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MULTI-OBJECTIVE SIGNAL PROCESSING OPTIMIZATION:
THE WAY TO BALANCE CONFLICTING METRICS IN 5G SYSTEMS

Emil Björnson, Eduard Jorswieck, Mérouane Debbah, and Björn Ottersten

The evolution of cellular networks is driven by the dream
of ubiquitous wireless connectivity: Any data service is in-
stantly accessible everywhere. With each generation of cel-
lular networks, we have moved closer to this wireless dream;
first by delivering wireless access to voice communications,
then by providing wireless data services, and recently by de-
livering a WiFi-like experience with wide-area coverage and
user mobility management. The support for high data rates
has been the main objective in recent years [1], as seen from
the academic focus on sum-rate optimization and the efforts
from standardization bodies to meet the peak rate require-
ments specified in IMT-Advanced. In contrast, a variety of
metrics/objectives are put forward in the technological prepa-
rations for 5G networks: higher peak rates, improved cover-
age with uniform user experience, higher reliability and lower
latency, better energy efficiency, lower-cost user devices and
services, better scalability with number of devices, etc. These
multiple objectives are coupled, often in a conflicting manner
such that improvements in one objective lead to degradation
in the other objectives. Hence, the design of future networks
calls for new optimization tools that properly handle the exis-
tence and tradeoffs between multiple objectives.

In this article, we provide a review of multi-objective opti-
mization (MOO), which is a mathematical framework to solve
design problems with multiple conflicting objectives [2–6].
In contrast to conventional heuristic approaches where some
objectives are converted into constraints, MOO enables a rig-
orous network design. MOO has been applied in many en-
gineering and economic related fields, but has received little
attention from the signal processing and wireless communi-
cation communities. We provide a survey of the basic defini-
tions, properties, and algorithmic tools in MOO. This reveals
how signal processing algorithms are used to visualize the in-
herent conflicts between 5G performance objectives, thereby
allowing the network designer to understand the possible op-
erating points and how to balance the objectives in an efficient
and satisfactory way. For clarity, we provide a case study
on massive multiple-input multiple-output (MIMO) systems,
which is one of the key enablers of 5G cellular networks.

INTRODUCTION

We are currently at a point in time when many researchers
in industry and academia are trying to formalize their ex-
pectations and requirements on the next generation wireless

communication networks. These views are expressed in
various magazine articles, white papers, and plenary talks.
To get a sense of the range of expectations, one can take a
look at the project Mobile and wireless communications En-
ablers for the Twenty-twenty Information Society (METIS),
http://www.metis2020.com/, where telecommuni-
cations manufacturers, network operators, and academic
partners are gathering their 5G requirements. The follow-
ing summarizes their main objectives [7]:

• Higher user data rates: 10–100 times higher average
user rates are expected, at least in urban scenarios.

• Higher area data rates: 1000 times higher average rates
per unit area are anticipated.

• More connected devices: With the respective expected
increases in user and area rates, 10–100 times more de-
vices can be accommodated per unit area.

• Higher energy efficiency (EE): The throughput should
be improved without increasing the operational cost
or the energy consumption, thus greatly improving the
EE. If EE is measured as area data rate per power ex-
penditure, this requires a 1000 times EE improvement.

Furthermore, heterogeneity appears as a keyword that can
be tied to a variety of network aspects:

• Heterogeneous networks: The combination of access
points with different ranges, traffic loads, radio ac-
cess technologies, licensed/unlicensed spectrum, and
hardware capabilities makes the network highly het-
erogeneous. The same deployment strategy cannot be
used everywhere and the same resource management
scheme cannot be used throughout the day.

• Heterogeneous user conditions: As the performance re-
quirements become tighter, the mobility and pathloss of
a specific user determines its quality-of-service, unless
the network is designed to counteract these effects.

• Heterogeneous devices: The differences in function-
ality and hardware capability of user devices are ex-
pected to grow. Large handheld devices can, for exam-
ple, achieve high data rates by spatial multiplexing and
advanced signal processing, while small sensors seek
low data rates under extremely tight energy constraints.
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• Heterogeneous service requirements: Some cyber-
physical systems and public-safety applications re-
quire very fast and reliable response times, while best-
effort delivery is fine for other types of data services.
Similarly, certain multimedia applications have tight
and continuous quality-of-service requirements, while
other services are bursty in nature.

There are apparently many different requirements, or ob-
jectives, to keep in mind when designing future wireless net-
works. Unfortunately, these objectives cannot be treated sep-
arately because they are coupled; sometimes in a consistent
fashion, but often in conflicting ways such that improvements
in one objective lead to deterioration of other objectives. This
is because the same network resources (e.g., time, frequency,
space, power, and hardware) play key roles in all these re-
quirements/objectives, but in incompatible ways. As a sim-
ple example, higher peak user rates can be achieved by using
more power (which affects the EE), allocating more transmis-
sion resources to users with good channels (which means less
uniform user experience and higher latencies), or making use
of intricate signal processing algorithms (which increases the
complexity and cost of user devices).

