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ABSTRACT

Massive multiple-input multiple-output (MIMO) systems are cellu-
lar networks where the base stations (BSs) are equipped with un-
conventionally many antennas. Such large antenna arrays offer huge
spatial degrees-of-freedom for transmission optimization; in partic-
ular, great signal gains, resilience to imperfect channel knowledge,
and small inter-user interference are all achievable without exten-
sive inter-cell coordination. The key to cost-efficient deployment of
large arrays is the use of hardware-constrained base stations with
low-cost antenna elements, as compared to today’s expensive and
power-hungry BSs. Low-cost transceivers are prone to hardware im-
perfections, but it has been conjectured that the excessive degrees-
of-freedom of massive MIMO would bring robustness to such im-
perfections. We herein prove this claim for an uplink channel with
multiplicative phase-drift, additive distortion noise, and noise ampli-
fication. Specifically, we derive a closed-form scaling law that shows
how fast the imperfections increase with the number of antennas.

Index Terms— Achievable uplink rates, channel estimation,
massive MIMO, scaling laws, transceiver hardware imperfections.

1. INTRODUCTION

Massive densification, in terms of more antennas per unit area, is
a key enabler to higher area throughput in future wireless networks
[1]. This is achieved using multi-user MIMO techniques, by adding
more antennas to the macro BSs and/or distributing the antennas by
ultra-dense deployment of small BSs. These approaches are non-
conflicting, since the former operates in current frequency bands and
the latter is expected to primarily operate in new mm-wave bands [2].

This paper considers the former densification approach, which
was first proposed in [3] and is nowadays commonly referred to as
massive MIMO [4, 5]. The main characteristics of massive MIMO
are that the BSs are equipped with large antenna arrays with hun-
dreds (or even thousands) of antennas, which are used to serve tens
(or even hundreds) of users. In other words, the number of antennas,
N , and number of users per BS, K, are unconventionally large, but
can differ by an order of magnitude. For this reason, massive MIMO
brings unprecedented spatial degrees-of-freedom, which enable pre-
coding with strong signal gains, give near-orthogonal user channels,
and resilience to imperfect channel knowledge [6].

Apart from achieving high area throughput, recent works have
investigated additional ways to capitalize on the huge degrees-of-
freedom offered by massive MIMO. Towards this end, [1] showed
that massive MIMO enables implicit coordination between systems
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that operate in the same band. Moreover, it was shown in [4] and
[7] that the transmit powers can be reduced as 1/

√
N with only

a minor loss in throughput. This offers major reductions in the
emitted power, but is actually bad from an energy efficiency (EE)
perspective—the EE is maximized by increasing the transmit power
with N to compensate for the increasing circuit power [8].

The work presented here explores whether the huge degrees-of-
freedom offered by massive MIMO provide robustness to transceiver
hardware imperfections; for example, phase drifts, quantization er-
rors, and noise amplification. Robustness to hardware imperfections
has been conjectured in overview articles, such as [5], and is notably
important since the deployment cost of massive MIMO scales lin-
early with N unless we resort to using cheaper hardware with larger
imperfections. Constant envelope precoding was analyzed in [9] to
facilitate the use of power-efficient amplifiers, while the impact of
phase drifts was analyzed and simulated in [10, 11]. A preliminary
proof of the conjecture was provided in [12], but the authors consid-
ered only additive distortions and, thus, ignored other characteristics
of hardware imperfections. It was shown that the distortion variance
can increase as

√
N with only minor throughput losses.

In this work, we consider an uplink massive MIMO system with
hardware imperfections that cause phase drifts, additive distortions,
and noise amplification; this model is more general compared to
[10–12] which investigated merely one of these effects. We derive a
new linear minimum mean square error (LMMSE) channel estima-
tor and closed-form achievable user rates. Based on the analytical
results, we prove the conjecture by obtaining intuitive scaling laws
that show how fast the hardware imperfections can be increased with
N . The results are validated numerically in a realistic simulation
setup, while the impact on circuit design is considered in [13].

