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Abstract—This paper considers pilot-based channel estimation
in large-scale multiple-input multiple-output (MIMO) com muni-
cation systems, also known as “massive MIMO”, where there a
hundreds of antennas at one side of the link. Motivated by the
fact that computational complexity is one of the main challeges
in such systems, a set of low-complexity Bayesian channeliesa-
tors, coined Polynomial ExpAnsion CHannel (PEACH) estimators,
are introduced for arbitrary channel and interference statistics.
While the conventional minimum mean square error (MMSE)
estimator has cubic complexity in the dimension of the covaance
matrices, due to an inversion operation, our proposed estiators
significantly reduce this to square complexity by approximang
the inverse by aL-degree matrix polynomial. The coefficients of
the polynomial are optimized to minimize the mean square eror
(MSE) of the estimate.

We show numerically that near-optimal MSEs are achieved
with low polynomial degrees. We also derive the exact com-
putational complexity of the proposed estimators, in termsof
the floating-point operations (FLOPSs), by which we prove tha
the proposed estimators outperform the conventional estimtors
in large-scale MIMO systems of practical dimensions while
providing a reasonable MSEs. Moreover, we show thaf. needs
not scale with the system dimensions to maintain a certain
normalized MSE. By analyzing different interference sceneos,
we observe that the relative MSE loss of using the low-comptéy
PEACH estimators is smaller in realistic scenarios with pibt con-
tamination. On the other hand, PEACH estimators are not well
suited for noise-limited scenarios with high pilot power; therefore,
we also introduce the low-complexity diagonalized estimator
that performs well in this regime. Finally, we also investigte
numerically how the estimation performance is affected by hving
imperfect statistical knowledge. High robustness is achied for
large-dimensional matrices by using a new covariance estiate
which is an affine function of the sample covariance matrix ad
a regularization term.

Index Terms—Channel estimation, large-scale MIMO, polyno-
mial expansion, pilot contamination, spatial correlation

I. INTRODUCTION

through spatial multiplexind [2]. Whil& x 8 MIMO transmis-
sions have found its way into recent communication stargjard
such as LTE-Advanced][3], there is an increasing interesh fr
academy and industry to equip base stations (BSs) with much
larger arrays with several hundreds of antenna elemghts [4]
[9]. Such large-scale MIMO, or “massive MIMQO”, techniques
can give unprecedented spatial resolution and array dais, t
enabling a very dense spatial reuse that potentially cap kpe
with the rapidly increasing demand for wireless connetivi
and need for high energy efficiency.

The antenna elements in large-scale MIMO can be either
collocated in one- or multi-dimensional arrays or disttéal
over a larger area (e.g., on the facade or the windows of
buildings) [8]. Apart from increasing the spectral effiaign
of conventional wireless systems, which operate at carrier
frequencies of one or a few GHz, the use of massive antenna
configurations is also a key enabler for high-rate trangomss
in mm-Wave bands, where there are plenty of unused spectrum
today [9]. In particular, the array gain of large-scale MIMO
mitigates the large propagation losses at such high frequen
cies and 256 antenna elements with half-wavelength minimal
spacing can be packed infox 6 cm at 80 GHz [[9].

The majority of previous works on large-scale MIMO (see
[4]-[8] and references therein) considers scenarios where
BSs equipped with many antennas communicate with single-
antenna user terminals (UTs). While this assumption allows
for closed-form characterizations of the asymptotic tigtgaut
(when the number of antennas and UTs grow large), we can
expect practical UTs to be equipped with multiple antennas
as well—this is indeed the case already in LTE-Advanted [3].
However, the limited form factor of terminals typically avs
for fewer antennas than at the BSs, but the number might still
be unconventionally large in mm-Wave communications.

A major limiting factor in large-scale MIMO is the availabil
ity of accurate instantaneous channel state informatic1)(C

MIMO techniques can bring huge improvements in spectrgthis is since high spatial resolution can only be exploited
efficiency to wireless systems, by increasing the spatiaee if the propagation environment is precisely known. CSI is
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typically acquired by transmitting predefined pilot signahd
estimating the channel coefficients from the received $igna
[10]—[15]. The pilot overhead is proportional to the numbér
transmit antennas, thus it is commonly assumed that thespilo
are sent from the array with the smallest number of antennas
and used for transmission in both directions by exploiting
channel reciprocity in time-division duplex (TDD) mode.

The instantaneous channel matrix is acquired from the
received pilot signal by applying an appropriate estinratio
scheme. The Bayesian MMSE estimator is optimal if the
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channel statistics are knowh [12]-[16], while the minimumeoin Polynomial ExpAnsion CHannel (PEACIeI$timat0rEA
variance unbiased (MVU) estimator is applied otherwisg.[12main contribution of the paper is to optimize the coefficgent
These channel estimators basically solve a linear systemobfthe polynomial to yield low MSE at any fixed polynomial
equations, or equivalently multiply the received pilotrayy degreeL, while keeping the low complexity. The PEACH es-
with an inverse of the covariance matrices. This is a mattimators are evaluated under different propagation/fietence
ematical operation with cubic computational complexity iconditions and show remarkably good performance at low
the matrix dimension, which is the product of the number gfolynomial degrees. An important property is thatneeds
antennas at the receiver (at the order of 100) and the lerigtmot scale with the number of antennas to maintain a fixed
the pilot sequence (at the order of 10). Evidently, this apen normalized MSE loss (as compared to MMSE estimation).
is extremely computationally expensive in large-scale MM However, L should increase with the transmit power to keep
systems, thus the MMSE and MVU channel estimates canrofixed loss, while it can actually be decreased as the imterfe
be computed within a reasonable period of time. The higince becomes stronger. The computational complexity of the
computational complexity can be avoided under propagati®EACH estimators and conventional MMSE/MVU estimators
conditions where all covariance matrices are diagonal, bate compared analytically. This reveals that the proposed
large-scale MIMO channels typically have a distinct spati@stimators have smaller complexity exponents. The numeri-
channel correlation due to insufficient antenna spacing aaal results confirm that much fewer FLOPs are required to
richness of the propagation environmeft [7]. The spatiabmpute the PEACH estimators in large-scale MIMO systems
correlation decreases the estimation errors [15], but frdp  of practical dimensions. Finally, thdiagonalized estimator
appropriate estimator is applied. Moreover, the necegsitoly is introduced with even lower complexity and it is shown in
reuse in cellular networks creates spatially correlatéstioell which scenarios it is suitable.