In order to achieve the ambitious 5G goals, efficient net-
work operation with respect to all the conflicting 5G objec-
tives is required. This calls for a design framework that han-
dles multiple objectives and supports the search for the best
attainable operating point. But can we really formulate and
solve multi-objective problems rigorously or is heuristic trial-
and-error the only option? Is there even any optimal solution?
These are questions that we address in this article.

CONVENTIONAL SINGLE-OBJECTIVE OPTIMIZATION

The conventional approach to physical-layer system opti-
mization is that of selecting a scalar network utility func-
tion that is maximized under a set of constraints [8, 9].
A common problem formulation is that of maximizing the
weighted sum of the users’ data rates under transmit power
constraints [6, 10, 11]. Alternatively, one can minimize the
transmitted power under the constraint of guaranteeing cer-
tain data rates to each user [12, 13]. In recent years, the EE
(in bit/Joule) has also arisen as a utility function [14–16].

In essence, the conventional approach is to select one of
the objectives listed above as the sole objective, while the
other objectives are transformed into constraints. The inher-
ent heuristic assumptions are: 1) one of the objectives is of
dominating importance; and 2) it is known beforehand what
are good values for the constraints related to the other objec-
tives. Moreover, the short-term values of the different objec-
tives are usually considered in these network utility problems
and not the long-term values which are of main importance
in the network design. Given the increased complexity due to
heterogeneity, the need for long-term network optimization,
and the diverse expectations on 5G networks, the conven-

tional approach is no longer viable. However, we show later
how to construct more appropriate single-objective problems.

NEW PARADIGM: MULTI-OBJECTIVE OPTIMIZATION

Instead of assuming that one of the objectives is the sole
objective, the fundamental approach is to recognize the ex-
istence of multiple objectives [2]: g1(x), g2(x), . . . , gM (x)
where M is the number of objectives. These objective func-
tions can, for example, be area throughput, guaranteed rates
for different classes of users, number of simultaneous users,
energy efficiency, etc. Explicit examples are given later in
this article, while the theory is applicable for any arbitrary
functions. The notation g(x) = [g1(x), g2(x), . . . , gM (x)]T

is used to emphasize that the objective is vector-valued.
The available resources (e.g., time, frequency, space,

power, and hardware) are modeled by a compact setX ⊂ RD,
which is called the resource bundle and has any finite dimen-
sion D. Each vector x ∈ X represents a feasible way of
utilizing the network resources. The satisfaction of this re-
source utilization equals gm(x) ∈ R with respect to the mth
objective function. A larger value corresponds to higher sat-
isfaction. For tractability we assume that gm(x) is a bounded
continuous function of x and non-negative. We also assume
that it exists a point x0 ∈ X such that gm(x0) = 0 for all
m. This operating point is the dissatisfaction of turning off
the network and makes the satisfaction (for each objective)
become a number from zero and upwards. Not all practical
objectives satisfy these conditions by nature; for example,
latency and error probability are typically to be minimized.
However, there are standard transformations that reformulate
such metrics into objective functions in our framework [3–6].

A key assumption is that theM objectives are not ordered
and therefore studied without any preconceptions—all doors
are kept open. In contrast to game theory, where each ob-
jective belongs to one of the competing agents, we assume
that there is a network designer that would like to design the
network to maximize all the M objectives simultaneously:

maximize
x

g(x) = [g1(x), g2(x), . . . , gM (x)]T (1)

subject to x ∈ X .

Note that (1) is the maximization of the vector g(x) contain-
ing the M objectives, which is defined as maximizing all el-
ements simultaneously. This is known as a multi-objective
optimization problem (MOOP) or, alternatively, as a multi-
criteria or vector optimization problem [2–6]. These types of
problems arise in many engineering fields because of the dif-
ficulty to find a scalar metric that exactly describes what we
would like to achieve. We review the main concepts and prop-
erties related to MOOPs in this article. We provide the basic
tools to understand the structure of MOOPs and how to solve
these problems in practice. The properties are stated without
proofs, while we recommend [3–5] for further details and [6]
for a recent survey aimed at communication applications.
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Fig. 1. Illustration of a MOOP with a three-dimensional re-
source bundle X and a two-dimensional attainable objective
set. For each resource utilization x = [x1 x2 x3]T ∈ X , the
objective functions g1(x) and g2(x) assign a vector g(x) ∈ G.

Property 1. The M objectives in (1) are conflicting and since
there is no total order of vectors, there is (generally) no global
optimum to the MOOP in (1).

