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Abstract—In this paper, we study the problem of minimizing
the area power consumption in wireless cellular networks. We
focus on the downlink of a single-tier network, in which the
locations of base stations (BSs) are distributed according to
a homogeneous Poisson point process (PPP). Assuming that a
mobile user is connected to its strongest candidate BS, we derive
bounds on the optimal transmit power in order to guarantee a
certain minimum coverage and data rate. Under the same quality
of service constraints, we find the optimal network density that
minimizes the area power density. Our results show that the
existence of an optimal BS density for minimizing the power
consumption depends on the value of the pathloss exponent.

Index Terms—Cellular networks, green wireless communica-
tion, Poisson point process, area power density, energy efficiency,
optimal base station density.

I. INTRODUCTION

In wireless cellular networks, the galloping demand for
connectivity, data rate, and quality of service (QoS) [1] cannot
be satisfied merely by increasing indefinitely the transmit
power of the base stations (BSs). This is mainly due to the
fact that an increase in transmit power, besides increasing the
signal strength from the desired BS, also increases the inter-
ference received by the non-serving BSs. This may effectively
decrease the signal-to-interference-plus-noise ratio (SINR) ex-
perienced by the user terminal, thus having a negative impact
on the QoS. Besides that, it is also essential from an energy
efficiency perspective to address the problem of minimizing
the energy expenditure while maintaining certain constraints
such as target coverage and minimum data rate.

There are various approaches in order to address this
problem. For instance, if a finite number of BSs are deployed
in a regular hexagonal (or grid) cellular fashion [2], one might
seek to minimize the total power consumed by obtaining the
optimal operating parameters, such as the hexagonal cell size
and the magnitude of transmit power at each BS, while guar-
anteeing a certain QoS. Nevertheless, this approach involves
very cumbersome analysis as evaluating the spatial distribution
of the SINR in a grid-based model becomes prohibitively
complex as the system size increases and one may have
to resort to extensive simulations. A common simplification
in modeling cellular networks which enables us handle the
problem analytically is to assume that the locations of BSs
are randomly scattered on a two dimensional plane surface

according to a homogeneous Poisson point process (PPP) [3].
Several works studied the validity of PPP modeling of BSs
(in comparison with regular cellular models,) and it is often
shown to provide useful insights into the statistical behavior
of key performance metrics [4], [5].

In this paper, we consider a single-tier cellular network,
in which the BS locations are modeled according to a ho-
mogeneous spatial PPP. We assume that a mobile user is
connected to the BS that provides the highest SINR and
we impose two QoS constraints, namely a target coverage
probability and a target minimum average rate experienced
by the typical user. We aim at deriving the optimal BS
density that maximizes the power efficiency, i.e. minimizes
the power consumption per unit area. Evidently, a network
is power efficient if the area power consumption decreases
with increasing the BS density or reducing the cell size.
Most prior work analyzed the performance of single-tier or
heterogeneous Poisson cellular networks in terms of energy
efficiency [6], [7], [8]. The most related work is [9], in which
the authors analyze the impact of transmit power reduction
on the area power consumption of the network under closest
BS association. In this work, under strongest BS association,
we derive bounds on the optimal transmit power in order to
guarantee a certain minimum coverage and data rate. Under
the same quality of service constraints, we find the optimal
network density that minimizes the area power consumption,
whose existence depends on the pathloss exponent and the
target QoS guarantees.

The remainder of the paper is organized as follows: In
Section II, we present the system model and motivate the
optimization problem. In Section III, we provide bounds
on the optimal transmit power to minimize the area power
consumption under minimum coverage and rate constraints. In
Section IV, we evaluate the optimal BS density that minimizes
the area power consumption and simulation results are given
in Section V. Section VI concludes the paper.

II. SYSTEM MODEL

A. Network model

We consider the downlink of a single-tier cellular network,
in which the locations of BSs are distributed on a two-
dimensional Euclidean plane R2 according to a homogeneous



PPP Φ = {ri}i∈N with density λb, where we denote by
ri ∈ R2 the location of the i-th BS. We assume that the users
are also randomly distributed according to an independent
PPP of density λu, such that λu ≥ λb. Without loss of
generality, we focus on a mobile (typical) user at the origin for
calculating the performance metrics of interest, i.e. coverage
probability and rate. The total bandwidth is denoted by B and
the bandwidth per user is given by Bu = B λb