2. SYSTEM MODEL

This paper considers the uplink of a cellular network with L ≥ 1
cells. Each cell consists of K single-antenna user equipments (UEs)
that communicate simultaneously with a BS which is equipped with
an array of N antennas. Our analysis holds for any N and K,
but we are primarily interested in massive MIMO topologies where
N � K � 1. The channel from UE k in cell l to BS j is denoted
as hjlk = [h

(1)
jlk . . . h

(N)
jlk ]T ∈ CN and is modeled as Rayleigh block

fading; thus, it takes a static realization for a coherence block of
T channel uses and independent realizations between blocks. Each
channel is circularly symmetric complex Gaussian distributed with
zero mean and covariance matrix λjlkIN : hjlk ∼ CN (0, λjlkIN ).1

1The assumption of independent fading implies that the array dimensions
grow with N to keep the inter-antenna distance sufficiently large. However,
the analysis in this paper can be easily extended to spatially correlated chan-
nels as in [4] and [12], but at the cost of complicating the notation and results.
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The average channel attenuation λjlk > 0 is different for each com-
binations of BS and UE and depends, for example, on the distance.

The received signal yj(t) ∈ CN at BS j at a given channel use
t ∈ {1, . . . , T} in the coherence block is conventionally modeled
as [3, 4, 6, 7]

yj(t) =

L∑
l=1

Hjlxl(t) + nj(t) (1)

where the transmit signal in cell l is xl(t) = [xl1(t) . . . xlK(t)]T ∈
CK and Hjl = [hjl1 . . . hjlK ] ∈ CN×K . The signal xlk(t) sent
by UE k in cell l at channel use t is either a deterministic pilot sym-
bol (used for channel estimation) or an information symbol from
a Gaussian codebook; in any case, the expectation of the transmit
power is bounded as E{|xlk(t)|2} ≤ plk. The thermal noise vector
nj(t) ∼ CN (0, σ2IN ) is independent in time and has variance σ2.

The conventional model in (1) is well-accepted for small-scale
MIMO systems, but has an important drawback when applied to
massive MIMO: it assumes that the BS array consists of N high-
quality antenna elements which are all fully synchronized. Conse-
quently, the cost and circuit power consumption would at least grow
linearly with N , thus making the deployment of massive MIMO
rather questionable from an overall cost and efficiency perspective.

In this paper, we analyze the far more realistic scenario of
hardware-constrained BSs. Specifically, each BS has hardware im-
perfections that distort the communication in three ways: 1) received
signals are shifted in phase; 2) distortion noise is added with a power
proportional to the total received signal power; and 3) amplification
of the thermal noise. In this generalized scenario, the received signal
at BS j at a given channel use t ∈ {1, . . . , T} is modeled as

yj(t) = Dφj(t)

L∑
l=1

Hjlxl(t) + υj(t) + ηj(t) (2)

where the channel matrices Hjl and transmitted signals xl(t) are
exactly as in (1). The hardware imperfections are characterized by:

1. The phase-drift matrix Dφj(t)
,diag(eıφj1(t), . . . , eıφjN (t))

where φjn(t) is the phase drift at the nth antenna of BS j at
time t. It follows a Wiener process φjn(t)∼N (φjn(t−1), δ);
thus, φjn(t) equals φjn(t− 1) plus an independent Gaussian
innovation of variance δ. Each antenna experiences an inde-
pendent phase-drift process with the same variance (e.g., due
to the use of separate oscillators with identical properties).

2. The distortion noise υj(t) ∼ CN (0,Υj(t)) where Υj(t) ,
κ2∑L

l=1

∑K
k=1 E{|xlk(t)|2}diag(|h

(1)
jlk|2, . . . , |h

(N)
jlk |2) for

a given channel realization. The distortion noise is thus inde-
pendent between antennas and channel uses, and the variance
at a given antenna is proportional to the current received
signal power at this antenna. The proportionality parame-
ter κ ≥ 0 is the error vector magnitude (EVM), which is a
common quality measure of transceiver hardware [14].

