields the disjunction
l − r + 1 ≤ 0 ∨ r − l + 1 ≤ 0, the disequality l 6= r is not
processed (but can be processed by the decision procedure for
Tge). This is another source of incompleteness but guarantees
that there is always only one set of conjunctions of monomials
on which the Fourier-Motzkin method operates. An example
where the disjunctive representation can be avoided is when
one of the sides of the disequality is a boolean value (True or
False), for example f(x) ≤ g(x) 6= False can be linearized
to f(x)− g(x) ≤ 0.

The monomials from a linear inequality can be ordered by
a total ordering, similar to [13] and defined as follows.

Definition 2 (total ordering over terms): Let t1 and t2 be
two terms.

We write t1 <gt t2 iff

• the number of variable positions in t1 is smaller than that
for t2, or

• the number of variable positions in both terms is the same,
but the number of strict positions in t1 is smaller than that
for t2, or

• the number of variable and strict positions in both terms
is the same, but t1 is smaller than t2, according to some
lexicographic ordering [5, p. 19].

The function symbols and variables from the above defini-
tion are uniquely interpreted as naturals by using their internal
representation into SPIKE. On the other hand, <gt does not
need to be well-founded, hence it may be different from <t.

The input for the decision procedure for Tge, denoted by
congr, is a finite set of equalities and disequalities. The equali-
ties are oriented into rewrite rules using the <gt ordering. New
equalities are produced by a rewrite-based ground completion
algorithm, similar to [14], and the new rewrite system helps
to normalize the members of the disequalities. The output of
congr is either i) inconsistent, if a trivial disequality of the
form s 6= s is derived, or ii) the new set of equalities and
disequalities.

The cooperation schema. We show in the dotted box from
Fig. 2 the transitions between the components of a C-structure,

Fig. 2: The cooperation schema.

and from the proof environment to the reasoning module. The
definition of each transition is given in Fig. 3.

The atomic formulas from A will be dispatched between
L and G, using the first two transitions, A2L and A2G, such
that any atomic formula that cannot be transformed into a
conjunction (seen as a set) of linear inequalities will be sent
to G, otherwise to P. The transitions initialize respectively
the P and G components with linear inequalities and equal-
ities/disequalities resulted from the atomic formulas from A.
The transition A2L applies in addition arith on the new set
of linear inequalities. Any new rewrite rule, resulted from the
application of congr on G, are transfered to CR by G2CR. The
L2G rule transfers to G all equations from IE. The monomials
of linear equalities from P and the equations from IE are
normalized by rules from CR, using the normalize procedure.

The proof environment interacts with the reasoning module
by the means of the augmentation operation, inspired from [4].
Defined in Fig. 4 and denoted by Oracle_A, it is based on
the R(C) set of formulas which may contain (instances of)
conditional equations issued from axioms, lemmas, or the
context of the CCS given as input to the reasoning module.
Oracle_A firstly assumes that R(C) has an instance of a condi-
tional equality φ whose conclusion is linearizable and, after the
linearization process, i) the set of inequalities has a maximal
monomial of an inequality from P but with a coefficient with
opposite sign, and ii) no new monomials are introduced in
P. If the conditions of φ are consequences of R(C) and the
conditions of C, denoted by cond(C), the operation Oracle_A
returns the set of equalities from the condition part of φ.
The last rule from Fig. 3, augment_L, augments the set of
linear inequalities by using rewrite rules from R(C); it applies
afterwards arith on the new set of inequalities.

The strategy for applying the above transitions can be
implemented with a list of transition labels, initialized by
[A2G, A2L]. The first element from the list determines the
transition to be executed. When the current transition finished
to be executed, its name is replaced with the names of
the transitions displayed by its Next field from Fig 3. The

cooperation schema succeeds if inconsistent is returned by
arith or congr procedures. The cooperation schema failed if
the list becomes empty.

Properties. The cooperation schema of the reasoning module
is sound and well-founded.

Theorem 1 (soundness): Let φ be a conditional equality
and C the context given as input to the reasoning module.
Then, the empty set is an empty CCS of φ in C whenever
arith or congr return inconsistent during the execution of
the cooperation schema.1

Theorem 2 (termination): The cooperation schema is well-
founded.