λu
. We assume

that all BSs transmit with the same constant power P and
an additional operational power Po (e.g. due to hardware and
signaling) is consumed at each BS. In such a system, the power
expenditure per unit area, coined as area power consumption
(APC), is given as

P = λb(P + Po). (1)

We model the system under consideration such that the trans-
mitted signal from a given BS is subject to two propagation
phenomena before it reaches the user: (i) a distance-dependent
pathloss governed by the pathloss attenuation function g(r) =
br−α, where b is the pathloss coefficient and α is the pathloss
exponent (ii) Rayleigh fading with mean 1. According to the
above assumptions and notation, the signal strength from i-th
BS as received by the reference user is given as

pi(ri) = hiPbr
−α
i . (2)

We further assume the presence of noise in the medium with
power variance

σ2 = βλb,

with β = B 1
λu

FkT
b , where F is the receiver noise figure, k is

Boltzmann constant, and T is the ambient temperature. If the
reference user is connected to the i-th BS, it receives a signal
of power pi(ri) from it. The sum of the received powers from
the remaining BSs contributes to interference to this signal. As
a result, the received SINR at the reference user when served
by the i-th BS is given by

SINR =
hig(ri)P

σ2 + Ii
, (3)

where, Ii =
∑
rj∈Φ\ri pj(rj).

In a downlink scenario, although the reference user can
technically be served from any BS, a connection with a
particular BS has to be established according to an association
policy to ensure QoS, which may have impact on the APC
optimization. In this work, we assume that a mobile user
connects to the strongest BS, i.e. the BS that provides the
maximum received SINR. The reference user is said to be
covered when there is at least one BS that offers an SINR > γ.
If no BS offers an SINR greater than this threshold, we say
that the reference user is on coverage outage. We assume the
condition γ > 1, which is needed to ensure that there is only
one BS that serves the required level of SINR at a given instant
[10].

B. Problem formulation
The objective of this paper is to obtain the optimal BS

density λb and transmit power P so that the area power
consumption λb(P + P0) is minimized subject to a minimum
coverage probability constraint and a minimum data rate
guarantee. As stated above, the coverage probability, Pcov, is
defined as the probability that the reference user is covered.
Following the aforementioned definition, the coverage proba-
bility is given as the probability that the SINR received by the
reference user on an average is greater than γ. The user data
rate per unit bandwidth, R is defined as the expectation value
of B λb

λu
log2 (1 + SINR).

III. OPTIMAL POWER FOR TARGET COVERAGE AND RATE

In this section we address the following optimization prob-
lem:

arg min
P∈(0,∞)

P = λb(P + Po)

s.t.

 (i) Pcov ≥ εPNN
cov

(ii) R ≥ δRNN +Rmin

(4)

where PNN
cov and RNN are the coverage probability and the per-

user rate, respectively at the no noise regime, and ε, δ are
positive numbers. Note that when the transmit power is infinity
(no noise case), the coverage probability is scale invariant, i.e.
the coverage probability and also the spectral efficiency do not
depend on the BS density.

Lemma 1. If P ∗c is the minimum transmit power that satisfies
the constraint Pcov ≥ εPNN

cov , then P ∗c ≥ A1

λ
α
2
−1

b

, where A1 =

βΓ(1+α
2 )

bC
α
2 (α)(1−ε)

and C(α) = 2π2

α cosec 2π
α .

Proof. The coverage probability under strongest BS associa-
tion for a general pathloss function g(r) is given as [10], [11]

Pcov(P, λb) = P[SINR ≥ γ]

= πλb

∫ ∞
0

exp(−q(γ, λb, r)) dr (5)

where

q(P, λb, r) =
γσ2

Pg(
√
r)

+ λb

∫ ∞
0

πγg(
√
ri)

g(
√
r) + γg(

√
ri)

dri. (6)

We use the standard pathloss model g(r) = br−α and
incorporate it in (6) and (5) to get the expression for coverage
probability as

Pcov(P, λb) = πλb

∫ ∞
0

exp

[
−λb

γβr
α
2

Pb
− λbC(α)γ

2
α r

]
dr,

(7)
where C(α) := 2π2

α cosec 2π
α . In the case of low noise

(σ2 → 0), the above expression can be simplified by using
the approximation e−x ≈ 1− x.