interference, known agilot contaminationwhich reduces the

estimation performance and spectral efficiericy [S]-[7TDI{1 o outiine

[11].
Polynomial expansion (PEp a well-known technique to [ we _desc_:ribe the system m(.)del and formulate the problem
Y b (PESS d of estimating channel coefficients for a large-scale MIMO

reduce the complexity of large-dimensional matrix invensi S i oo
[17]. Similar to classic Taylor series expansions for qeal§OMmunication system where the computational complegity i

functions, PE approximates a matrix function by ategree a majo:cllssue. FOIIIOW.'ng th? Baye3|§1nsp)h|lpﬁ)lf|1y, V\:je prepgs
matrix polynomial. PE has a long history in the field of signaef seto tow-co:npfxny elst|mat|orssln t'tll and pravi I
processing for multiuser detection/equalization, wherh bhe an exact complexity analysis. n Sectioni Iv, we numerically

decorrelating detector and the linear MMSE detector imol\?valuate the performance. of the proposed _est|m_ators in di-
matrix inversions[[17}[22]. PE-based detectors are \tksafe.rent interference scenarios wh_ere comparison is pea‘drm
since the structure enables simple multistage/pipelired-h with respect to cqnvent|onal estimators. Finally, conicos
ware implementation [17] using only additions and multp are drawn in SectiollV.

tions. The degreé. basically describes the accuracy to which

the inversion of each eigenvalue is approximated, thus tBe Notation

degree needs not scale with the system dimensions to achievBoldface (lower case) is used for column vectats,and
near optimal performancé[R0]. Insteakl,is simply selected (upper case) for matrice¥. Let X7, X, andX ! denote
to balance between computational complexity and detectigie transpose, the conjugate transpose, and the inverXe of
performance. A main problem is to select the coefficientgspectively. The Kronecker product & andY is denoted
of the polynomial to achieve high performance at small X Y, vec(X) is the vector obtained by stacking the columns
the optimal coefficients are expensive to compute [17], bet X, tr(X) denotes the tracéX||» is the Frobenius norm,
alternatives based on appropriate scalings [18], [21]} 8@ and || X||, is the spectral norm. The notatio® denotes
asymptotic analysis [19]. [22] exist. Recently, PE has Blsen definitions, while the big9 notation O(M?*) describes that
used to reduce the precoding complexity in large-scale MIMfie complexity is bounded bg'M/* for some0 < C < .
systems [[24]+[26], and high performance was achieved Rycircularly symmetric complex Gaussian random veotds
optimizing the matrix polynomials using asymptotic an&@ys denotedx ~ CN(x,Q), wherex is the mean and is the

covariance matrix.
The optimization of the polynomial coefficients is the key

to high performance when using PE. Since the system mod- Il. PROBLEM FORMULATION
els and performance metrics are fundamentally different in
multiuser detection and precoding, the derivation of optim
and low-complexity suboptimal coefficients become two ve
different problems in these two applications. In this paper 1After the submission of this paper, we became aware of theurcent
consider a new signal processing application for PE, namelyrk of [27] which also applies PE to reduce the complexity MfSE

pilot-based estimation of MIMO channels. We apply the pestimation. However, orthogonal frequency division nuldiking (OFDM)
tems with a large number of subcarriers are considerd27f; while

. . . S
teChmque to approximate the MMSE eSt'mat_or and therea/ge-scale single-carrier MIMO systems are our focuss Tiikes the system
obtain a new set of low-complexity channel estimators thait whodels, analysis, and results non-overlapping.

The organization of this paper is as follows. In Section

We consider a MIMO channel where the receiver and the
ransmitter are equipped witN,. and V; number of antennas,



wherey = vec(Y),P 2 (PT® I),h = vec(H) andn =
vec(N). This transforms the matrix estimation i (1) into the
canonical form of vector estimation in [12] which enables th
use of classical estimation results.

If the channel and disturbance statistics (il,,R, N and
S) are perfectly known at the receiver, the Bayesian MMSE
estimator of the MIMO channel i$ T12]-[1L5]

Y 2

. . ﬁMMSE = VGC(ﬁMMSE) == }_1 + R]SH (ﬁRﬁH + S) ' d

Pilot signal 9
Transmitter Receiver B 2)

(Few antennas) (Very many antennas) whereh = vec(H),i = vec(N) andd = y — Ph — a.

We measure the performance in terms of the estimation MSE.

Using the MMSE estimator, it follows that

Fig. 1. lllustration of pilot signaling in a large-scal; x N, MIMO
system, where typicallyV,. > N;. The complexity of conventional channel
estimators is very large in these systems, which calls far-domplexity

alternatives. MSE = E{”H - ITIMMSEH%} =tr ((R_l + f)HS_lf))_12 :
3)
Alternatively, if the channel distribution is unknown toeth

respectively. This can be one of the links in a multi-cell thul receiver, the classic MVU estimator [s 112, Chapter 4]

. . ) . —~ ~ ~ ~\ —1
user network of arbitrary size. The pro_b!em of estlmatlng havy = vee(Hyyy) = (PHS—IP) PAS(y — ).
the instantaneous MIMO channel coefficients for a quasi- @)
static flat-fading channell € CN-*™: is investigated. The

channel matrixf is modeled as Rician fading withec(H) ~ The corresponding performance measure is then the estimati
CN (vec(H),R) where the non-zero mean mati# implies varianceE{||H — Hyryu||%} = tr ((PHS—lP)—1 .

that there might_ be line-of-sight pr_opagqt?on and_the _cbhnn Note that the mean matrices of the channel’and the distur-
covariance matrilR e CN+N-*NeNr s positive semi-definite. bance have no impact on the performance with MMSE and
Observe thatR is generallynot a scaled identity matrix, MVVU estimation. Moreover,

but describes the spatial propagation environment. Inrorde = He1ma1 11

to estimate the channel coefficients, we expfwiot signals tr ((R +PUSTP) ) <tr ((P S™P) ) ®)
similar to [13]-{15]. This means that the transmitter Seis for any R + 0, thus the MMSE estimator achieves a better

i T H N¢x B . . . .
columns of a fixed predefined pilot matrit € C™* "> over ayerage estimation performance than the MVU estimatoesinc
B channel uses; see F[g. 1. The integers the length of the it iilizes the channel statistics.

pilot sequence and usually satisfiBs> N, ) - ) . .
During the pilot signaling, the received matriy 2 Remark 1 (Arbitrary Statistics) While having Gaussian

ly(1), - ,y(B)] equals channels and disturbance is a well-accepted assumption in
T conventional MIMO systems, the channel modeling for large-
Y =HP+N (1) scale MIMO is still in its infancy. By increasing the number

of antennas we improve the spatial resolution of the array
where the disturbancN € CN-*8 is assumed to be which eventually may invalidate the rich-scattering asptiom
circularly-symmetric complex Gaussian distributed anddmothat is behind the use of Gaussian channel distributions [7]
eled asvec(N) ~ CN(vec(N),S). Here, N € CN"*B is However, we stress that the results of this paper can be
the mean disturbance arsi ¢ C"~5*"N-5 is the positive applied and give reasonable performance under any arbjtrar
definite covariance matrix. The additive disturbance teen dstatistical distributions on the channel and disturbantas
scribes the receiver noise and the interference from a#roths since(?) is also the linear MMSE estimator ar@d) is the
concurrent transmissions, which might involve the same pest linear unbiased estimator (BLUE) in cases when only the
other receivers. The latter is commonly referred topéet first two moments oH and/or N are known [12], [15].
contaminationin the large-scale MIMO literaturé [4]=[8] and
can in general have a non-zero line-of-sight component. T
analysis herein holds for afy andS, but some typical special
cases are described and evaluated numerically in Sdcfion