Proof: Let us assume that there is a chain of C-structure
transformations S1 −→ S2 −→ . . . −→ Sn −→ It can be
noticed that the execution graph of the rules from Fig. 2
has two minimal cycles: (A2L, L2G,G2CR, normalize) and
(A2L, augment_L). Since i) the set of monomials from P
can be modified only by rewriting with rewrite rules from
CR, and ii) <t is well-founded, there is a step j in the
chain such that normalize is no longer applied in further
steps to modify the set of monomials from P. This breaks
the cycle (A2L, L2G,G2CR, normalize). If no new monomials
are produced, Oracle_A will return an empty set of equalities,
hence breaking the cycle (A2L, augment_L).

The reasoning module is an incomplete decision procedure
because of the incompleteness of the decision procedure for
Tla.

A detailed example. Let C be the conjecture from Example 1.
We will show how the reasoning module can help producing an
inconsistency from its negation, assuming that R(C) consists of
the set of two equalities {max(x′, y′) = x′ ⇒ min(x′, y′) =
y′, p(u) = True ⇒ f(u) ≤ g(u) = True}, and that there is
no additional knowledge on f and g. The initial C-structure
is (the empty fields are not listed in the following):

1For lack of space, the detailed proof can be found in [15].

〈CR || A ∪ E || G || (P • IE)〉 A2L−−→ 〈CR || A || G || (P′ • IE ∪ IE′)〉

where
1) E is a maximal set such that ∀e ∈ E , e is linearizable, and
2) (IE′, P′) = arith({∪e′∈E linearize(e′)} ∪ P)

Next:
if E = ∅ then [] else (if IE′ = ∅ then [augment_L] else [L2G])

〈CR || A ∪ E || G || L〉 A2G−−→ 〈CR || A || G ∪ E || L〉

where E is a maximal set such that a = b is non-linearizable,
∀a = b ∈ E

Next: [G2CR]

〈CR || A || G || L〉 G2CR−−−→ 〈CR ∪ E || A || congr(G) || L〉

where ∀a→ b ∈ E , a = b ∈ congr(G) and b <t a

Next: if E is empty then [] else [normalize]

〈CR || A || G || (P • IE)〉 L2G−−→ 〈CR || A || G ∪ IE || (P • ∅)〉

Next: [G2CR]

〈CR || A || G || (P • IE)〉 normalize−−−−−→ 〈CR || A || G′ || (P′ • IE′)〉

where
1) P′ is P normalized with rules from CR, and
2) IE′ is IE normalized with rules from CR

Next: [A2L]

〈CR || A || G || (P • IE)〉 augment_L−−−−−−→
〈CR || A || G || (P′ • (IE ∪ IE′))〉

where
1) E = Oracle_A(〈CR || A || G || (P • IE)〉), and
2) (P′, IE′) = arith({∪e∈E linearize(e)} ∪ P)

Next: if E = ∅ then [] else (if IE′ = ∅ then [A2L] else [L2G])

Fig. 3: The transition rules for the cooperation schema.

Oracle_A(〈CR || A || G || (P • IE)〉),

where
1) p1 ∧ . . . ∧ pn ⇒ l = r is an instance of a conditional

equality from R(C),
2) u is a monomial of linearize(l = r) having c, as

coefficient,
3) the rest of the monomials of linearize(l = r) are in the

C-structure,
4) u is a maximal monomial of an inequality of de P

whose coefficient is c′ such that c ∗ c′ < 0, and
5) R(C) ∪ cond(C) |=M pi, ∀i ∈ [1..n]

Returns: l=r

Fig. 4: The Oracle_A augmentation operation.

〈 A : {p(x) = True, z ≤ f(max(x, y)) = True, 0 <
min(x, y) = True, x ≤ max(x, y) =
True, max(x, y) ≤ x = True, z < g(x) + y =
False} 〉

The transition list is initiated by [A2G,A2L]. Firstly, the
non-linearizable and non-orientable equality p(x) = True
is transfered to G, by A2G. A2G is replaced by G2CR in
the transition list, but its application on the non-orientable
equality does not create new rewrite rules. Next, the rest of
the (linearizable) equalities from A are dispatched to L, by
A2L. The equalities from L are linearized and the new state
becomes:

〈 G : {p(x) = True}
L : ({z−f(max(x, y)) ≤ 0, 1−min(x, y) ≤ 0, x−

max(x, y) ≤ 0, max(x, y)−x ≤ 0, g(x)+y−
z ≤ 0} • ∅) 〉

By adding the inequalities x − max(x, y) ≤ 0 and
max(x, y) − x ≤ 0, we get the inequality 0 ≤ 0.
Therefore, the decision procedure for Tla can derive the
equality max(x, y) = x. On the other hand, the inequality
g(x) + y − f(max(x, y)) ≤ 0 is the result of the addition
between g(x) + y − z ≤ 0 and z − f(max(x, y)) ≤ 0. The
new state after applying A2L is:

〈 G : {p(x) = True}
L : ({z−f(max(x, y)) ≤ 0, 1−min(x, y) ≤ 0, x−

max(x, y) ≤ 0, max(x, y)−x ≤ 0, g(x)+y−
z ≤ 0, 0 ≤ 0, g(x) + y − f(max(x, y)) ≤
0} • {max(x, y) = x})〉

The next transition is L2G, so max(x, y) = x of IE is
transfered to G, to give:

〈 G : {p(x) = True,max(x, y) = x}
L : ({z−f(max(x, y)) ≤ 0, 1−min(x, y) ≤ 0, x−

max(x, y) ≤ 0, max(x, y)−x ≤ 0, g(x)+y−
z ≤ 0, 0 ≤ 0, g(x) + y − f(max(x, y)) ≤
0} • {∅})〉

The execution of congr on CR within the next G2CR transition
produces no changes. However, since max(x, y) >t x, a copy

of the equality max(x, y) = x is transformed into the rewrite
rule max(x, y)→ x and stored to CR:

〈 CR : {max(x, y)→ x}
G : {p(x) = True, max(x, y) = x}
L : ({z−f(max(x, y)) ≤ 0, 1−min(x, y) ≤ 0, x−

max(x, y) ≤ 0, max(x, y)−x ≤ 0, g(x)+y−
z ≤ 0, 0 ≤ 0, g(x) + y − f(max(x, y)) ≤
0} • {∅})〉

Next, we apply normalize to convert max(x, y) to x in all
inequalities from P:

〈 CR : {max(x, y)→ x}
G : {p(x) = True, max(x, y) = x}
L : ({z− f(x) ≤ 0, 1−min(x, y) ≤ 0, g(x) + y−

z ≤ 0, 0 ≤ 0, g(x) + y − f(x) ≤ 0} • ∅)〉

By applying A2L, arith is again called, to give the new state:

〈 CR : {max(x, y)→ x}
G : {p(x) = True, max(x, y) = x}
L : ({z− f(x) ≤ 0, 1−min(x, y) ≤ 0, g(x) + y−

z ≤ 0, 0 ≤ 0, g(x) + y − f(x) ≤ 0} • ∅)〉

No new equalities are produced this time, so augment_L is
called to add new inequalities to P. By instantiating the first
equality of R(C) with the substitution {x′ 7→ x; y′ 7→ y}, we
get {max(x, y) = x⇒ min(x, y) = y} which can eliminate
the maximal monomial min(x, y) from 1 − min(x, y) ≤
0. By adding the set of inequalities {min(x, y) − y ≤
0, y − min(x, y) ≤ 0} resulted from the linearization of
min(x, y) = y, the transition A2L is fired to get the equality
min(x, y) = y. It will be transfered afterwards to G by L2G,
to give:

〈 CR : {max(x, y)→ x}
G : {p(x) = True, max(x, y) = x, min(x, y) =

y}
L : ({z− f(x) ≤ 0, 1−min(x, y) ≤ 0, g(x) + y−

z ≤ 0, 0 ≤ 0, g(x) + y − f(x) ≤ 0, 1 − y ≤
0, min(x, y)− y ≤ 0, y −min(x, y)} • ∅)〉

As for max(x, y) = x, the equality min(x, y) = y can be
oriented from left to right, and a copy of it is transformed into
a rewrite rule, then added to CR by applying G2CR:

〈 CR : {max(x, y)→ x, min(x, y)→ y}
G : {p(x) = True, max(x, y) = x, min(x, y) =

y}
L : ({z− f(x) ≤ 0, 1−min(x, y) ≤ 0, g(x) + y−

z ≤ 0, 0 ≤ 0, g(x) + y − f(x) ≤ 0, 1 − y ≤
0, min(x, y)− y ≤ 0, y −min(x, y)} • ∅)〉

