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Abstract—We study the design of portfolios under a minimum
risk criterion. The performance of the optimized portfolio relies
on the accuracy to the estimated covariance matrix of portfolio
asset returns. For large portfolios, the sample size is often
of similar order to the number of assets, and the traditional
sample covariance matrix performs poorly. Additionally, financial
market data often involve outliers and exhibit heavy-tails, which,
if not correctly handled, may further corrupt the covariance
estimation. We aim to address these problems by studying the
performance of a hybrid covariance matrix estimator based
on Tyler’s robust M-estimator and on Ledoit-Wolf’s shrinkage
estimator. Employing recent results from random matrix theory,
we develop a consistent estimator of a scaled version of the
portfolio risk, based on which, the shrinkage intensity is directly
optimized to minimize the risk. Our portfolio optimization
method is shown via simulations to outperform existing methods
both for synthetic data and for a real market data set from Hang
Seng Index.

I. INTRODUCTION

The theory of portfolio optimization is generally associated
with the classical mean-variance optimization framework of
Markowitz [1]. The pitfalls of mean-variance analysis are
mainly related to its sensitivity to the estimation error of
the means and covariance matrix of the asset returns. It is
argued [2] that estimates of the covariance matrix are more
accurate than those of the expected returns. Thus, many stud-
ies concentrate on improving the performance of the global
minimum variance portfolio (GMVP), which involves only the
covariance matrix estimate.

The most often used covariance estimator is the well-known
sample covariance matrix (SCM). However, it shows good per-
formance only when the number of samples n is much larger
than the dimension of the matrix N, or when the underlying
multivariate distribution is known to be Gaussian. However,
in financial data analysis, often neither of these assumptions
holds true. More specifically, covariance estimates for portfolio
optimization commonly involve few historical observations of
sometimes up to a thousand assets. In addition, the return
observations often exhibit heavy-tails and contain outliers [3],
which strongly degrade the performance of SCM [4].

The field of robust covariance estimation intends to deal
with samples that are non-Gaussian or contain outliers [5—
8]. However, classical robust covariance estimators generally
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require 7 > N and do not perform well when n ~ N.
Recent works have therefore considered robust estimation
in the n ~ N regime [4,9,10]. In these papers, a hybrid
covariance estimator based on Tyler’s robust M-estimation [6]
and Ledoit-Wolf’s shrinkage approach [11] was proposed. We
shall refer to this “shrinkage-Tyler” estimator as ST for short in
the remainder. It is capable to deal with the problems that are
high dimensional, non-Gaussian and contain outliers. In [12],
the authors show, by means of random matrix theory, that, in
the large n, N regime, the estimators [4, 9] are essentially the
same and can be analyzed thanks to their proximity to well
known random matrix models. An application to Frobenius-
norm distance minimization is provided to optimally select the
shrinkage parameter in [9, 12]. However, this is suboptimal
in terms of minimizing the portfolio risk under the GMVP
framework.

This paper aims at designing a novel covariance estimation
technique for optimizing large portfolios in the presence of
heavy-tailed data or outliers, and under practical conditions in
which the number of observed samples is of similar order
to the number of assets in the portfolio. This covariance
estimation approach is based on the ST estimator with risk-
minimizing shrinkage parameter.

To facilitate our new estimator design, we first characterize
the out-of-sample performance of minimum variance portfo-
lios based on ST by analyzing the convergence of the achieved
realized risk in the double limit regime, i.e., N,n — oo,
with ¢y = N/n — ¢ € (0,00). We subsequently provide
a consistent estimator of the realized portfolio risk (or, more
precisely, a scaled version of this) that is defined in terms of
only the observed returns. Based on this, we obtain our risk-
optimized ST covariance estimation, and thus our optimized
portfolio design.

The proposed portfolio selection is shown to achieve supe-
rior performance over other competing methods in minimizing
the realized portfolio risk under the GMVP framework. These
results are established through Monte Carlo simulations with
samples distributed within the elliptical family, as well as
through an example real data test using historical (daily) stock
returns from the Hang Seng Index (HSI).

II. DATA MODEL AND PROBLEM FORMULATION

We consider a time series comprising logarithmic returns
of N financial assets with n independent and identically



distributed (i.i.d.) observations. It is generated by the following
model:

1
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where p € RY is the mean vector of the asset returns, 7;
is a real, positive random variable, Cy € RN*N g positive
definite and y; € RY is a zero mean unitarily invariant random
vector with norm ||y||? = N. It is assumed that p and Cn

are time-invariant. Denote z, = C%y;. We assume that /7,
and z; are statistically independent. The model (1) for x; is
quite general, embracing in particular the class of elliptical
distributions, including the multivariate normal distribution,
exponential distribution as well as the multivariate Student-
T distribution as special cases. The capability of modeling
heavy-tails makes this appealing in simulating financial stock
return data [13]. It is worth mentioning that in reality the
observed return x; may not be i.i.d.; however this assumption
leads to tractable design solutions, and it is a commonly used
approximation [14].