Vectorizing the received matrix if](1) yields

Recall that we assumed that the statistical parameters
‘R, N, andS of the channel and disturbance are known at
e receiver. Since user mobility and large-scale fadingsea
continuous changes in the statistics, this implicitly netrat
the receiver can keep track of these changes. Such tracking
y = Ph+n can, for example, be achieved by exploiting the pilot signal
on multiple flat-fading subcarriers since the large-scald- f
2Pilot sequences shorter thaw are optimal in highly correlated channelsing properties can be transformed between different adface
where the pilot matrixP is tailored to the channel and interference statisticsubcarriers [[28], [[29]. Interestingly, the coherence tiofe

[15]. The analysis herein permits afy > 1, but we stress thaB > N isthe  the |ong-term statistics is relatively short; the measweis
case of main interest. This is due to the fact that pilot maiptimization is

cumbersome in large-scale MIMO systems since the trarenatid receiver !n [@] observe COhe_rence F'mes of23 _Seconds’ depe_nd-
need to acquire the same statistical information to agrethermpilot matrix. ing on the propagation environment. High user velocity or



rapid scheduling decisions in neighboring systems caidurt interest for large-scale MIMO systems which are prone to-non
reduce the coherence time. More importantly, the numbeegligible spatial channel correlation and pilot contaation(}
of channel realizations within each coherence time of thelnspired by this special case, a simple approach to complex-
statistics is around 3—126, according to [[30]. This meansity reduction is to diagonalize the covariance matrigesind
that the matrix inversion in the MMSE estimator has to b8 by replacing all off-diagonal elements by zero. Rage
recomputed frequently. andSg;.e denote the corresponding matrices, assuine Ny,

and setP = /P,I whereP; is the average pilot power. The

A. Complexity Issues in Large-Scale MIMO Systems MMSE estimator in[(P) is approximated as

The main computational complexity when computing the h=h+ V P:Raiag (PtRadiag + Sdiag)_1 d (6)
MMSE and MVU estimators in[{2) and](4) lies in solvingWhere the MatrixReaing (Ruing + S )71 can be precom-
iag iag iag

a linear system of equations or, equivalently, in CompUtlgéJted with a computational complexity proportional id.
r

the matrix inversions directly. Both approaches have com : . :
tational complexities that scale &y M?), where M £ BN, om now on, we ref_er td16) as tdiagonalized estimator
' " It achieves the following MSE.

is the matrix dimensioB.This complexity is relatively modest
in conventional MIMO communication systems where: 2, Theorem 1. The diagonalized estimator @) with P = /P,I

4 x 4, or 8 x 8 are typical configurations. achieves the MSE
Recently, there is an increasing interest in large-scald®i| B ozt
- tr [ (Rl + PS5t . (7)
systems where there might be hundreds of antennas at one diag P diag

side of the link [4]-[9]. To excite all channel dimensioniset
pilot length B should be of the same order 5. Large-scale
MIMO systems are therefore envisioned to operate in TD
mode and exploit channel reciprocity to always ha%e< N, Proof: The diagonalized estimator ifi](6) estimates each
in the channel estimation phaseéV- can even be orders of channel element separately, thus the MSE is equivalentto th
magnitude larger thadV, without degrading the estimationof MMSE estimation withR 4i», @s channel covariance matrix
performanceper antenna element. andSgi,e as disturbance covariance matfix[15]. This gives the
Observe that in a potential future large-scale MIMO systeMSE expression in[{7). By lettin@®; — oo in (@), it follows
with N, = 200 and N; = B = 20, the MMSE and MVU directly that the MSE approaches zero asymptotically. m
estimators would require inverting matrices of sif®0 x 4000 This theorem shows that the diagonalized estimator per-
(or similarly, solving a linear system of equations with00 forms well in noise-limited scenarios with high signal-to-
unknown variables) which has a complexity at the ordewise ratio (SNR). Unfortunately, the simulations in Sewti
of 3.4 - 10! floating-point operations, see Section TlI-E follV]reveals that this is the only operating regime where it is
details. This massive matrix manipulation needs to be redocomparable to the MMSE estimator. More precisely, the draw-
every few seconds sincR and S change due to mobility. back of the diagonalized estimator is that it does not exploi
Motivated by these facts, the purpose of this paper is the statistical dependence neither between the received pi
develop alternative channel estimators that allow fort@ley signals nor between the channel coefficients. We recall from
between computational/hardware complexity and estimatifil5] that exploiting such dependence (e.g., spatial catic)
performance. can give great MSE improvements. Therefore, the next gectio
develops a new sophisticated type of channel estimatots tha

B. A Diagonalization Approach to Complexity Reduction reduces the computational complexity of MMSE estimation
while retaining the full statistical information. Thesetiem-

There is a_spe<_:|al case when the computational complexjfy e great complements to the diagonalized estimatoe si
of MMSE estimation can be greatly reduced, namely when t y perform particularly well at low to medium SNRs and
matricesR, S, and P are all diagonal matrices. The matrix . jer interference

PRP” 1§ is then also diagonal which allows for computing
(PRP + 8)~! by simply inverting each diagonal element. |||. L ow-COMPLEXITY BAYESIAN PEACH ESTIMATORS

The corresponding complexity is onlyM — 1 = O(M) In this section, we propose several low-complexity Bayesia
FLOPs. This special case is, unfortunately, of limited peat ., 5ne| estimators based on the concept of polynomial expan
3Note thatO(M?) refers to the complexity scaling of the classical inversior?lon' To understand the main idea, we first state the foIIgwm

algorithms, such as Gaussian elimination and inversiordas Cholesky €mma which is easily proved by using standard Taylor series
decomposition[[31]. The exponent is reduced0M 2-8074) by Strassen’s

algorithm in [32], which is a divide-an-conquer algorithimat exploits that ~ “The elements of each column df are highly correlated due the

2 x 2 matrices can be multiplied efficiently. Using the complgxékpressions insufficient antenna spacing and limited richness of thetesiiag around

in [32], it is easy to show that the algorithm is only compiataally beneficial the large array at the receiver. The correlation betweercthenns depends

for very large matrices (e.gld > 8000) due to heavy overhead computations.more on the scattering and size of the small array at the riities, thus

It also has other drawbacks, such as lower computationalracg and that the correlation might be weaker but complete independesiceldom seen
the matrix dimensions must b&/ = 2* for some integerk. The exponent in practice. In the ideal case of exactly independent cokjrtine covariance
can be further reduced ©(M2:373) [33], but at the cost of more overhead matrix PRP¥ + S is block-diagonal which can be exploited for complexity
that pushes the breaking point to even higher values/ofin this paper, we reduction. The complexity scaling of the MMSE estimationhiswever, still
propose new estimators with the complexity scakg)/2), which both is a cubic in N, and the proposed estimators have a computational advantage
asymptotically better and is proved to be beneficial at ldmgepractical M.  when N,. is sufficiently large; see Sectidn IIIIE.