The inequalities from P are normalized with min(x, y)→ y
to get:

〈 CR : {max(x, y)→ x, min(x, y)→ y}
G : {p(x) = True, max(x, y) = x, min(x, y) =

y}
L : ({z−f(x) ≤ 0, 1−y ≤ 0, g(x)+y−z ≤ 0, 0 ≤

0, g(x) + y − f(x) ≤ 0} • ∅)〉

The transition augment_L is applied a second time, now with
the instance p(x) = True ⇒ f(x) ≤ g(x) = True of the
second equality of R(C) using the substitution {u 7→ x}. The
condition p(x) = True is satisfied, so the inequality f(x) −
g(x) ≤ 0 is added to P:

〈 CR : {max(x, y)→ x, min(x, y)→ y}
G : {p(x) = True, max(x, y) = x, min(x, y) =

y}
L : ({f(x) − g(x) ≤ 0, z − f(x) ≤ 0, 1 − y ≤

0, g(x) + y − z ≤ 0, 0 ≤ 0, g(x) + y − f(x) ≤
0, 1 ≤ 0} • ∅)〉

Finally, arith yields the unsatisfiable inequality 1 ≤ 0 after
adding 1− y ≤ 0, f(x)− g(x) ≤ 0 and g(x) + y− f(x) ≤ 0.
Hence, the procedure returns inconsistent.

Related works. Boyer and Moore [4] have been the first to
define a heuristics using the augmentation operation. They
integrated it into a decision procedure for linear arithmetic
that can also manipulate disjunctions of linear inequalities
and conditional linear inequalities. After conducting many
experiments, they concluded that the augmentation operation
increases significantly the performance of the decision pro-
cedure, hence improving the automatisation degree of their
prover [16]. However, their integration schema is informal and
lacks of termination proof. Several works have been inspired
from Boyer-Moore’s integration schema. [10] presented an
enriched schema with a congruence closure procedure, imple-
mented in the Tecton prover [17]. An informal termination
proof of their integration schema is given in [11]. To our
knowledge, the first formalisation of the Boyer-Moore’s inte-
gration schema was given in [18], where it instantiated a more
general ‘plug and play’ reasoning framework. [19] abstracts
the interactions between rewriting and decision procedures via
constraint contextual rewriting (CCR) rules parameterized by
decision procedures. In the same line, [20] presents a flexible
environment to integrate decision procedures into heuristic
theorem provers.

Different cooperation schemas could have been used in-
stead, as those inspired by Nelson-Oppen [21], Shostak [22]
or, more recently, based on Delayed Theory Combination [23].

B. Integrating the external SMT solver

SPIKE can translate conditional specifications into SMT
specifications following the SMT 2.0 format. By using a
‘black-box’ integration approach, the calls to the previous
reasoning module have been replaced in SPIKE by calls to the
Z3 SMT solver [24], version 4.3.2. For any call, the axioms
and the negated conjecture are translated one-to-one into assert
constructions. They are saved in a separate .smt2 file which is
finally tested for satisfiability by an external Z3 process. If Z3
returns unsat, the conjecture is interpreted by SPIKE as valid
and deleted from the current set of conjectures.

Z3 is an efficient SMT solver that combines different first-
order theories using the Model Based Theory Combination
approach [25], among which the theories for equality reasoning
and arithmetics. It integrates a decision procedure for linear

arithmetic over integers that can be activated by interpreting the
naturals from the SPIKE specification as non-negative integers.
In order to do this, i) the natural sort is translated to the built-
in integer sort ‘Int’, and ii) any SPIKE equality including a set
of natural variables V will add the constraints x ≥ 0, for any
x ∈ V , as conditions in the corresponding assert construction.2
The translation process is automatic, excepting for the user-
defined sorts which should be manually translated.

C. Applications

We have previously used the reasoning module à la Boyer-
Moore (BM) on several non-trivial applications [3], [9], [26].
Here, we detail our experience with the validation proof of
the conformity algorithm for a telecommunications protocol,
fully developed with the PVS [27] system in [28]. The proof is
about showing the equivalence between two functions defined
over naturals and lists. It mixes induction reasoning, case
analysis and arithmetic reasoning. It also requires non-trivial
user interaction, among which 79 user-defined lemmas.