Let h € RY denote the portfolio selection, i.e., the vector
of asset holdings in units of currency normalized by the
total outstanding wealth, such that hT1y = 1. Then the
portfolio variance (or risk) over the investment period of
interest is given by o%(h) = hTCyh. Accordingly, the
GMVP selection problem can be formulated as the following
quadratic optimization problem with a linear constraint:

m&n o?(h)  st. W71y =1, (2)
-1
The solution to (2) is hguvp = chgi,ll]I, and the corre-
N
sponding portfolio risk is: M
1
2
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Here, (3) represents the theoretical minimum portfolio risk
bound, attained upon knowing the true covariance matrix Cp
exactly. In practice, Cp is unknown, and instead we form an
estirpate, denoted by C ~. Thus, the GMVP selection based

on Cy is given by
B Cylly
GMVP = —— = —7 -
17CHl1y

The quality of flGMvp, implemented based on the in-sample
covariance prediction Cp, can be measured by its achieved
out-of-sample or realized portfolio risk:

15CH'ChCil 1y
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The goal is to construct a good estimator Cy, and conse-
quently heyvp, which minimizes this quantity.

Note that, for the naive uniform weighting portfolio di-
versification rule, h = %1 ~- This is equivalent to setting
C ~ = Iy, and yields the realized portfolio risk: lfTV?Vi];[lN
Interestingly, this extremely simple strategy has been shown
in [15] to outperform numerous optimized models and will

serve as a benchmark in our work.

III. NOVEL COVARIANCE ESTIMATOR AND PORTFOLIO
DESIGN FOR MINIMIZING RISK

A. Tyler’s robust M-estimator with linear shrinkage

Consider the ST introduced in [4] and [10], which ap-
plied the Ledoit-Wolf shrinkage method to Tyler’s robust
M-estimator [6]. This estimator accounts for the scarcity of
samples, even allowing N > n, and exhibits robustness to
outliers or impulsive samples, e.g., elliptically distributed data.
It is defined as the unique solution to the following fixed-point
equation for p € (max{0,1 — cy'}, 1]:

Csr(p) = (1-9)5 "

where %, =x, — L 30 | x;.

_ Since with probability one, the x; are linear independent,
Csr(p) is unequivocally defined with probability one [4,
Theorem III.1]. The corresponding GMVP selection is

BST(P) — Cg% (p)lN
15Csr(p)1n

with realized portfolio risk:

_ %G (0)CnCir(p)ly
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Our goal is to optimize p such that (5) is minimum. How-
ever, this cannot be done directly since it involves Cpr, which
is unobservable. Also note that the naive approach of simply
replacing C with Cgr(p) in (5) would yield the so-called
“in-sample risk”, which underestimates the realized portfolio
risk, leading to overly-optimistic investment decisions [16].

We tackle this problem by obtaining a consistent estimator
for a scaled version of the realized risk (5) as n and N go to
infinity together. Classical asymptotic theory for time series
analysis and mathematical statistics typically deals with the
case of N fixed and n — oo. However, a double-limiting
condition is of more relevance for large portfolio problems,
where n is comparable to N. To this end, we first derive a
deterministic asymptotic equivalent of (5) and then provide a
consistent estimator based on this.

o* (hsr(p))

&)

B. Asymptotic deterministic equivalence of the realized port-

folio risk
For our asymptotic analysis, we assume the following:

Assumption 1.

a. As N,n — oo, N/n=cy — c € (0,0);

b. The positive random scalars 74, t = 1,...,n are i.i.d., and
E[Tl],E[%] < 005

c. The spectral norm of Cy satisfies limsup y ||Cn || < oo

d. Denoting A1 < ... < Ay the ordered eigenvalues of Cy,
N E vazl 8, satisfies vy — v weakly with v # &
almost everywhere, where 8, is the Dirac measure at x.
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We also introduce some further definitions. First denote

k(p) = ﬁ. Define o as the unique positive solution
to:

1
o = —ftr
n

k(p) -
O (7 ey O 1) ]

with ~ the unique positive solution to the equation in

1:/;V
o+ (1= p)t

2
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The following theorem presents our first key result: a deter-
ministic characterization of the asymptotic realized portfolio
risk achieved with Cgr(p).

(dt).