This is the first important insight from the multi-objective
framework; we cannot solve (1) in any globally optimal sense
because there are only subjectively optimal solutions. There-
fore, we turn the attention to the attainable objective set

G = {g(x) : x ∈ X} (2)

which contains all the combinations of objective values
g1(x), g2(x), . . . , gM (x) that are simultaneously attainable
under the available resources. The relationship between the
resource bundle X and the attainable objective set G is visu-
alized in Fig. 1. Note that the origin is always in the objective
set, 0 = [0 . . . 0]T ∈ G, due to the assumptions above.

When formulating the MOOP, the resource bundle X is
selected to minimize the preconditions made on the utiliza-
tion of network resources. This keeps all the options open, be-
cause it is generally difficult to articulate the network require-
ments a priori—at least in a strict mathematical sense. Nev-
ertheless, the resource bundle can include certain fundamen-
tal network performance constraints (e.g., that the M metrics
should be better than in previous network generations).

PARETO OPTIMAL OPERATING POINTS

The shape of the attainable objective set G depends on the ob-
jective functions and the resource bundle X , but it is usually
a compact set with the property that g ∈ G implies cg ∈ G
for all c ∈ [0, 1] (i.e., the performance can be uniformly de-
graded). The set G can be convex or non-convex. Although
Property 1 expresses that there is no global optimum, most
points in G are strictly suboptimal. In fact, any point in the
interior of G can be discarded because there exist other points
in G that are more preferable with respect to allM objectives.
The remaining points belong to the Pareto boundary.

Definition 1 (Pareto boundary). The strong Pareto boundary,
∂G, consists of all points g ∈ G for which there does not exist
any g′ ∈ G \ {g} with g′m ≥ gm for m = 1, . . . ,M .

The strong Pareto boundary consists of the attainable op-
erating points that cannot be objectively dismissed, because

g1(x)

g2(x)

g1(x)

g2(x)

Strong
Pareto

boundary
∂G

uutopia uutopia

Weak
Pareto

boundary

Strong/weak
Pareto
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Fig. 2. Illustration of the Pareto boundary, which is either the
complete upper boundary of G (left) or a subset of the upper
boundary (right). The unattainable utopia point is also shown.

none of the objectives can be improved without degrading
other objectives. Evidently, any point that is not on the strong
Pareto boundary is suboptimal because there exist other op-
erating points that are better or at least as good for every ob-
jective. The strong Pareto boundary is as close to global opti-
mality as one can get in multi-objective optimization; the op-
erating points in ∂G are mutually unordered and can only be
compared by subjective means. Each point g ∈ ∂G describes
a particular tradeoff between the M objectives. Hence, the
Pareto boundary describes the set of (Pareto) efficient poten-
tial operating points from which we, as network designers,
should select the one that is subjectively preferable to us.

The strong Pareto boundary is a subset of the upper
boundary of G. The complete upper boundary is referred to
as the weak Pareto boundary and also contains points were
some of the objectives (but not all) can be improved without
degrading other objectives. This is illustrated in Fig. 2, where
the strong Pareto boundary either equals the complete upper
boundary (left set) or is a strict subset thereof (right set).
Fig. 2 also shows the utopia point, which is defined as

uutopia = [u1 . . . uM ]T =

maxx∈X f1(x)
...

maxx∈X fM (x)

 . (3)

This is the ideal operating point that simultaneously maxi-
mizes all M objectives. If uutopia ∈ G, the MOOP is trivial
because the strong Pareto boundary consists of only the utopia
point, ∂G = {uutopia}, and it is the unique global optimum.
Property 2. Any MOOP with multiple conflicting objective
functions is nontrivial in the sense that uutopia 6∈ G and, con-
sequently, there is no global optimum.

Single-objective optimization problems are MOOPs with
M = 1 and are thus trivial from the MOO perspective.

Since the Pareto boundary consists of all tentative effec-
tive operating points, we need to find the network parameters
(i.e., the resource utilizations) that attain these points.
Definition 2 (Pareto optimal point). A point x∗ ∈ X in the
resource bundle is a Pareto optimal point if g(x∗) ∈ ∂G.

The mapping from a Pareto optimal point x∗ to the Pareto
boundary is given by the vector-valued multi-objective func-
tion g(x∗) and is, hopefully, given in closed form. The in-
verse mapping is, on the other hand, hard to derive in most



cases. The multi-objective function might not be bijective,
which means that multiple points in X can give exactly the
same objective point. This happens frequently when transmit-
ting from multi-antenna arrays, where the beamforming coef-
ficients are only unique up to a common phase rotation [6].