Later on [26], a previous version (p.v.) of SPIKE integrat-
ing BM has proved completely automatically 48 user defined
lemmas. To measure the impact of decision procedures on
the automatisation degree of the prover, TABLE I indicates
that a number of 69 lemmas was required by the successfully
proved lemmas using the current version (c.v.) without the
integration of reasoning modules.3 The current version, this
time integrating the reasoning modules, helped to completely
automatically prove 46 lemmas by using the same proof
strategy; only the last ‘final’ lemma required one additional
lemma. It can be noticed that the overall BM-based proofs have
been done 20 times faster than the overall Z3-based proofs.
This can be explained by the non-negligeable time needed to
launch the Z3 processes. On the other hand, the incompleteness
of BM didn’t penalize its effectiveness on this example, the two
reasoning modules being able to prove the same conjectures.
Notice that, in general, the two sets of conjectures proved
with BM and Z3, respectively, may differ. For example, we
can imagine divergent BM-derivations of BM false negatives
that cannot be automatically proved by induction, i.e., without
providing additional lemmas, but which can be successfully
conducted by Z3.

Only one successful proof, done without the help of
reasoning modules, was unsuccessful when using reasoning
modules (see ‘null_wind2’). In the other direction, there are
7 lemmas proved with reasoning modules but not proved
using lemmas; in fact, we have found difficulties to provide
the required lemmas leading to a successful proof. Also, it
can be noticed that very few conjectures are not proved by
SPIKE integrating reasoning modules. This is due to the slight
differences between the specifications, mainly in the definition
of the induction orderings and the parameterization of the
inference rules. The implementation of some inference rules
also changed, which explains why conjectures like ‘null_insin’
and ‘null_insat’ are proved by the previous version and not by
the current version. For example, the implementation of some
augment-like inference rule from [26] unsoundly adds to the

2This solution was suggested by Pascal Fontaine in a private communica-
tion.

3’no’ means that the proof was not successful.

conditions of the processed conjecture the conclusion of the
involved conditional lemma. This error has been fixed in the
current version.

p.v. c.v.
w/ time (s) w/ r.m.

lemma BM lemmas w/o r.m. BM Z3
01 firstat_timeat 0 1 0.052 0.749
02 firstat_progat 0 1 0.049 0.226
03 sorted_sorted 0 0 0.034 1.265
04 sorted_insat1 0 4 0.054 0.399
05 sorted_insin2 0 4 0.082 1.626
06 sorted_e_two 0 0 0.037 1.258
07 sorted_e_insin 0 3 0.049 1.633
08 member_t_insin 0 2 0.060 5.182
09 member_t_insat no 2 0.057 4.164
10 member_firstat 0 2 0.046 6.172
11 timel_insat_t 0 0 0.037 3.121
12 erl_insin 0 0 0.035 2.134
13 erl_insat 0 0 0.036 2.134
14 erl_prog 0 2 0.058 7.340
15 time_progat_er 0 1 0.041 1.085
16 timeat_tcrt 0 0 0.042 4.147
17 timel_timeat_max 0 3 0.075 1.116
18 null_insat 0 no no no
19 null_insin 0 no no no
20 null_listat 0 1 0.035 5.164
21 null_listat1 0 0 0.031 0.063
22 cons_insat 0 0 0.031 3.115
23 cons_listat 0 0 0.028 0.058
24 progat_two_timeat 0 no no no
25 progat_timel_erl 0 3 0.068 2.145
26 progat_insat 0 4 0.935 11.410
27 progat_insat1 0 3 0.116 4.183
28 progat_insin_timeat no no 0.417 17.544
29 progat_insin 0 no no no
30 listat_insin_tcrt 0 no no no
31 progat_insin_t 0 3 0.508 15.511
32 listupto1_erl 0 no 0.819 1.164
33 null_listupto 0 no 0.068 1.147
34 listupto_t_insat 0 4 0.061 4.178
35 sorted_e_listupto no no 0.168 10.385
36 timel_listupto 0 0 0.049 1.094
37 sorted_listupto 0 4 0.054 6.206
38 progat_listupto 0 no 0.539 13.511
39 leftmax 0 no no no
40 leftmax_max 0 4 0.104 1.167
41 right_wind 0 4 0.064 1.108
42 time_listat 0 1 0.049 1.119
43 listat_listupto 0 4 0.218 13.46
44 sorted_cons_listat 0 no 0.110 11.345
45 null_wind1 0 1 0.048 1.135
46 null_wind2 0 1 no no
47 member_t_timel no no 0.074 8.229
48 timel_insin1 0 1 0.040 1.077
49 null_listupto1 0 0 0.030 2.203
50 sorted_e_cons 0 0 0.034 1.118
51 erl_cons 0 0 0.036 1.115
52 no_time 0 2 0.130 7.245
53 final 1 3 0.042 5.183
Total 1 69 < 10 s > 3 min

TABLE I: Statistics about the proof with (w/) and without
(w/o) reasoning modules (r.m.).