Pcov(P, λb) ≈ πλb

∫ ∞
0

(
1− γβλbr

α
2

Pb

)
e−λbC(α)γ

2
α r dr

= PNN
cov

(
1−

βΓ(1 + α
2 )

Pbλ
α
2−1

b C
α
2 (α)

)
(8)



where PNN
cov := π

γ
2
αC(α)

is the coverage probability observed

by the reference user in the case of negligible noise. Fig. 1
gives a justification to the above approximation by comparing
the numerical plots of coverage probability before and after
the approximation. By substituting the expression for Pcov
from (8) into the constraint equation Pcov ≥ εPNN

cov we get
a condition on the range of optimal transmit power P ∗c as

P ∗c ≥
A1

λ
α
2−1

b

, (9)

where A1 =
βΓ(1+α

2 )

bC
α
2 (α)(1−ε)

. This equation establishes the
approximate minimum transmit power as a function of λb that
satisfies the coverage constraint.

Lemma 2. If P ∗r is the minimum transmit power to satisfy
R ≥ Rmin + δRNN, then P ∗r ≥

A2(λ)

λ
α
2
b

, where A2(λb) =

σ2Γ(1+α
2 )

bC
α
2 (α)(1−δB λb

λu
)
.

Proof. The per-user rate is analytically given as

R = B
λb
λu

E[log2(1 + SINR)]

= Rmin +B
λb
λu

∫ ∞
ln 2

P[SINR ≥ et − 1] dt, (10)

where Rmin is the minimum rate [10].
As in eq (10), the rate per BS per unit bandwidth experi-

enced by the reference user is given by

R = Rmin +B
λb
λu

E[log(1 + SINR)]

= Rmin +B
λb
λu

∫
t>ln 2

P[SINR > et − 1] dt

= Rmin +B
λb
λu
πλb

∫ ∞
0

∫ ∞
ln 2

exp

[
− σ2r

α
2

Pb
(et − 1)

−λbC(α)r(et − 1)
2
α

]
dr dt

≈ Rmin +B
λb
λu

( π

C(α)

∫ ∞
ln 2

(et − 1)−
2
α dt

−πσ
2λb
Pb

∫ ∞
ln 2

(et − 1)−
2
αΓ(1 + α

2 )

C1+α
2 (α)λ

α
2

b

dt
)

= Rmin +B
λb
λu
RNN

(
1−

βΓ(1 + α
2 )

Pbλ
α
2−1

b C
α
2 (α)

)
(11)

where RNN :=
απ2

α−2
2 2F

1( 2
α ,

2
α ,

2+α
α , 1

2 )

C(α)
, is the rate per user

when the noise is negligible. By substituting the expression for
rate R in the constraint equation R ≥ δRNN + Rmin to get a
condition on the optimal transmit power P ∗r as

P ∗r ≥
A2(λb)

λ
α
2−1

b

, (12)

with approx. Pcov

without approx. Pcov
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Figure 1. Coverage probability vs. Transmit Power P with and without
approximation made in (8); for two different values of λb, β = 10−3, λu =
0.01m−2, B = 20 × 106Hz, α = 4. The curves almost coincide for lower
values of β.

where A2(λb) =
βΓ(1+α

2 )

bC
α
2 (α)(1−δ λu

Bλb
)
. This equation establishes

the approximate minimum transmit power as a function of λb
that satisfies the rate constraint.

It follows naturally that the optimal transmit power that
satisfies both the conditions (9) and (12) will therefore be
P ∗ = max{P ∗c , P ∗r }.

IV. OPTIMAL BS DENSITY

Since the objective of our optimization is to minimize the
APC (P), we seek to minimize the function

P(λb) = (P ∗ + Po)λb

=
max{A1, A2(λb)}

λ
α
2−1

b

+ Poλb, (13)

with respect to λb.
Following eq (13), there are two possible expressions for P

depending on which is larger between A1 and A2(λb), which
in turn depends on the value of λb.

We study the two cases A1 > A2(λb) and A1 < A2(λb)
and proceed with the optimization of P with respect to λb in
each case.

Case 1: If A1 > A2(λb) then λb ∈ [ δλuεB ,∞) and the
optimal transmit power P ∗ = P ∗c .

Therefore, the APC at optimal power follows as

P(λb) =
βΓ(1 + α

2 )

bC
α
2 (α)(1− ε)

1

λ
α
2−2

b

+ Poλb. (14)

This is clearly a convex function in λb for α > 2. Therefore,
we differentiate P(λb) with respect to λb and solve it for the
optimum λ∗b

dP(λb)

dλb
= 0⇒ λ∗b =

[
βΓ(1 + α

2 )

bCα(α)(1− ε)
(α2 − 2)

Po

] 1
α
2
−1

(15)

It can be noticed that λ∗b = 0 for α = 4 which means
that when α = 4 the optimal BS density has only the



trivial solution. We comment further on the relation between
the existence of optimum and the pathloss exponent α in
Section V, where we analyze (15) numerically and compare
it with simulation.