3. The receiver noise ηj(t) =
√
ξnj(t) ∼ CN (0, σ2ξIN )

where the parameter ξ ≥ 1 is the noise amplification factor.
The generalized system model in (2) is based on [15–18] and

characterizes the joint behavior of different types of hardware im-
perfections at the BSs. For example, phase noise in the oscilla-
tors causes phase-drifts, finite-resolution analog-to-digital convert-
ers cause distortion noise, and the electronic BS amplifier causes
noise amplification. The distortions either originate from uncali-
brated hardware imperfections or residual errors after calibration.

We will derive a channel estimator and achievable user rates for
the system model in (2). By analyzing the performance as N →∞,

we will bring insights into the fundamental impact of the parameters
δ, κ, and ξ, which characterize the BS hardware imperfections.

3. PERFORMANCE ANALYSIS

In this section, we derive achievable user rates for the uplink system
in (2) and scaling laws for how quickly the BS hardware imperfec-
tions can be increased with N and still achieve non-zero rates.

3.1. Channel Estimation

The achievable rates are computed under the assumption that the
first B ≥ K channel uses of each coherence block are dedicated
for pilot-based channel estimation. UE k in cell j transmits a pre-
defined pilot sequence x̃jk = [xjk(1) . . . xjk(B)]T ∈ CB . The
pilot sequences are selected arbitrarily under the above mentioned
power constraints and our analysis supports any choice. However, it
is reasonable to make the sequences x̃j1, . . . , x̃jK in cell j linearly
independent to avoid unnecessary intra-cell interference. Due to the
limited coherence block length T , inter-cell interference is often un-
avoidable but the pilot sequences can also be designed and allocated
to also reduce inter-cell interference [19].

For any given set of pilot sequences, we now derive estimators
of the effective channels hjlk(t) , Dφj(t)

hjlk at any channel use
t ≥ B for all j, l, k. The conventional multi-antenna channel esti-
mators from [20–22] cannot be applied in this work since the gen-
eralized system model in (2) has two non-standard properties: The
pilot transmission is corrupted by random phase-drifts and the dis-
tortion noise is statistically dependent on the channels. Therefore,
we derive a new LMMSE estimator for the system model at hand.
Theorem 1. Let ψj = [yT

j(1) . . . yT
j(B)]T ∈ CNB denote the re-

ceived signal at BS j from the pilot transmission. The LMMSE esti-
mate of hjlk(t) at any channel use t ≥ B for any l and k is

ĥjlk(t) =
(
λjlkx̃

H
lkDδ(t)Ψ

−1
j ⊗ IN

)
ψj (3)

where Dδ(t) , diag(e−
δ
2
(t−1), e−

δ
2
(t−2), . . . , e−

δ
2
(t−B)),

Ψj ,
L∑
`=1

K∑
m=1

λj`mX`m + σ2ξIB , (4)

⊗ is the Kronecker product, and element (i1, i2) of X`m∈CB×B is

[X`m]i1,i2 =

{
|x`m(i1)|2(1+κ2), i1 = i2,

x`m(i1)x
∗
`m(i2)e

− δ
2
|i1−i2|, i1 6= i2.

(5)

The corresponding error covariance matrix is

Cjlk = E
{
(hjlk(t)− ĥjlk(t))(hjlk(t)− ĥjlk(t))

H
}

= λjlk
(
1− λjlkx̃H

lkDδ(t)Ψ
−1
j DH

δ(t)x̃lk
)
IN

(6)

and the mean-squared error (MSE) becomes MSEjlk = tr(Cjlk).

Proof. The general expression for an LMMSE estimator is ĥjlk(t) =

E{hjlk(t)ψH
j}
(
E{ψjψH

j}
)−1

ψj [20, Chapter 12]. The theorem
follows from algebraic computation of the two expectations.

Although the channels are block fading, the phase-drifts caused
by hardware imperfections make the effective channels hjlk(t)
change between channel uses. The new LMMSE estimator in The-
orem 1 predicts the effective channel for each t ∈ {B + 1, . . . , T}
during the data transmission. Next, we use these predictors to design
receive filters and derive the corresponding achievable user rates.