SOLVING A MOOP BY VISUALIZATION

In practice, we would like to go beyond the Pareto boundary
and actually solve the MOOP, in the sense of selecting a single
Pareto optimal point x∗ and its corresponding operating point
g(x∗) ∈ ∂G. To this end, we need to bring in the subjective
preference of the network designer to compare different oper-
ating points at the Pareto boundary. This is not as simple as it
might seem, because neither the Pareto boundary ∂G nor the
objective set G are known beforehand. Simple closed-form
expressions are seldom available. In fact, one needs to spend
considerable computational resources on learning the objec-
tive set. For example, one can characterize G by computing
a discrete set of sample points, which enables the network
designer to visualize the different possibilities and make an
informed decision. This is known as the a posteriori method,
because the network designer formulates its subjective pref-
erence after the numerical computations have taken place [2].

We describe two approaches to compute sample points:

1. Traverse the resource bundle X by computing g(x)
over a finite grid of x ∈ X . For example, if 0 ≤ xm ≤
1 then we can limit ourselves to the 6 discrete values
xm ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. If the same number
of discrete values are taken for all D resource variables
in X , we have 6D grid points to consider.

2. Traverse the strong Pareto boundary ∂G by searching
for the outermost point in G in different directions. The
search directions can, for example, be represented by
vectors v = [v1 . . . vM ]T that point out (nonnegative)
geometric directions from the origin (recall that 0 ∈ G
by definition). Each search corresponds to solving the
single-objective optimization problem

maximize
x,λ

λ (4)

subject to gm(x) ≥ λvm, m = 1, . . . ,M,

x ∈ X ,

which is a referred to as a weighted Chebyshev problem
in the MOO literature [3–6] (in fact, it is the epigraph
form of it [17]). If λ∗ is the optimal value for a given v,
we can be sure that λ∗v ∈ G and that this point lies on
the weak Pareto boundary (upper boundary). If needed,
one can guarantee to attain the strong Pareto boundary
by slightly modifying (4); see [3]. By solving (4) for
a finite set of search directions (e.g., equally spaced in
the angular sense), one can obtain a set of sample points
that characterizes the weak/strong Pareto boundary.

g1(x)

g2(x)

g1(x)

g2(x)

v1

v2

v3

Approach 1 Approach 2

Search
directions

Non-uniform
cloud of sample 

points in G
Sparse

sample points

Fig. 3. Illustration of the two approaches to visualize the ob-
jective set G by computing sample points.

These two approaches have their respective pros and cons.
The first approach is computationally efficient, assuming that
the function values g(x) are easy to evaluate. The main limit-
ing factor might be the memory storage, since the number of
samples scales exponentially with D. Extensive postprocess-
ing might also be required because most sample points will
be in the interior of G and can be discarded since there are
other samples that are better with respect to all M objectives.
The resource bundle can sometimes be parameterized more
efficiently by exploiting the objective functions. This can be
used to improve the resolution of the objective set G using
fewer samples. For example, transmit beamforming can be
represented by one parameter per user [6, Section 3.2], which
removes redundancy in multi-antenna wireless communica-
tions where the number of beamforming coefficients equals
the number of users times the number of transmit antennas.

The second approach guarantees a high resolution be-
cause every sample point lies on the weak Pareto boundary.
The downside is the computational complexity, which is pro-
portional to the complexity of solving the search problem in
(4). Indeed, this approach can only be utilized if there is a
tractable way of solving (4). This is the case whenever there
exists an efficient way to make a membership test; that is, to
determine if a given point g̃ ∈ RM belongs to the objective
set or not. We elaborate on this in the box “Finding the Pareto
Boundary by Bisection” below.

Fig. 3 illustrates the two approaches. The first approach
gives a cloud of sample points that provides a sense of the
shape of G: is it convex, what are the numerical ranges, and
are the objectives strongly/weakly conflicting? The density of
points is non-uniform and it is not guaranteed that any sample
point is exactly on the Pareto boundary. In contrast, the sec-
ond approach gives a sparse set of sample points that are ex-
actly on the Pareto boundary. Each point is found by search-
ing in a certain direction (e.g., v1, v2, v3) from the origin.

By looking at visualizations of the Pareto boundary, such
as the ones in Fig. 3, the network designer can understand
the fundamental properties and tradeoffs between conflicting
objectives. Visualization is a powerful tool that supports the
network designer in making an informed decision. This is
the essence of the a posteriori method. Since it is difficult
to visualize more than three dimensions at a time, one needs
to limit the granularity to a few objectives at a time. This
issue can be treated in an iterative fashion where the network



designer makes preliminary decisions (e.g., regarding the pre-
ferred minimal level for different objectives) which replaces
the current resource bundle X with a smaller set X̃ ⊂ X .
This interactive process continues until the network designer
is satisfied—a type of psychological convergence [4].