In noise-limited scenarios witls = ¢2I, the MSE of the
Ejagonalized estimator goes to zero as the pofers co.



Lemma 1. For any Hermitian matrixX < CY*V, with an efficient multistage hardware implementation similathte
bounded eigenvaluds,, (X)| < 1 for all n, it holds that detection implementation illustrated in |17, Fig. 1].

Theorem 2. The PEACH estimator iifI0d) achieves the MSE
tr (R +RPYAL(PRPY + S)APR — 2Rf>HALf>R)
(12)

I-x)™ :ixl. (8)
=0

Observe that the impact oK' in @) reduces withl, I ~ =y 1
as \,(X)! for each eigenvalue. It therefore makes sense Y1er@AL = 3.2 a(I — a(PRP + §))".
considerL-degree polynomial expansions of the matrix inverse  Proof: This theorem follows from direct computation of
using only the termg = 0,..., L. In principle, the inverse the MSE using the definitioMSE = E{|h — hpgacul/*}. ®
of each eigenvalue is then approximated by Asdegree It remains to select the scaling parameterto satisfy
Taylor polynomial, thusL needsnot to scale with the matrix the convergence condition in Propositibh 1. From a pure
dimension to achieve a certain accuracy per element. khsteeomplexity point of view, we can select to be equal to
L can be selected to balance between low approximation ergoﬁt%riHS [18]. However, the choice of also determines
and low complexity. To verify this independency in the aregho conv+erzgence speed of the polynomial expansion. Among

of estimation, we investigate the MSE performance of larggye values that satisfy the condition in Proposifibn 1, theice
scale MIMO systems of different dimensions in Secfion IV. 9
(13)

We observe an almost identical performance for a fied o= —— - ———
when we vary the number of antennas. Note that a similar ~ ™&%n An(PRPH + S) + min, A\, (PRP# 4 8)
remark was made i [20] where the authors show that theiinimizes the spectral radius dff — o«(PRP# + S)) and
system performance metric does not depend on the systéerefore provides the fastest asymptotic convergencedspe
dimensions but only the filter rank. [ﬂ]ﬁ Although the computation of the extreme eigenvalues
In order to apply LemmBl1 on matrices with any eigenvaltig generally quite expensive, these eigenvalues can beeppr
structure, we obtain the next result which is similar(tol [21] imated with lower complexity. For example, as mentioned
- - _ - earlier, if the convergence speed is not the main concern
er]zp;)rsl%oz i. <For an)2/ posnl\iieh(c:i)(lac?sn;tﬁatHermltlan matriX ma, A, (PRBY 4 S) 4 min, M\ (PRPH + 8) simply can
maxn An(X)’ be estimated byr(PRP + S). Alternatively, the smallest
L eigenvalue can be taken as the noise variance and largest
Xt = a(I —(I- o<X))_1 = aZ(I —aX)'+E (9) eigenvalue can be approximated using some upper bound on
1=0 the pilot power and on the average channel attenuation to the
receiver. In general, a low-complexity method to approxana
the extreme eigenvalues of any arbitrary covariance mafiix
proposed in[[21], based on the Gershgorin circle theorerh [34
This approach exploits the structure of the matrix imposgd b
the system setup to improve the convergence speed. For more
A. Unweighted PEACH Estimator details on how to choose with low-complexity and compute
Applying the approximation in Propositigh 1 on the MMSEhe extreme eigenvalues we refer tal[21].
estimator in[(R) gives the low-complexify-degreePolynomial ) )
ExpAnsion CHannel (PEACHSstimator which we denote by B- Weighted PEACH Estimator
hpeach zvec(ﬁpEACH) and define as Although the PEACH estimator{(1L0) converges to the
I MMSE estimator as. — oo, it is generally not the besk-
hppacy 2 b+ RPY Z a(I _ a(f,Rf,H i S))ld. (10) Qegree ponnomlaI _estlmator at any finite More specnﬁcally,
instead of multiplying each term in the sum with we can
assign different weights and optimize these for the specific
r(‘j:’egreeL. In this way, we obtain theveighted PEACH es-
timator which we denote atiw.pracu = vec(Hw-pracH)

wherea ZlL:O (I — aX)! is an L-degree polynomial approxi-
mation and the error ternE is bounded a3/E||; = O(||(I—-
aX)|5™). The error vanishes a& — oc.

=0

Note that [[ID) does not involve any inversions. Furthermo
the polynomial structur{jfzo X'd lends itself to a recursive

computation and define as
L L
Y Xld= d+X(d+X(d+X(d+X(...)))) (11)  hwpeacu 2 h+RP™T Y wall (PRPY +9)'d (14)
=0 =0
whereX = I — o(PRP¥ + S) for the PEACH estimator. Wherew = [wy, ..., w,]" are scalar weighting coefficierfis.

The key property ofi(dI1) is that it only involves matrix-vect Observe that the--parameter, now denotedl,, is redundant
S . . o

mUItlphcat!onS’ WhICh have a ‘?°mp'e?('ty G@(]V[ ) _msead 5The error term in Propositidnl 1 is bounded &(||(T — aX)||2L+1). The

of the cubic complexity of matrix-matrix multiplication81].  spectral norm is minimized by making the largest and smiaggenvalues

The computational complexity of (IL0) is therefaf® LM?) symmetric around the origiri [21jnax, An (I — aX) = —ming A (I —

N 2y aX). By solving for o we obtaina = 2/(maxn An(X) + ming, Ay (X))
where M = BN,. WheneverL < M, O(LM®) is a large which becomes[(13) for the problem at hand.