SINRjk(t) =
pjk|E{vH

jk(t)hjjk(t)}|2
L∑
l=1

K∑
m=1

plmE{|vH
jk(t)hjlm(t)|2} − pjk|E{vH

jk(t)hjjk(t)}|2 + E{|vH
jk(t)υj(t)|2}+ σ2ξE{‖vjk(t)‖2}

(8)

3.2. Achievable User Rates

Achievable user rates for the generalized uplink channel in (2) are
given in the next lemma. These form a base for asymptotic analysis.

Lemma 1. Suppose BS j has statistical channel knowledge and ap-
plies the filters vH

jk(t) ∈ CN , t = B + 1, . . . , T , to receive the
signals from its kth UE, then an ergodic achievable user rate is

Rjk =
1

T

T∑
t=B+1

log2 (1 + SINRjk(t)) [bit/channel use] (7)

where SINRjk(t) is given in (8) at the top of this page and all UEs
transmit with full power (i.e., E{|xlk(t)|2} = plk for all l, k).

Proof. Since the effective channels vary with t, we follow the ap-
proach in [10, 11] and compute an achievable rate for each t. We
obtain (7) by averaging over the coherence block. The SINR in (8)
is obtained by treating inter-user interference and additive distortions
as Gaussian noise (a worst-case assumption [23]) and only exploiting
knowledge of the average effective channel E{vH

jk(t)hjjk(t)}while
any deviation is treated as worst-case Gaussian noise [3, 24].

The rate expressions in Lemma 1 can be utilized for any choice
of receive filters. The next theorem gives closed-form expressions
for all expectations under maximum ratio combining (MRC).

Theorem 2. If the MRC filter vjk(t) = ĥjjk(t) is used, then

E{‖vjk(t)‖2} = Nλ2
jjkx̃

H
jkDδ(t)Ψ

−1
j DH

δ(t)x̃jk (9)

E{vH
jk(t)hjjk(t)} = E{‖vjk(t)‖2} (10)

E{|vH
jk(t)hjlm(t)|2} = λjlmE{‖vjk(t)‖2}

+Nλ2
jjkλ

2
jlmx̃H

jkDδ(t)Ψ
−1
j XlmΨ−1

j DH
δ(t)x̃jk

+N(N − 1)λ2
jjkλ

2
jlm|x̃H

jkDδ(t)Ψ
−1
j DH

δ(t)x̃lm|2 (11)

E{|vH
jk(t)υj(t)|2} = κ2

L∑
l=1

K∑
m=1

plmλjlmE{‖vjk(t)‖2} (12)

+ κ2
L∑
l=1

K∑
m=1

plmNλ
2
jjkλ

2
jlmx̃H

jkDδ(t)Ψ
−1
j XlmΨ−1

j DH
δ(t)x̃jk.

Proof. The expectations (9)–(12) are straightforward to compute,
but the derivations are omitted due to the space limitations.

By substituting the expressions from Theorem 2 into (8), we
obtain closed-form user rates that are achievable using MRC. The
asymptotic behavior for large antenna arrays is now easily obtained.

Corollary 1. If the MRC filter vjk(t) = ĥjjk(t) is used, then

SINRjk(t) =
pjkλ

2
jjk

(
x̃H
jkDδ(t)Ψ

−1
j DH

δ(t)x̃jk
)2∑

(l,m)6=(j,k)

plmλ2
jlm|x̃H

jkDδ(t)Ψ
−1
j DH

δ(t)x̃lm|2+O( 1
N
)

(13)
where O( 1

N
) denotes terms that go to 0 as 1

N
or faster as N →∞.

Proof. This is achieved by dividing all the terms in SINRjk(t) by
1

λ2
jjk

N2 and inspecting the asymptotics using Theorem 2.