FINDING THE PARETO BOUNDARY BY BISECTION

The single-objective optimization problem in (4) finds
the weak Pareto boundary in the direction v from the
origin. This problem can be solved by checking if a
series of points, each denoted µ = [µ1 . . . µM ]T ∈
RM , belong to the attainable objective set G or not. This
is determined by the membership test

find x ∈ X (5)
subject to gm(x∗) = µm.

The complexity of this feasibility problem is a baseline
for other optimization problems that involve the same
resource bundle and objective functions—if the mem-
bership test is computationally intractable, there is lit-
tle chance that any meaningful problem formulation is
practically solvable. Fortunately, there are many cases
when the membership test is efficiently solvable; for ex-
ample, it is a convex problem in many beamforming de-
sign problems for cellular networks [6].

Equipped with a tractable membership test, we can
solve (4) by first defining a range [λmin, λmax] of val-
ues for λ, such that λminv ∈ G and λmaxv 6∈ G. The
lower limit can be λmin = 0, since the origin is always
attainable. The upper limit is selected for the MOOP
at hand, for example, by exploiting the utopia point (if
it is known) or by relaxing the problem to find other
unattainable points. The following algorithm solves (4):

Input: Range [λmin, λmax] and accuracy ε > 0
while λmax − λmin > ε do

Make membership test (5) for µ = λmax+λmin

2 v
if µ ∈ G then

λmin ← λmax+λmin

2
else

λmax ← λmax+λmin

2
end if

end while
Output: Attainable point a = λminv

This is a classical bisection algorithm that cuts the
range [λmin, λmax] in half in each iteration [17]. Bisec-
tion has fast convergence and the distance between a
and the Pareto boundary is below ε‖v‖ for given ε>0.

SOLVING A MOOP BY SCALARIZATION

An alternative way to solve MOOPs in practice is the a priori
method where the network designer articulates preferences
before any computations take place. The purpose is to find

0 1 2 3 4 5
0

1

2

3

4

Max Product goal

Max Chebyshev goal

ϑ

Min distance 
to ϑ

g1(x)

g2(x)

Max Sum goal

Fig. 4. Illustration of the Pareto optimal operating points
achieved by scalarization using common goal functions.

the operating point g ∈ G that satisfies these preferences as
well as possible. In particular, the designer can specify a goal
function f : RM → R that for any conceivable operating
point g (attainable or not) produces a scalar describing how
preferable that point is (large value means high preference).
The goal function describes a certain subjective tradeoff be-
tween the objectives and thus imposes an order on the vectors
in the objective set G. Consequently, the MOOP in (1) is con-
verted into the single-objective optimization problem

maximize
x

f
(
g1(x), g2(x), . . . , gM (x)

)
(6)

subject to x ∈ X .
This conversion is called scalarization and the solution is a
weak, and usually also strong, Pareto boundary point. In
contrast to the conventional approach of having a sole perfor-
mance objective and expressing other potential objectives as
constraints, (6) combines the M objectives into a scalar goal
function and has no additional constraints. It is indeed possi-
ble to impose constraints on the acceptable values for certain
objectives also in the scalarization case, but it is not required.

The goal function can take many forms and a variety of
classes of functions can be found in the literature; see [3–6].
We describe four important goal function classes. The most
common goal function might be the weighted sum

fsum(·) =

M∑
m=1

wmgm(x) (7)

wherew1, . . . , wM are positive weights that specify the prior-
ity of each objective; the priority of the mth objective grows
by increasing the corresponding weight wm. One should be
careful when interpreting the relative priorities, because the
objectives can have different scales, units, and couplings.

Similarly, one can consider the weighted product

fproduct(·) =

M∏
m=1

(
gm(x)

)wm (8)

where the weights are defined as before but act differently.
Note that (8) is the (weighted) geometric mean, while (7) is



the (weighted) arithmetic mean. Generally speaking, the ge-
ometric mean is better at comparing objectives with different
numerical ranges, because the relative scaling has no impact.

The weighted Chebyshev formulation, also known as the
weighted max-min formulation, played a key role when we
computed sample points on the Pareto boundary in the a pos-
teriori method. The weighted Chebyshev goal function is

fchebyshev(·) = min
1≤m≤M

gm(x)

wm
. (9)

This scalarization is equivalent to (4) if we write it on epi-
graph form [17] and select the weights w1, . . . , wM as wm =
vm for allm. Hence, this scalarization searches for the Pareto
boundary in the direction [w1 . . . wM ]T from the origin.

Alternatively, the network designer can specify a prefer-
able operating point ϑ ∈ RM (e.g., the utopia point ϑ =
uutopia). The distance goal function is defined as

fdistance(·) = −‖ϑ− g(x)‖ (10)

and measures the distance from the preferable point in some
appropriately selected norm ‖·‖. The norm ‖ϑ−g(x)‖ should
be small (preferably zero), thus the negative sign is used to
achieve a goal function that is to be maximized.