. . 3 o o
complexny reduction as compared (M ) for the original  e.pEACH is obtained by expanding eath— a(PRPH + S))! as a
MMSE estimator. Furthermore, the recursive structure lEsabbinomial series, collecting terms, and replacing consfartors with weights.



and can be set to one. For numerical reasons, it might still beObserve that the MSE expressions of PEACH and W-

good to select PEACH in [12) and[{18), respectively, are independent of the
1 mean matrices of the channel and the disturbance. Therefore
Oy < == (15) the performance is the same as in our conference paper [1],
maxn An(PRPH + 8) where we assumed zero-mean channel and disturbance.
since this makes all the eigenvamesaiﬁl(f)RﬁH i S)l From [19) in the proof of Theoref 3, we also obtain the

smaller than one and thus prevent them from growing uMSE expression
boundedly ag becomes large. This simplifies the implemen- M\ SE(w) = tr(R) + w”Aw — bw — wb (22)

tation of the following theorem, which finds the weightin% i ] ) o
coefficients that minimize the MSE. or the W-PEACH estimator with any choice of the weighting
- S coefficients.
Theorem 3. The MSEE{||h — hw.peacs|/?} is minimized ) )
by Remark 2 (Weights of the PEACH estimator)flhe PEACH
Weopt = [wSP* ... wP T = A~'b (16) es?imator can allso be expressed as a W-PEACH estimator
using certain weights. To find these weights, we observe that

where theijth element oA € CL+1*L+1 and theith element I
of b € CL! are ZO‘(I — o(PRPY + S))l

[A;; = aititr (Rf’H(f’Rf’H + S)”-j‘lf’R) : s

. ~ ~  ~ L~ (17) l n/PPDH nyl—-n
[b; = al,tr (RP# (PRPY + 8)'PR). =Y a) (, )(=a)"(PRP" +8)"
=0 n=0
The resulting MSE of the W-PEACH estimator is Lt/ o
=33 ( )(_1)na”+1(PRPH +8)".
MSE = tr(R) — b7 A~ 'b. (18) i \n
Proof: The W-PEACH estimator achieves an MSE of By gathering all terms that belong to a certain exponent
N ) we see that
MSE = E{HVGC(H) — VeC(HW—PEACH)HF} n L l
y R wn = (1" (n) (23)
=tr <R— RP “(w +w))al M Z'PR I=n
1=0 (19) Plugging these weights int@32) yields an alternative way of
L L . e computing the MSE of the PEACH estimator.
* it 2rpHyzh+h+tlpRr ) ) )
+ 1220 IZ:O Wl Wiy Fw R Although Theoreril3 provides the optimal weights, the com-
1=0l2=

o putational complexity ig2(M?) since it involves pure matrix
where Z = PRPY + S. For a given pilot matrixP and multiplications of the formZ‘. This means that computing

polynomial degreeL, the coefficientswy,...,wr can be the optimal weights for the W-PEACH estimator has the same
selected to minimize the MSE as asymptotic complexity scaling as computing the converiion
L MMSE estimator. To benefit from the weight optimization we

minimize MSE. (20)  thus need to find an approximate low-complexity approach to

ompute the weights, which is done in the next subsection.

ote that the weights cannot be optimized by random matrix
theory (as was done for multiuser detection[in][18],] [22] and
precoding in [[24]-4[26]) due to lack of randomness in the
iMSE T (Rf,Hsz,R) MMSE estimation expression ifil(2).

awlL (21) Remark 3 (Low-Complexity Classical PEACH Estimators)

T Z wi tr (Rf,Haf;-Q—lg-ﬁ-Qle-f-lz-f-lﬁR) . Following th_e same approach as u_sed to derive low-complexit
PEACH estimators for the Bayesian case, we form the corre-

i i sponding low-complexity estimators to approximate thegita

By equating to zero for each=0,..., L, we achievel +1 vy estimator in(@). Note that if the quality of the channel

linear equations that_lnvolve thb_—l— 1 unknown coefficients. oy ariance matrix estimate is very poor, then the MVU esti-

These areAw = b with A, b as in [1T); note that we madea¢or performs better than the MMSE estimator.

a change of variables =/, +1 andj = I + 1 for A and  First e define a regularization factar > 0 which in the

i =1+ 1 for b, because the sums i _{21) begin at O whilgyry, of 1 is added to(P¥S~'P). Then, we use the matrix
the indices of matrices/vectors usually begin at 1. The MSE ersion lemma which results in

minimizing weights are now computed as [n](16). R _ -1
Finally, we note that, using\, b in (I7), the MSE expres- h§;yy = (eI + PHS‘lP) P7S~!(y —n)
sion in [I9) can be expressed @a$R) + w Aw — bfw — N 1 N
wHb. For optimal weightsv,,; = A~'b, the minimum MSE =P (PPH + 68) (y —0) = hyvu [eso -
becomes[(18). [ | (24)

The solution to this unconstrained optimization problem
achieved by computing the partial derivatives with resgect
each coefficient and looking for stationary points:

12=0



The approximation in Propositidd 1 can now be applied. TheAlgorithm 1: Low-complexity weights for W-PEACH
set of low-complexity PEACH estimators obtained by this Input: Polynomial degred. and time windowr':
approach are ’

Input: Current timet;

R L . Input: New and old received signajs., y:—;

hMY oy =P Z « (I — (PP + eS)l) (y—n) (25) Input: ApproximationsA;_1, b, at previous timet—1;
=0 1 Set [At]ij = [At—l]ij

and oiti e~ o L
. + Syl (PR?PH(PRPY +8) %)y,
E%YPU]EACH =P Zwlafwﬂ(f’f’H +eS) (y —n). (26) aiti e o~ ~ L
=0 — = Yilr (PR2PH(PRPY +8)17°2) y, 1 Vi, j

Observe that the last equality {@4) equals to?) if R = 1I, , get (be]: = [be_1l;
therefore all the results presented in Theoréis 2[dnd 3 can be

; “MVU LMVU ; i i ~ o o~ ~ )
derived forhpp oy and hyypracy in @ similar way. T O‘Twyg{ (PRQPH(PRPH + S)z—?) vi
Remark 4 (Other PEACH estimators)The PE technique can i

be applied to any type of channel estimators that involve ma- — Q?WYI{{T (PRQPH(PRPH + S)i’Q) Yier Vi>2
trix inversions. For example[[35] derives a robust estiorat N o

the minimax regret estimatounder certain uncertainty and 3 Set[b,]; = %= 7| v{'PR*Pv; for v;~CN(0,1);
statistical assumptions. This estimator has a similar egpion 4 Computewapprox,t = A; by

as the MMSE estimator, but involves other matrices. Hence,Output: Approximate weightsw,pprox+ at timet;

the PE technique is straightforward to apply and the weights

can be optimized similar to what is described herein.

instantt, this algorithm computes approximationsAfb, de-
C. Low-Complexity Weights noted byA., b;, by using the received signas, ..., y+—7+1.