This corollary shows that the distortion noise and receiver noise
vanish as N → ∞, while the phase-drifts only has a minor asymp-
totic impact since the numerator and denominator of the SINR in
(13) are scaled symmetrically by Dδ(t). The terms that remain in
the denominator depend on the pilot sequences x̃lm; hence, these
terms are due to pilot contamination (PC) [3]; that is, inter-user in-
terference in the estimation phase. Intra-cell PC is typically removed
by making the pilot sequences orthogonal in space (i.e., x̃H

jkx̃jm =
0 for k 6= m), which can be achieved by using the columns of
a DFT matrix as pilot sequences [25]. Unfortunately, the phase-
drifts caused by hardware imperfections break any spatial pilot or-
thogonality. Therefore, the only way to remove the intra-cell PC
is to assign temporally orthogonal sequences within each cell (e.g.,
xjk(k) =

√
pjk and xjk(t) = 0 for t 6= k). Since temporal orthog-

onality reduces the total pilot power per user, ‖x̃jk‖2, by 1/K, the
simulations in Section 4 reveal that it is only beneficial for extremely
large arrays. Inter-cell PC can generally not be removed because
there are only B orthogonal sequences in the whole network.

3.3. Scaling Laws on Hardware Imperfections
The asymptotic results in Corollary 1 reveal that the detrimental im-
pact of hardware imperfections vanishes almost completely as N
grows large. This conclusion holds for any fixed values of the pa-
rameters δ, κ, and ξ. The next corollary shows that it also holds if
the parameters are increased with N in a certain way.
Corollary 2. Suppose the hardware imperfection parameters are re-
placed as κ2 7→ κ2

0N
τ1 , ξ 7→ ξ0N

τ2 , and δ 7→ δ0(1 + loge(N
τ3)),

for some scaling parameters τ1, τ2, τ3 ≥ 0 and some initial values
κ0, ξ0, δ0 ≥ 0. If

max(τ1, τ2) +
δ0(t−B)

2
τ3 ≤ 1

2
, (14)

SINRjk(t) with MRC converges to a non-zero limit as N →∞.

Proof. This is achieved by substituting the new parameters into the
SINR in (8), multiplying all terms by 1/N1−τ3δ0(t−B), and showing
that the signal part is non-zero and the denominator is bounded.

The corollary proves that one can increase the hardware imper-
fections with the number of antennas. This is a very important result
for practical deployments, because it indicates that one can make the
cost scale withN at a slower pace than linear by using cheaper hard-
ware. This property has been conjectured in overview articles, such
as [5], and was proved in [12] using a system model with only addi-
tive distortion noise. Corollary 2 shows explicitly that the conjecture
holds also for multiplicative phase-drifts and noise amplifications.

Since Corollary 2 is derived for MRC, (14) provides a suffi-
cient scaling condition for any other receive filter that performs bet-
ter than MRC. The scaling law consists of two terms: max(τ1, τ2)

and δ0(t−B)
2

τ3. The first term max(τ1, τ2) shows that the additive
distortion noise and noise amplification can be increased simultane-
ously and independently, while the sum of the two terms manifests a
tradeoff between increasing hardware imperfections that cause addi-
tive and multiplicative distortions. The system is particularly vulner-
able to phase-drifts due to its accumulation, as seen from the second
term which increases with t and from that δ can scale only logarith-
mically with N . We can accept larger variances if the coherence
block T is small, which is in line with the results in [10, 11].
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Fig. 1. The simulation scenario considers 16 square cells with wrap-
around to avoid edge effects. Each cell is 250m × 250m and con-
sists of 8 UEs uniformly distributed in different parts of the cell.
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Asymptotic Limits

Fig. 2. Sum rate for different numbers of antennas, different hard-
ware imperfections, and spatially or temporally orthogonal pilots.

4. NUMERICAL RESULTS

The analytic results are evaluated in a simulation scenario with 16
cells and wrap-around to avoid edge effects; see Fig. 1. Each square
cell is 250× 250 meters and is divided into 8 virtual sectors, where
each sector contains one uniformly distributed UE (with minimum
distance 35 meters). Each sector has an orthogonal pilot sequence,
but the same pilot is reused in the corresponding sector of other cells.