The final operating point is determined by the choice of
goal function. Interestingly, the computational complexity
also varies with the goal function; the scalarized problem in
(6) may be convex (i.e., solvable in polynomial time) for some
classes of functions, while other classes give non-convex
problems with exponential complexity—or even worse. For
example, [11] proved that transmit beamforming optimiza-
tion in cellular networks is (quasi-)convex for the weighted
Chebyshev goal function and strongly NP-hard for most other
goal functions. This result has general implications.

Property 3. The weighted Chebyshev goal function is the
safest choice in terms of computational complexity; if there
exists a tractable membership test, it can be solved efficiently
as described in “Finding the Pareto Boundary by Bisection”.

Since goal functions are inherently subjective, no choice
is better than the others in terms of optimality. Property 3
inspired [6] to propose what is known as the pragmatic ap-
proach to resource allocation: select the weighted Chebyshev
goal function (due to its tractable complexity) and exploit the
weights to adapt to the needs of the network designer.

The operating points attained by different scalarizations
are illustrated in Fig. 4, for a scenario where the attainable
ranges are different for the two objectives. The goal functions
in (7)–(10) are considered for w1 = w2 = 1. Let f∗ denotes
the optimal function value in (6), which of course is different
for each goal function. The optimal operating point with the
sum goal function lies on the level curve fsum(·) = f∗, which
is the red line in Fig. 4. Similarly, fproduct(·) = f∗ gives
the blue parabolic level curve of the product goal function.
These level curves touch the objective set G in unique Pareto

boundary points, which are the optimal operating points for
the respective scalarized problems. As described earlier, the
Chebyshev goal function searches on a line from the origin.
For w1 = w2 = 1 this is the line where the two objectives
have equal values. If there is a preferable operating point ϑ 6∈
G as in Fig. 4, (6) provides the operating point that minimizes
the distance to G (the Euclidean distance is used in Fig. 4).

The function classes in (7)–(9) are parameterized by the
weights w = [w1, . . . , wM ]T . Different weight selections
give different Pareto optimal points when solving (6). By
varying w over the setW = {w : wm ≥ 0 ∀m, ∑m wm =
1} ∈ RM of positive weights that sum up to one, we can
attain the whole Pareto boundary or a subset thereof, depend-
ing on the function class [4]. Since each scalarization in (6) is
a single-objective optimization problem, it is equipped with
conventional Karush-Kuhn-Tucker (KKT) optimality condi-
tions [17]. By considering all w ∈ W , these can be extended
to a joint set of optimality conditions for all points achieved
by the function class [5]. These optimality conditions de-
scribe the structure of the resource utilizations that achieve
the Pareto boundary; for example, it was utilized in [6, Sec-
tion 3.2] to parameterize any efficient transmit beamforming.

Finally, we note that game theory provides an alternative
way to select operating points from the Pareto boundary, by
specifying the rules of a game instead of a goal function [18].
These techniques are mainly for systems with separate objec-
tives that compete for shared resources, while single-operator
networks typically have dedicated resources.

CASE STUDY: DESIGNING MASSIVE MIMO SYSTEMS

We exemplify the usefulness of MOO by a case study. The
goal is to visualize tradeoffs between conflicting 5G objec-
tives and describe how the framework can be used to acquire
new insights and prove old heuristic observations. In recent
years, coordinated multipoint (CoMP) techniques have shown
the potential to greatly improve the area rates in cellular net-
works. This is achieved by deploying antenna arrays at base
stations (BSs) and apply a coordinated space division mul-
tiple access (SDMA) scheme across the network [6, 19–21].
Unfortunately, CoMP is difficult to implement since the coor-
dination signaling is limited [22], the signal processing com-
plexity increases drastically [11], and the performance gains
are not robust to the inter-user interference caused by having
imperfect channel state information (CSI) [20].

The concept of massive MIMO has gained traction since it
might eliminate the CoMP issues listed above [23–26]. Mas-
sive MIMO is based on the idea of deploying large arrays with
unconventionally many active antennas at the BSs and serve
a much smaller number of users; for example, hundreds of
antennas that serve several tens of users. One would imag-
ine that adding more antennas and users into a system would
make CoMP even more difficult to implement, but the beauty
of massive MIMO is that this is not the case [23]. The ex-
cessive number of antennas brings robustness to imperfect
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Fig. 5. Illustration of the scenario in the case study: A cellular
network with N antennas per BS and K users per cell.

CSI, makes low-complexity signal processing close to opti-
mal [24], and allows for simple implicit intercell coordina-
tion [25]. Massive MIMO systems are even robust to the dis-
tortions caused by hardware imperfections [26].