Next, we propose a low-complexity algorithm to computzhese are used to compute approlxmlate~ We@m&’“’?‘vt‘
weights for the W-PEACH estimator. We exploit that To reduce the amount of computations;, b; are obtained
from A;_1,b;_; by adding one term per element based on the

o " 1 & ,  current received signat, and removing the impact of the old
(PRP™ +8) = E{vec(Y)vec(Y)"} = lim — > vyt received signay,_7 (which is now outside the time window).
=1 The algorithm can be initialized in any way; for example, by

) : . . \ ) :
wherey; = vec(Y) denotes the received signal at estimatioficcumulating” f‘?ce"’ed S|g_nals to fill the_ time window. ,
time instant¢. This means thal(f’Rf’H + S) is closely _The a§y”_"pt°“° 002mpIeX|ty of Co”?pu“’_‘g the elements in
approximated by the sample covariance ma%igtll yeyi Alt andtbt 'S O(Léwt) FLOPS,[ per t|me_z mstl?ntF(?tr_ el_acrtw_
if the number of sample¥' is large. Although one generallyeemen » We need 1o compute a sernes of mulliphications

X 5 .
needsT > BN, to get a consistent approximation, we cat etwelen vzc;orz atm_? .maStrlc?cs)EoEﬁ:I(E)mpt:exm(M 21 Th|sth
get away with much smalléF since we only use it to computeIS explamned in detail in secl where we derive the

traces—this is verified numerically in Sectibn] IV. E?agtor\:/ci)r:gp:tr?tiog%ggggglqté/s'\tlg;w agfpr(gdtu;i:r?;alr\;\?hc:ch
i > j > . '
For any fixedT > 1 andi = 1, we now observe that has complexityO(L?). Finally, the W-PEACH estimate is
tr (RISH(f,Rf,H I S)if,R) (28) computed in the recursive manner described in Sefionllll-A
. with a complexity ofO(LM?). To summarize, the W-PEACH
~ o~ ~ - 1 ~ estimator along with Algorithnh]1 has a computational com-
~ H H i-1 [+ H
~ tr <RP (PRP 4+ 8) (sztyt ) PR) (29)  plexity of O(LM? + L)
. =t One additional feature of Algorithi 1 is that it can easily be
1 H (pR2pH pPRpH i—1 extended to practical scenarios where only imperfect esém
- PR2PY (PRPY + 8)’ ) . 30 . . .
T Z Yt ( ( +5) Yt (30) of the covariance matricéR andS are available. Apart from
) ) enabling adaptive tracking of the slow variations in theroted
~ Since the elements oA and b in (I7) are of the form anq gisturbance statistics, this practical scenario Eveelt to
in (28), we can approximate each element usind E?_’B)’- ~understand how sensitive Bayesian channel estimatorsoare t
computing/updating these approximations over a slidingeti mismatches in the statistical knowledge. We perform a numer
window of lengthT’, we obtain AlgorithmllL. At any time jca| study in SectiofiIV, based on the statistical estinmatio

SO . _ _described in the next subsection.
"Note thatby = tr(PR?PH) needs to be treated differently since there is
no (PRPH +8) term. In the case wheRP P is a scaled identity matrix,

we only need to computer(R?) which can be done efficiently since only D. |mperfect Covariance Matrix Estimation
the diagonal elements @2 are of interest. Otherwise, one can select a set . .
of T vectorsv; ~ CN(0,1) and apply the approximationr(PR?PH) ~ Suppose we want to obtain some covariance madrixom

ow ST | VHPR2PHv,. This is the approach included in Algorittih 1. N observationg, . . ., cx, whereC might beR, or PRP# +

t=1



S. The sample covariance mati@q, 1. 2 % Z{\il c;cH is Channel Estimators Computational Complexity
conventionally used to estima®€. However, this approach MMSE and MVU O(B°N;)

is unsuitable for large-scale systems where it can be hard to Diagonalized O(BN,)
accumulate more samples than the dimensiorCofwhich PEACH O(LB’N;)

is N, N, for the channel covariance matriR. In fact, the W-PEACH O(LB*N; + L?)

sample covariance matrix is not even invertible if the numbe

of samples is smaller than the matrix dimension. Instead of These asymptotic complexity numbers are supported by an

using the pure sample covariance matrix, we suggest tofoll@xact complexity analysis below. We note that the cubic com-

a similar approach as i [86] and use a new estim@tavhich  plexity scaling inBN,. for the conventional MMSE and MVU

is an affine function of the sample covariance Ma@i% .. estimators is reduced to linear complexity in the diagaeai

In [36], the authors have shown that this estimator is a bet@Pproach and squared complexity for the proposed PEACH

fit for large-dimensional covariance matrices. estimators. The degreg of the polynomial expansion has a
Here, different from the diagonal loading approach(in [36§/€ar impact on the complexity, but recall that it needs not

where they consider an affine combination of the identi§cale With BN, [20]. This property is illustrated in the next

matrix and the sample covariance matrix, we assuthe- Section, where we also show that small valuesowyields

KkCq+ (1 — k) Cample WhereCy is the diagonal matrix com- 900d performance.

prising the diagonal elements €f...p1c and  is chosen to The high complexity of thg conventional _es_,timators_, is not

minimize the squared diﬁerenMHC—CHQF}. The advantage an issue if the chanr_1e| and disturbance statistics are fixed o

of C is that the diagonal elements converge quickly with 2 Very long time horizon; the system can then simply compute

to their true values, while the reliance on the off-diagon#f€ inverse and then use it over and over again. As described i

elements is controlled by the parameterThe optimals is Sectior -4, the statistics change continuously in peend
given by the following theorem. it is thus necessary to redo the inversion every few seddnds.

To make a precise and fair comparison, we need to consider
Theorem 4. The solutionx* to the optimization problem the relationship between the coherence time of the lomg-ter
min E{]C — C|*}, whereC = kCq + (1 — £)Csample, IS statistics,,, and the channel coherence time, denoted-by
The analysis below reveals how the computational complexit
in terms of the number of FLOPs, depends on the system
dimensions, polynomial degrde and the coherence times
and r.. For the sake of brevity, we consider complex-valued

K* = (I)(Csamplc) B %\IJ(Cda Csamplc) (31)
(I)(Csamplc) + (I)(Cd) - \IJ(Cdv Csamplc)

where ®(Csampte) = E{||Csample — Cl%}, ©(Ca) = FLOPs and neglect the computational small complexity of
E{|Cs — C|%} and ¥(Ca, Csampe) = E{tr((Ca — scalar multiplications and additions of matrices and vexto
C)(Csample — C))}- The ratio@ = 7= describes how stationary the channel
Proof: The objective function can be rewritten as statistics are[[30], in terms of how many channel realiza-
tions that fit into the coherence time of the statistics. The
E{||[kCa + (1 = £)Csampte — C — KC + KC|| 7.} propagation environment has significant impact on thisrati