We also define

1. C%<( k(p)

p= 7T k(7))

Theorem 1. Let Assumption 1 hold. For € € (0, min{1,c™"}),
define R. = [e + max{0,1 — ¢ '}, 1]. Then,

sup |o
PER.

where &2 (flgT(p)) is defined in (6) at the top of this page.

The proof of Theorem 1 draws from the asymptotic prop-
erties of the ST estimator developed in [12], and follows a
similar methodology to that in [16] to derive the asymptotic
equivalent of the realized risk. The key challenges lie in first
obtaining similar asymptotic properties in [12] with non-zero
mean samples, and second, in contrast to [16], adopting the
ST estimator instead of the SCM to the risk function, to study
the convergence of the risk in the double limit. The details
will be included in a full version of this paper.

Remark 1. In Theorem 1 as well as the subsequent results,
the set R. excludes the region [0,¢). This follows the same
reasoning as that in [12]. The behavior of any solution CST(O)
to (4) in the large N, n regime remains difficult to handle with
our proof technique.

C. Consistent estimation of the realized portfolio risk

Theorem 1 enables us to analyze the convergence of the
realized portfolio risk in the double-limit regime based on the
aforementioned ST. In order to calibrate the shrinkage param-
eter p for optimum GMVP performance, only the available
sample data and certainly not the unknown Cp can be used.
Denote x = [ tv(dt). Based on observable data only, we can
obtain an estimator of a scaled version of the realized portfolio

risk, o2(hgr(p))/k. We begin with the following lemmas that
provide consistent estimators of v/« and «/k.

Lemma 1. Under Assumption I,

sup Wsc - ’Y/"ﬂ =% 0,
PER.

where

&sc =

X
CN ‘B‘Z t
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and B = {t : ||x¢||? > &} with € > 0 sufficiently small.

The proof of Lemma 1 is largely based on [12, Theorem
1]. The requirement of ¢ € I3 is essential. As we adapt the ST
to the non-zero mean data by subtracting the empirical mean
in (4), the asymptotic results in [12, Theorem 1] need to be
treated carefully. They may not hold true for some Z, that
contain 7; which go to zero in the limit.

Lemma 2. Under Assumption I,

sup |dse — /K| 250,
PER.
where
) fueetr [Iv = pCt ()|
Qsec = 7 N
k(o) (% — %o [y = pC3h0)])
and I%(p) = 717(1:5)%.

Proof details are omitted here due to space limitation.

Lemma 1 and Lemma 2 provide consistent estimators of
scaled v and «, with a scale factor . They play an important
role in developing a consistent estimator of 2 (hgr)/x, which
is provided in the following theorem.

Theorem 2. Under Assumption I,

h 1 n a.s.
sup (6% (hsr(p)) - 02(hST(p))‘ =50, (M
PER. K
where
52 (hsr(p)= (e uch(p)? Vst (p )(CST(p)_pI@Cs*Tl(p)lN.

k(p)se (1% Cst(p)1n)?

The proof follows by virtue of the asymptotic equivalence
(8) at the top of the next page (derived in the full paper), and
by substituting k(p), 4sc and dr. for k(p), v and « on the left
hand side of ().

From our derivation, we can only obtain a consistent estima-
tor of a scaled version of the realized risk, i.e., 02(hgr(p))/k-
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Since r is independent of p, the same p minimizes o> (hst(p))
and o2 (hgt(p))/k.

Remark 2. As a corollary of Theorem 2, it can be shown that
|02 (hsy(p°))—0? (hsr(p*))| 2% 0 where p° is the minimizer
of 62.(hst(p)) and p* is the minimizer of o*(hgr(p)).

The problem of obtaining the best asset allocation, as
measured by the minimum realized portfolio risk, is now
reduced to minimizing 62, (hgr(p)) with regard to p. This
can be done with a simple numerical search.

D. Summary of the proposed portfolio optimization algorithm

Given n past return observations of N assets, our proposed
algorithm to construct a portfolio with minimal risk involves
three main steps:

1) Compute the optimized shrinkage parameter via a numer-

ical search

p° = arg min 6§C(ﬁST(P))'
pE (max{O,l*C;jl }.1]

2) Form the risk-minimizing ST estimator CgT. It is the
unique solution to the following fixed-point equation:

XtXt
Z 1~ Co- 1g

i v% Cor X

Cér = (1 - +pIn

3) Construct the optimized portfolio:

O Cg%l 1y
1T (vo—19 _°
15Ce 1N

hgp
IV. SIMULATION RESULTS

We use both synthetic data and real market data to show the
performance of CgT compared to other competing methods.
We consider three ST estimators, each designed to calibrate p
under a Frobenius norm minimization metric. These include
Cp, referred to as the Pascal estimate in [12]; Cc, referred
to as the the Chen estimate in [12]; and ch, the oracle
estimator in [9], which has the same structure as CC, but
resorts to solving an approximate problem of minimizing the
Frobenius distance to find the optimal shrinkage. Additionally,
we consider the Ledoit-Wolf shrinkage estimator CLW [11],
and the Ledoit-Wolf shrinkage estimator Cp [16] designed to
calibrate p based on the GMVP framework, as in the current

paper.
A. Synthetic data simulations

The synthetic data are generated i.i.d. by a multivariate
Student-T distribution, where /7y in (1) is a function of a
Chi-square random variable /7y = \/d/x3. The degree-of-
freedom d is set to 3 and the dimensionality NV is chosen to

be 200. The mean vector g can be set arbitrarily since it is
subtracted with the empirical mean, having no impact on the
covariance estimates. We assume the population covariance
matrix Cp is based on a one-factor return structure [15]:
Cxy = bb”0? + X, where the standard deviation o of the
factor is 0.16. The factor loadings b € RV are evenly spread
between 0.5 and 1.5. The residual variance matrix X € RV*V
is set to be a diagonal matrix, whose elements are drawn from
a uniform distribution with support [0.1,0.3] and are fixed
throughout the simulations.

Fig. 1 illustrates the performance of different estimation
approaches in terms of the realized risk, averaged over 200
Monte Carlo simulations. The risk bound is computed by (3),
the theoretical minimum portfolio risk. Comparing with other
methods, our proposed estimator CgT achieves the smallest
realized risk in both cases of n < N and n > N. We
omit the realized risks achieved by I as they are uniformly
more than 5 times larger than those achieved by other com-
peting methods. Additionally, it is interesting to compare
the optimized p of CgT and Cp. They are both solutions
of (4) with p optimized under the metrics of minimizing
the risk and minimizing the Frobenius distance respectively.
Demonstrated in Fig. 2, the optimal shrinkage parameter varies
under different metrics.

Realized Risk

B — —fe - — ke — — k- — — K- — — % — — — % — — —x
15 L L L L L L
160 180 200 220 240 260 280 300
n (N=200)

Fig. 1. The average realized portfolio risk of different covariance estimators
in the GMVP framework using synthetic data.

B. Real market data simulations

Now, with real market data, we investigate the out-of-sample
portfolio performance for different estimators. We consider the
stocks conforming the HSI. In particular, we use the divident-
adjusted daily closing prices downloaded from the Yahoo
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Fig. 2. The optimal shrinkage parameters of é(s)T and Cp in the synthetic
data simulation.

Finance database to obtain the continuously compounded
(logarithmic) returns for the 45 constituents of the HSI over
L = 736 working days from Jan. 3, 2011 to Dec. 31, 2013
(excluding the weekends and public holidays).

As conventionally done in the financial literature, the out-
of-sample evaluation is defined in terms of a rolling window
method. At a particular day ¢, we use the previous n days (i.e.,
t—n to t—1) as the training window for covariance estimation
and construct the portfolio selection flGMVp. We then use
hoyve to compute the portfolio returns in the following
20 days. Next the window is shifted 20 days forward and
the portfolio returns for another 20 days are computed. This
procedure is repeated until the end of the data. The realized
risk is computed conventionally as the annualized sample
standard deviation of the corresponding GMVP returns. In our
tests, different training window lengths are considered.

We can see from Fig. 3 that our proposed CgT achieves
the smallest realized risk. It outperforms the other competing
methods over the entire span of estimation windows consid-
ered. The realized risk achieved by Iy is also omitted here
because it is more than 2 times larger than those achieved by
the competing methods. When the estimation window is too
long (e.g., greater than 320 days), observe that the performance
degrades. This is presumably due to a lack of stationarity
in the data over such long durations. This is an interesting
phenomena worthy of further investigation.

V. CONCLUSIONS

We proposed a novel minimum-variance portfolio opti-
mization strategy, based on employing a robust shrinkage
covariance estimator with the shrinkage parameter calibrated
to minimize the realized portfolio risk. Our strategy was shown
to be robust to the finite-sampling effects as well as to non-
Gaussian samples. It was demonstrated that our approach
outperformed other competing techniques in terms of the
realized portfolio risk both for synthetic data and for real
historical stock returns from the HSI.
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Fig. 3. Realized portfolio risks achieved out-of-sample over 736 days of

HSI real market data (from Jan. 3, 2011 to Dec. 31, 2013) by a GMVP
implemented using different covariance estimators.
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