In this case study, we strive to optimize the downlink
transmission of a massive MIMO system to balance M = 3
conflicting objectives: high average user rates, high average
area rates, and high energy efficiency. The cellular network
that we consider has 16 cells, each consisting of a BS with
N antennas and K single-antenna users. The bandwidth is
B = 10 MHz, the emitted power per BS is denoted P Watt
(W), and σ2 = 10−13 W is the average noise power.

Each cell is a square of size 250×250 meters (i.e., the area
isA = 0.252 km2) and we apply classic wrap-around to avoid
edge effects; the scenario is shown in Fig. 5. The K users are
uniformly distributed in the cell, with a minimum distance of
35 meters. For a randomly picked user, let λserving be the chan-
nel variance from the serving BS and Pλintercell be the average
intercell interference power. We are concerned with average
behaviors and define the expectations Λ1 = E{ 1

λserving
} and

Λ2 = E{λintercell
λserving

} for later use. Using the same 3GPP pathloss
model as in [16], we get Λ1 = 1.72 · 109 and Λ2 = 0.54.

The optimization/resource variables in this case study are
the number of BS antennas N , the number of users K, and
the transmit power P per cell. The resource bundle is

X =

[K N P ]T :
1 ≤ K ≤ N

2 ,
2 ≤ N ≤ Nmax,
0 ≤ P ≤ NPmax

 (11)

where Nmax = 500 is the maximal number of antennas that
can fit at each BS, Pmax = 20 W is the maximal emitted
power per BS antenna, and the constraint K ≤ N

2 makes sure
that we have many more BS antennas than active users.

Next, we define the average user rate and the total power
consumption per cell. For simplicity, we assume that each
BS has obtained perfect CSI for its users and applies zero-
forcing precoding, which is a signal processing technique that
cancels out intracell interference by beamforming and adapts

the power allocation to guarantee the same rate to each user.
Similar to [16], the average user rate can be shown to be

Raverage = B

(
1− K

Υ

)
log2

(
1 +

P
K (N −K)

σ2Λ1 + PΛ2

)
, (12)

under the assumption that each user knows its useful channel
and treats intercell interference as noise. The prelog-factor
(1− K

Υ ) accounts for the necessary overhead for channel ac-
quisition and Υ = 1000 is the number of channel uses that the
channel stays fixed. It is selected as Υ = Bcoherenceτcoherence,
where Bcoherence = 200 kHz is the coherence bandwidth and
τcoherence = 5 ms is the coherence time. Looking inside the
logarithm of (12), P

K is the average transmit power per user,
N − K is the effective array gain, and σ2Λ1 + PΛ2 is the
average degradation from noise and intercell interference.

Based on the models and the practical numbers in [16,27,
28], the total power consumption per cell is given by

Ptotal =
P

η
+NCN +KCK +

Cprecoding

L
+ C0 (13)

where η = 0.31 is the efficiency of the power amplifiers at the
BS, CN = 1 W is the hardware power consumed per trans-
mit antenna, CK = 0.3 W is the hardware power per user,
and C0 = 10 W is the static hardware power. In addition,
Cprecoding = 3K2N B

T is the floating-point operations per sec-
ond (flops) required to compute zero-forcing precoding, while
L = 12.8 Gflops/W is a typical computational efficiency.

We are now ready to define our three objective functions:

g1(x) = Raverage [bit/s/user] (14)

g2(x) =
K

A
Raverage [bit/s/km2] (15)

g3(x) =
KRaverage

Ptotal
[bit/J] (16)

where x = [KN P ]T are the optimization/resource variables.
The objective g1(x) is the average user rate, g2(x) is the av-
erage area rate, and g3(x) is the energy efficiency.

DESIGNING MASSIVE MIMO BY MOO FRAMEWORK
We have now defined a MOOP of the type in (1). The resource
bundle is given by (11) and the three objectives are defined in
(14)–(16). We now describe how the MOO framework can
be used to study tradeoffs between these objectives, with the
purpose of deriving new insights and confirming old beliefs.

The tradeoff between the average user rate and the EE
is shown in Fig. 6. The objective set with respect to these
two objectives was generated by the second approach de-
scribed earlier (i.e., searching for the Pareto boundary in
different directions). Fig. 6 shows that these two objectives
are aligned up to the point g1 = 20.4 Mbit/s/user and
g3 = 11.1 Mbit/J, where the maximal EE is achieved. The
objectives are then conflicting, because the user rates can only
be further increased by making drastic sacrifices in the EE.
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Fig. 6. Visualization of the tradeoff between two objectives
in the case study: average user rate and energy efficiency.
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Fig. 7. Visualization of the tradeoff between two objectives
in the case study: average area rate and energy efficiency.