= E{||s(Cq — O)||%} + E{||(1 — £)(Csampte — C)||5-} for examplg, in [[fED] thde authorsI ha\(/je sgown tidatequals
13, 108 and 126 for indoor, rural and urban environments,
+25(1 = mE{tr((Ca = C)(Caampre — C))}- respectively, under their measurement setup. Smaller aumb
Considering ®(Cgample), ®(Cq), and ¥(Cy, Csampre), the are expected when the transmitter/receiver travel with kigr
first-order optimality condition is locity. Similarly, the disturbance statistics can changpgialy
if it contains interference from other systems (particiylafr
25P(Cq)—2(1—k)P(Cosample)+(1-26)¥(Cy, Csample) = 0,  adaptive scheduling is performed) [38]. For a given totalkti
) ) ) ) ] Tiot, the computational complexity for each of the estimators
which yields the optimal solutior™ in (31). B consists of two parts: one part which can be precomputed
Note that as the number of samplés grows large, the 5nce per coherence time of the statistics (i, = Lot

. . . . - Ts, .
optimal * will be smaller which implies that we put largeriimes) and one part that is computed at channel realization
trust in the sample covariance matrix. In Secfioh IV, we gpp}; . ko = Lit) Note thatk. = Qk,

1 Tc - .

this_ thepry to the channel covariapge matrix and compare th§ue yse the notation/ — N,B and N = N,N,. For
estimation per_formance \_/vhen usnIg_ to performance with given vectorsx,y € CV*! and matricesA € CM*N and
the true covariance matriR. Interestingly, we observe thatB € CN*P| there areMP(2N — 1), M(2N — 1) and

_the proposed_W—PEACH estimator adapts itself very well ton; _ | £ Ops required for the matrix-matrix produatB,
imperfect statistics. matrix-vector productAx, and vector-vector product?y,
respectively. In the special case 8f = P andC = AB

E. Asymptotic and Exact Computational Complexit
ymp P P y 8The MMSE estimator can be implemented recursivély] [37], clvhis

The asymptotic complexity of the conventional estimatorsyitable for tracking variations in the covariance masicghe complexity

; ; ; ; ; of each recursion i€ (M?2), but we need more thah/ recursions (per long-
ctionl!l-B, drel . s . R
the dlagona“ZEd estimator described in Seclionlll-B, tterm statistics coherence time) to obtain a stable cowegiastimate[[37].

proposed PEACH estimators are summarized as follows: Hence, the recursive implementation also has a cubic cotiple



being symmetric, only; M (M + 1)(2N — 1) FLOPs are FLOPs. To summarize, for the W-PEACH estimator, we have
required to obtainC. Moreover, the Cholesky factorizationyw _pracu = ke [4LM2 + (8L +4)MN + (4L + 4)N? +

of a positive definite matrixA € CM*M is computed using M — (4L +3)N + L% + 3L* + 3L + 4] + k,[M (2N —1)]
%M3 FLOPs. To solve a linear system of equatiocxis = b, FLOPs.

whereb € CM*1 by exploiting Cholesky factorization and In the following table we summarize the exact total compu-
back-substitution, a total of M?* + 2M/? FLOPs is needed tational complexity of the different estimators whén= N,

[37]. which makesM = N.

We denote the total computational complexity in FLOPs
byNX. F~or t~he MMSﬁE1 estimator, Nthe_two parlSyivse = Estimators EFLOPs
RPH (PRPH n s) andv = PPh + @ are computed | MMSE Fe 2N — M+ k[P S0P =30
once perr, and the partsd =y —v and h + Ud once MVU ke |2M? = M| +ks [ X MP+ S M>— 2 M
per 7. It results in a total computational complexity of PEACH | k.[(8L+4)M?>—(4L+2)M]|+k,[2M*—M]
xumse = ke[N(2M —1)] + kg [$ M3 + (3N — 0.5)M? + | W-PEACH k[(16L+8)M?*—(4L+2)M
(2N?+ 2N — )M] in FLOPs. 5 L3 +3L7 430+ 5] +ks[2M° — M|

For the MVU estimator, there is Unvy Now, recallingk, = Qk, and comparing the dominating

(f’Hsflf’) PHS~1 which is computed once pet., terms of the MMSE and PEACH estimators, we can obtain a
and the party — i (neglected) an@Jyvy (y — 1) computed condition (the relation between the valugés Q and M) for
once perr, yielding toxavu = ke [N(2M —1)|+ks[$ M3+  when the PEACH estimators are less complex than the MMSE

2NM?+ (3N? 4+ N)M + AN3 - 0.5N? — 0.5N]. estimator. This condition is
For the proposed PEACH and W-PEACH estimators, only 16 3 3
v is computed once per,. The rest of the computations ?M >8QL+2Q=M>Q <§L+ §> (32)

take place once per.. As described in[(11), the polynomial
Zl o X!d, whereX =TI — o(PRPH 4+ 8), is computed for the PEACH estimator, and
recursively. The first termal is readily available. The second 16 9
term Xd is computed as a series of matrix-vector products. —M >16QL+6Q = M >Q (3L + —) (33)
First, we computesd and PHd. Next, we multiply R with 3 8
the resulting vector ofP#d), and therP is multiplied with for the W-PEACH estimator. This implies that only under
the vector(RPd). The vectord — «PRP?d — aSd is certain numbers of the channel stationarity, polynomigkde,
then computed. We repeat this procedirémes and exploit and the number of antennas, PEACH estimators are less
X'd to computeX'*!d. For the PEACH estimator, the totalcomplex than the MMSE estimator and will provide reasonable
computational complexity ispeacu = kc[2LM? + ((4L + performance. For the practical values @f= 50 and L = 2,
2)N —2L)M +2(L+1)N? = 2(L+1)N| + k,[M(2N —1)]  (32) and[[3B) show that the PEACH and W-PEACH estimators
FLOPs. outperform the MMSE estimator in terms of complexity for
The polynomial structure of W-PEACH estimator requires/ = N,N, > 167 and M > 357, respectively. Hence,
the same number of FLOPs as the PEACH estimator, but thefie PEACH estimator is practically useful for setup such as
are two additional sources of computations: solving thedin N, = 2 and N, = 100 or N, = 1 and N,. = 200, similarly
system of equationA ~*b to compute the weight vectav,,; the W-PEACH estimator folV; = 4 andN,. = 100 or N, = 1
(which requires: (L + 1)3 4+ 2(L + 1)*> FLOPs) and using and N, = 400.
Algorithm [T to find the approximated elements Af and b. As demonstrated by the complexity analysis, the PEACH
The computational complexity of Algorithid 1 is counted bystimators are computed using only matrix-vector muttipli
considering the following: Firstly, we only need to obtaifet cations. This is a standard operation that can easily be par-
elements inA., since all the elements &, can be extracted allelized and implemented using efficient integrated dtecu
out from A,. In particular, all the elements contain similaion the contrary, the matrix inversions in the MMSE/MVU
terms Z* with Z = PRP#Y + S, where0 < k < 2L in estimators are known to be complicated to implement in
A, and0 < k < L — 1 in b,. Secondly, we exploit the hardware[[39]. Consequently, whenever the PEACH estiraator
fact that Z*y, for 0 < k < L has been already computechnd MMSE/MVU estimators are similar in terms of FLOPs,
in the estimator expressmEl 0 Z'y.. Thirdly, to determine the computational delays and energy consumption are phkpbab
all the elements inA;, we first need to comput&”y; for |ower when implementing the proposed PEACH estimators.
L+ 1 < k < 2L which results in doing a recursive matrix-
vector multiplicationZ times (i.e.,L[M (2M — 1)+ N(2M —
1)+ N(2N — 1) + M(2N — 1)] FLOPs) and then compute
y¢7PR2P#. Note that this term can be considered as the In this section, we analyze and illustrate the performance
multiplication of y;# PR and RP#, where the first term of the proposed diagonalized, PEACH, and W-PEACH esti-
y¢PR has already been computed. This results in twmators. The analysis so far has been generic with respect to
matrix-vector products (i.ely (2N —1)+ M (2N —1) FLOPs). the disturbance covariance mati$ Here, we consider two
Finally, for each element, we have the vector-vector miitip scenarios: noise-limited and cellular networks with pdon-
cation (y. " PR2P*)(Z*y,) resulting in(2L + 1)(2M — 1) tamination. We describe the latter scenario in more detaiks