The experiments have been performed on a MacBook Pro
notebook featuring a 2.6 GHz Intel Core i5 processor and 8
Go RAM. 4

IV. CONCLUSIONS AND FUTURE WORK

We detailed the implementation in SPIKE of two reasoning
modules integrating components for arithmetic and equality
reasoning. The integration schema à la Boyer-Moore was

4For the reviewers, the full specifications and proofs can be found at
http://lita.sciences.univ-metz.fr/~stratula/synasc2014.zip

firstly presented in [15] and served later as example for an
approach that combined CCR and implicit induction tech-
niques [9]. Compared to [4], it manages neither conditional
linear inequalities nor disjunctions of linear inequalities. More-
over, it does not use abstraction variables as in [21], which
makes impossible the application of the decision procedure for
linear arithmetic on subterms of monomials or non-linearizable
equality and disequality sides. On the other hand, it is fast
and has been successfully used to automatize the validation
proof from [28], representing one of the most challenging case
studies ever tested with a reasoning specialist based on the
Boyer-Moore’s integration schema. However, the cooperation
schema is rather complex and error-prone. Relaunching the
proofs using the Z3-based reasoning module can help checking
the (implementation) soundness of the cooperation schema.
Moreover, the completeness property of the arithmetic com-
ponent in Z3 is an added-value to SPIKE; we expect to prove
more conjectures in a completely automatic way.

In the future, we intend to tweak around Z3 for speeding
up its performance when checking for unsatisfiability. It would
be interesting to combine induction with reasoning modules
for other first-order theories that Z3 integrates (fixed-sized bit-
vectors, arrays, etc). We also intend to try other STM solvers
compatible with the SMT format (Simplify, CVC3, Yices, etc).

Acknowledgments. The author would like to thank Pascal
Fontaine and Christophe Ringeissen for useful discussions.
Anisia Maria Magdalena Tudorescu has partially implemented
the integration of Z3 in SPIKE during a three-month INRIA
internship.

REFERENCES

[1] S. Stratulat, “A general framework to build contextual cover set induc-
tion provers,” J. Symb. Comput., vol. 32, no. 4, pp. 403–445, 2001.

[2] A. Bouhoula, E. Kounalis, and M. Rusinowitch, “Automated mathemat-
ical induction,” Journal of Logic and Computation, vol. 5, no. 5, pp.
631–668, 1995.

[3] G. Barthe and S. Stratulat, “Validation of the JavaCard platform with
implicit induction techniques,” in RTA, ser. Lecture Notes in Computer
Science, R. Nieuwenhuis, Ed., vol. 2706. Springer, 2003, pp. 337–351.

[4] R. S. Boyer and J. S. Moore, “Integrating decision procedures into
heuristic theorem provers: a case study of linear arithmetic,” in Machine
Intelligence. Oxford University Press, Inc. New York, NY, USA, 1988,
pp. 83–124.

[5] F. Baader and T. Nipkow, Term Rewriting and All That. Cambridge
University Press, 1998.

[6] S. Stratulat, “A unified view of induction reasoning for first-order logic,”
in Turing-100 (The Alan Turing Centenary Conference), ser. EPiC
Series, A. Voronkov, Ed., vol. 10. EasyChair, 2012, pp. 326–352.

[7] E. Kounalis and M. Rusinowitch, “Mechanizing inductive reasoning,” in
Proceedings of the eighth National conference on Artificial intelligence
- Volume 1, ser. AAAI’90. AAAI Press, 1990, pp. 240–245.

[8] F. Bronsard, U. Reddy, and R. Hasker, “Induction using term orderings,”
in Automated Deduction —CADE-12, ser. LNCS, vol. 814. Springer,
1994, pp. 102–117.