Another tradeoff is illustrated in Fig. 7, where the aver-
age area rate and the EE are compared. These objectives are
also aligned until the EE reaches its maximum value. How-
ever, one can increase the area rate beyond this point with
only minor losses in EE. By noting that g2(x) = K

A g1(x)
and comparing with the previous figure, this obviously means
that the area rate is improved by transmitting to more users
(i.e., having a larger K) and not by increasing the rate per
user. This conclusion is supported by Fig. 8, which shows the
three-dimensional objective set with respect to all objectives.

Fig. 8 reveals that high area rates are only achievable
when the rate per active user is low, which means that we
serve many user devices in parallel. In contrast, high rates
per user is only achievable by having fewer active users.
High energy efficiency is possible when the rate per user
is small. These different operating points are achieved by
different resource utilizations x ∈ X ; thus, the number of
antennas/users are different and the signal processing related
to precoding changes. This proves the otherwise heuristic
belief that the network architecture must be flexible (e.g., in
terms of switching off antennas and precoding adaptation)
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Fig. 8. Visualization of the tradeoff between all three objec-
tives in the case study: average user rate, average area rate,
and energy efficiency.

if different operating points should be attainable in different
traffic cases.

The discussion above is typical for the a posteriori
method; we analyzed the shape of the Pareto boundary and
drew conclusions on which operating points that are prefer-
able to us. If we would instead utilize the a priori method,
then we need to specify a goal function. This can be done
by picking any of the function classes described in (7)–(10)
and selecting the corresponding parameters (e.g., weights)
to describe our subjective goals. To aid us in this process,
suppose we know the utopia point uutopia (defined in (3))
in advance. This point contains the maximal value for each
objective, if we would focus completely on it. If the three
objectives are equally important to us, it makes sense to nor-
malize their numerical ranges. This is achieved by setting
w = [ 1

u1

1
u2

1
u3

]T in the weighted sum goal, w = [1 1 1]T

in the weight product goal, and w = uutopia in the weighted
Chebyshev goal formulation. The corresponding operating
points when solving the scalarized problem in (6) are shown
in Fig. 6 and Fig. 7. The shape of the region has a great
impact on the spread of the operating points, but different
weights still give different operating points (as discussed ear-
lier). The utopia point uutopia = [u1 u2 u3]T is also shown in
these figures. We observe that it is far outside the attainable
objective set in Fig. 6, since the two objectives are strongly
conflicting. On the contrary, the utopia point is quite close to
the objective set in Fig. 7, where the conflict is rather mild.

Finally, we remark that the a posteriori and a priori meth-
ods can be combined. The network architecture can, for ex-
ample, be designed by studying the shape of the attainable
objective set and making sure that the network can adapt and
achieve different operating points at the Pareto boundary at
different times. The system designer can then formulate mul-
tiple goal functions that are exploited for efficient real-time
network adaptation, based on current traffic load, service re-
quirements, and capability of the user devices.



CONCLUSIONS AND FUTURE DIRECTIONS

The design expectations on 5G wireless networks cannot be
properly articulated by a single performance objective. There
are many conflicting objectives, such as improving the peak
user rates, average area rates, and energy efficiency. The
network design thus calls for multi-objective optimization,
which is rigorous framework for studying and solving design
problems with multiple objectives. This article provided a
survey on this topic. There is no objectively optimal solu-
tion to this type of problems, but there are two main methods
to find subjectively optimal solutions that fit the needs of the
network designer. The a posterior method computes sample
points on the Pareto boundary—the set of tentative operating
points where no objective can be improved without degrad-
ing another objective. The sample points are used to visualize
the Pareto boundary for the network designer, who can then
make well-informed design decisions. Alternatively, the net-
work designer can specify a goal function that describes the
acceptable tradeoffs between objectives and infers an order on
the attainable operating points. One can then maximize this
tradeoff by solving a conventional optimization problem and
thereby obtain the most suitable Pareto boundary point.

We also provided a case study on network dimension-
ing of cellular networks that allows for massive MIMO de-
ployment. This example illustrates our vision of how the
MOO framework can be utilized to balance conflicting per-
formance objectives when designing future wireless commu-
nication networks. While the analytic tools provided by MOO
are well-established, the applications to communication net-
works are greatly unexplored. A particular research challenge
is to formulate MOOPs with a modeling granularity that al-
lows us to answer fundamental design questions related to
how the system can efficiently manage the heterogeneous 5G
characteristics described in the introduction. To this end, the
models must capture the main practical propagation charac-
teristics, be robust to hardware imperfections and uncertain
model parameters, and allow for optimization of the signal
processing techniques. All of this is to be done while making
the basic optimization operations (e.g., the membership test
described above) computationally tractable.
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