The channel attenuations are based on the 3GPP propagation
model in [26]: λjlk = 10sjlk−1.53/d3.76jlk where djlk is the distance
in meters between BS j and UE k in cell l and sjlk ∼ N (0, 0.25) is
a realization of the shadow-fading. The transmit powers are pjk =
−47 dBm/Hz, the thermal noise power is σ2 = −174 dBm/Hz,B =
8 is the pilot sequence length, and the coherence block is T = 500.

We start by validating the asymptotic behaviors for fixed imper-
fections. Fig. 2 shows the sum rate of all users (in the 1 km2 area) as
a function of the number of antennas N . The performance is given
for ideal hardware and two types of hardware imperfections that are
specified in the figure. The simulation shows that the convergence
to the upper limit in Corollary 1 is very slow—we used logarithmic
scale on the horizontal axis because a million antennas is required for
convergence. We observe that the sum rate reduces with hardware
imperfections, but the loss is small and vanishes asymptotically.

Two types of pilot sequences are considered in Fig. 2: spatially
orthogonal pilots selected from a DFT matrix [25] and temporally
orthogonal pilots. As discussed in Section 3.2, spatially orthogonal
pilots is a better choice at practicalN , although the limit in Corollary
1 might be slightly larger for temporally orthogonal pilots.
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Fig. 3. Sum rate with MRC and MMSE filtering with ideal hardware,
fixed imperfections, and imperfections that increase with N .

Next, we focus on the practical range of 1 ≤ N ≤ 500 in
Fig. 3. We illustrate the scaling law from Corollary 2 by considering
{κ0, ξ0, δ0}= {0.05, 3, 4.7 · 10−5} and different τ1, τ2, τ3 which
are specified in Fig. 3. As expected, the combinations that satisfy the
scaling law give minor performance losses, while the bottom curve
goes to zero since the law is not fulfilled. The curves for MRC were
generated using the analytical results of Section 3 and match the
marker symbols, which are the outputs of a Monte Carlo simulator.

The MRC filter was considered in Section 3 since its low com-
putational complexity is attractive for massive MIMO topologies.
MRC provides a performance baseline for other receive filters which
typically have higher complexity. In Fig. 3 we also consider the filter

vMMSE
jk (t)=

(
L∑
l=1

K∑
m=1

plm(Gjlm+κ2DGjlm)+σ2ξIM

)−1

ĥjjk(t)

(15)
where Gjlm = ĥjlm(t)ĥH

jlm(t) + Cjlm and DGjlm is a diagonal
matrix where the diagonal elements are the same as in Gjlm. This
is an approximate minimum MSE (MMSE) filter that maximizes (8)
for a fixed channel realization. As seen from Fig. 3, the MMSE filter
provides higher performance than the MRC filter. Interestingly, the
losses due to hardware imperfections are similar but are somewhat
larger for MMSE filters. This is because the MMSE filter exploits
spatial interference suppression which is sensitive to imperfections.

5. CONCLUSION

A prerequisite for practical deployment of massive MIMO systems is
that each antenna element in the large BS arrays is manufactured us-
ing low-cost components, which unfortunately are prone to hardware
imperfections. In this work, we derived a scaling law that proves
that massive MIMO systems are robust to hardware imperfections.
This is a property that has been conjectured in prior works but only
proved for simplified channel models with only additive distortion
noise. We considered a more accurate uplink model with multiplica-
tive phase-drifts, additive distortion noise, and noise amplifications.
We derived an LMMSE channel estimator and the achievable user
rates under MRC. Based on this model, our closed-form scaling law
manifests how fast the hardware imperfections can increase with N ,
if non-zero user rates should be achieved. The simulation validates
that the rate losses are small as compared to having ideal hardware.
The scaling law reveals that the variance of the distortion noise and
receiver noise can increase simultaneously as

√
N , but the scaling

should be slower if also the phase-drift variance increases with N (it
can only increase logarithmically). Interestingly, the scaling results
hold for other receive filters, such as the approximate MMSE filter.
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