[9] A. Armando, M. Rusinowitch, and S. Stratulat, “Incorporating decision
procedures in implicit induction,” J. Symb. Comput., vol. 34, no. 4,
pp. 241–258, 2002, a previous version appeared in Calculemus 2001
(9th Symposium on the Integration of Symbolic Computation and
Mechanized Reasoning), pages 65-75.

[10] D. Kapur and X. Nie, “Reasoning about numbers in Tecton,” in Intl.
Symp. Methodologies for Intelligent Systems, 1994, pp. 57–70.

[11] D. Kapur, “Rewriting, induction and decision procedures: A case
study of presburger arithmetic,” in Symbolic-Algebraic Methods and
Verification Methods — Theory and Applications, 2001, pp. 129–144.

[12] J.-L. Lassez and M. Maher, “On Fourier’s algorithm for linear arithmetic
constraints,” Journal of Automated Reasoning, vol. 9, pp. 373–379,
1992.

[13] M. Kaufmann and J. S. Moore, ACL2 Version 2.4 - The User’s Manual,
1999.

[14] G. Huet and D. S. Lankford, “On the uniform halting problem for term
rewriting systems,” Laboria, Tech. Rep. 283, 1978.

[15] S. Stratulat, “Preuves par récurrence avec ensembles couvrants con-
textuels. applications à la vérification de logiciels de télécommu-
nications.” Ph.D. dissertation, Université Henri Poincaré, Nancy I,
November 2000, also published as a book at ‘Editions Universitaires
Européennes’ in 2012, ISBN 978-3841794901.

[16] R. S. Boyer and J. S. Moore, A computational logic handbook. Aca-
demic Press Professional, 1988.

[17] D. Kapur, X. Nie, and D. R. Musser, “An overview of the Tecton proof
system,” Theor. Comput. Sci., vol. 133, no. 2, pp. 307–339, 1994.

[18] F. Giunchiglia, P. Pecchiari, and C. Talcott, “Reasoning Theories-
Towards an Architecture for Open Mechanized Reasoning Systems,”
in First International Workshop on Frontiers of Combining Systems
(FroCoS)., ser. Kluwer Series on Applied Logic. Kluwer Academic
Publishers, 1996, pp. 157–174, also, published as the technical report
9409-15, IRST, November 1994.

[19] A. Armando and S. Ranise, “Constraint Contextual Rewriting,” Pro-
ceedings of the 2nd International Workshop on First Order Theorem
Proving,FTP’98, Vienna (Austria), pp. 65–75, 1998, an extended version
appeared in Journal of Symbolic Computation, 36(2003), 193-216.

[20] P. Janičić, A. Bundy, and I. Green, “A framework for the flexible
integration of a class of decision procedures into theorem provers,”
in Automated Deduction — CADE-16, ser. Lecture Notes Computer
Science, vol. 1632, 1999, pp. 127–141.

[21] G. Nelson and D. C. Oppen, “Simplification by cooperating decision
procedures,” ACM Trans. Program. Lang. Syst., vol. 1, no. 2, pp. 245–
257, 1979.

[22] R. Shostak, “Deciding Combinations of Theories,” Journal of the ACM,
vol. 31, no. 1, pp. 1–12, 1984.

[23] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, S. Ranise, P. V.
Rossum, and R. Sebastiani, “Efficient satisfiability modulo theories via
delayed theory combination,” in In Proc. CAV 2005, ser. LNCS, vol.
3576. Springer, 2005, pp. 335–349.

[24] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, ser. TACAS’08/ETAPS’08. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 337–340.

[25] L. de Moura and N. Bjørner, “Model-based theory combination,”
ENTCS, vol. 198, no. 2, pp. 37–49, May 2008.

[26] M. Rusinowitch, S. Stratulat, and F. Klay, “Mechanical verification of an
ideal incremental ABR conformance algorithm,” J. Autom. Reasoning,
vol. 30, no. 2, pp. 53–177, 2003.

[27] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert, PVS
prover guide - version 2.4, SRI International, November 2001.

[28] M. Rusinowitch, S. Stratulat, and F. Klay, “Mechanical verification of
an ideal incremental ABR conformance algorithm,” in CAV, ser. Lecture
Notes in Computer Science, E. A. Emerson and A. P. Sistla, Eds., vol.
1855. Springer, 2000, pp. 344–357.