Case 2: If A1 < A2(λb) then λb ∈ (0, δλuεB ] and the optimal
transmit power P ∗ = P ∗r . Therefore, the APC at optimal
power follows as

P(λb) =
βΓ(1 + α

2 )

bC
α
2 (α)(1− δλu

Bλb
)

1

λ
α
2−2

b

+ Poλb. (16)

We find again the optimum by equating the derivative with
respect to λb to zero, i.e.

dP(λb)

dλb
= 0

⇒ Po −
pλ
−α2
b δ′(

1− δ′

λb

)2 +

(
1− α

2

)
pλ

2−α/2
b

1− δ′

λb

= 0, (17)

where p =
βΓ(1+α

2 )

bC
α
2 (α)

and δ′ = δ λuB .
Now, (17) can be simplified to the follow equation in λb:

2Poλ
α/2
b (λb − δ)2 − p(α− 4)λ3

b + pδ(α− 6)λ2
b) = 0, (18)

which is a polynomial for α > 4. The existence of a real
solution for the polynomial depends on the value of α and the
coefficients.

V. SIMULATION RESULTS

In this section, we numerically plot the results obtained
in Sections III and IV and verify them with respect to
simulations of our system model. A general remark is that
the theoretical results match perfectly the simulated ones. We
set up a square of dimension 200km×200km and the reference
user is placed at the center of the square.

In Figs. 2 and 3, we plot the analytical results for the
coverage probability and the per-user rate (cf. 5) and compare
it with simulations. The two plots demonstrate that both these
performance metrics asymptotically saturate to a constant
value rather than increasing with BS transmit power increas-
ing. This asserts that increasing transmit power of BSs may not
always be the best solution to increase the QoS. This further
motivates us to search for the minimum amount of transmit
power, which ensures a minimum level of QoS.

In Fig. 4, we compare
- the theoretically derived expression for the approximate

optimum power P ∗c (λb) given in (9),
- the exact optimum P ∗c , numerically evaluated through

exhaustive search for the least value of P that satisfies
the coverage constraint of (4), and

- the optimum P ∗c evaluated using simulations,
as functions of λb. It can be noticed that the curves correspond-
ing to theoretical exact minimum and the simulation coincide,
whereas expectedly, the approximate theoretical result slightly
differs.

Fig. 5 depicts a similar treatment as described in Fig. 4,
but for the rate constraint of (4). It can be noticed that the
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Figure 2. Coverage probability Pcov vs. transmit power P (W) for different
values of α and β = 2 × 10−7. Pcov asymptotically saturates to a constant
value with indefinite increase in P .

curves corresponding to theoretical exact minimum and the
simulation fairly coincide while the approximate theoretical
result is slightly different, as expected. This again validates
the correctness of our theoretical analysis.

In Fig. 6, we plot for different values of α, the theoretical
expression for APC (P) (14) versus BS density (λb). We
compare this with the simulation result where P is plotted
against λb for values of transmit power (P ) that satisfy the
constraints in 13. Since the bandwidth is reasonably large (of
the order of 106 Hz), the region λb ∈ (0, δλuεB ] is very narrow
and it does not have much of importance. Therefore, we only
consider the region λb ∈ [ ελuδB ,∞) in our plots. We verify that
P(λb) has no minima for α = 4 and it is negligibly small for
α = 3. This is a key message of our work, which dictates a
relation between the pathloss exponent and the existence of a
minima for the APC P . Furthermore, we observe that in the
cases of α = 5 and 6 deploying too few BSs is not an energy
efficient solution.

VI. CONCLUSION

We have studied the problem of minimizing the power
consumption in single-tier cellular wireless networks. Using
a low-noise approximation, we derived bounds on the min-
imum transmit power for achieving certain QoS constraints
in terms of coverage and user rate. Based on these optimal
transmit power values, we derived the optimal BS density that
minimizes the area power consumption subject to minimum
coverage probability and per-user rate guarantees. A takeaway
message of this paper is that the existence of an optimal BS
density for optimizing area power efficiency depends on the
specific value of the pathloss exponent.
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