IV. PERFORMANCEEVALUATION
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it is one of the main challenges in the development of largand

scale MIMO systems[[7]. This section provides asymptotic 1, e~ P
analysis and numerical results for both scenarios. Ji = ﬁio‘wtr (RP (PRP™ +8) PR)

— g (R(R + ;’)—I)HR) (38)
A. Noise-Limited Scenario t

. - . — agtr (R)™1),
A commonly studied scenario is when there is only un- - o
correlated receiver noise: thi® = o2I where o2 is the under the condition thad,, is fixed (recall that for the W-

noise variance. As the pilot power grows large, the MSE S{EACH estimatory,, can be selected arbitrarily). By denoting
the MMSE estimator is known to go asymptotically to zerd€ limits of DAD andDb asA andb, respectively, the MSE

[12]-[15]. We proved in Theorerfil 1 that the diagonalizeB*Pressionl(18) converges to the non-zero floor

estimator has the same asymptotically optimal behavior in tr (R—BHA‘lf)) _

the high-power regime. Here, in the following propositiarmg

derive the asymptotic behavior of the PEACH and W-PEACHis MSE floor is independent @P; and is only a function
estimators in the noise-limited scenario. of channel covariance matrix and its moments. However, by

Proposition 2. As the pilot powerP;, — oo with the pilot similar justification as that of used for the PEACH estimator
. t .

matrix P — /P,L, the MSEs of the PEACH and W-PEAC i.e., havinga « 73;1) we observe that the MSE expression
. ’ i ) converges to a non-zero error floor independeri,ofm
estimators converge to the non-zero MSE floors This proposition shows that the MSEs of the PEACH

tr (R+RBLRBfR—2RBLR) (34) and W—PEA_CH estimator§ exhibit non-zero error floors as
the power increases. This reveals that, in order to reduce
and complexity, it is better to ignore the spatial channel clatien
e 1 (as with the diagonalized estimator) than approximatirg th
tr (R_ b7 A b) (3%) " full matrix inversion (as with the PEACH estimators) in the

] high-power regime of noise-limited scenarios.
respectively, wherd = max, A\,(R) + min, \,(R), By, =
2y L _2m\ AT - it i+l 0o
&\iztil(_(ofgiﬂ)AR) Al = a7 (R) ), and [b]; B. Pilot Contamination Scenario

. ) A scenario that has received much attention in the large-
Proof: First, we focus on the PEACH estimator wh= scale MIMO literature is when there is disturbance from

VP1, where the MSE expression i {12) can be rewritten agmultaneous reuse of pilot signals in neighboring célls- [4
1 [8], [1Q], [11]. Such reuse is often necessary due to thesfinit
tr (R+ R(P:AL)(R+ =S)(P,AJ)R — 2R(P:A.)R ). channel coherence time (i.e., the time that a channel estima
Py (36) can be deemed accurate), but leads to a special form of

Observe thaP, A — ZIL:O ’Pta(I _Pa(R+ %S))l _B, interference called pilot contamination. It can be modeié

as P, — oo, becauserS = 21 — 0 and Pa = N=> HP+N (39)
e /\n(R-ﬁ-%tS)-zq—minn LS 2 using the expres- i€l

sion of « in (]IE)E By taking the limit ?, — oo in the where 7 is the set of interfering cellsH; is the channel
MSE expressior(36) and exploiting the aforementioneddimifrom the transmitter in théth interfering cell to the receiver
P:Ar, — By and-LS — 0 we obtain the non-zero MSE floorin the cell under study, angtec(N) ~ CN(0,0°I) is the

(@4) which is indef)endent aP;. uncorrelated receiver noise. H; is Rayleigh fading with
Next, for the W-PEACH estimator, the minimum MSE igvec(Hi) ~ CN(0,%;), then
H A —1 R H _ -~ -~
b A _b where A andb are gl\ien .|n The?reriﬁl 3. For1 nor S — ZP&PH + o2 (40)
malization reasons we defil®® = diag(1, 5;, 77, 5r) P

and note thab” A='b = (Db)” (DAD)~!(Db). The limit,

asP, — oo, of each element GDAD and Db are Note that only the sum covariance matdx, _, ¥; needs to

be known when computing the proposed PEACH estimators.
Moreover, only the diagonal elements of the sum covariance

1 IS L
D 1+ H H i+5—1
[DAD]J;; = ity W Ttr (RP (PRP™ +8)™ PR) matrix are used by the diagonalized estimator.

t

2
= o tr R(R + U_I)iJrjflR 10Cell 5 can use an arbitrary pilot matriR;, but only pilot matrices with
w f overlapping span (i.eP;P¥ # 0) cause interference to the desired pilot
i+j i+j+1 signaling. Therefore, the case of a common reused pilotixnRly = P Vi €
— Qg U tr ((R) ) 7 is the canonical example, while extensions to partiallyriaymping pilots are
(37) achieved by removing the non-overlapping parts (e.g., msideringYP#
as the effective received signal). Moreover, it is assunreq3B) that the
interfering pilots are synchronized with the desired pdod that the delays
9Similar MSE floors for the PEACH estimator are obtained foy may of  between cells are negligible. These are, essentially, tveae assumptions
selectinga, as a function ofP, to satisfy the condition in Propositidd 1.  and alternative unsynchronized scenarios have recengly aealyzed in[40].
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When [40) is substituted into the PEACH and W-PEACHProposition 4. As the pilot powerP, — oo with the pilot
estimator expressions i (10) ar[d](14) we get contaminatedtrix P = /P,I, the MSE of PEACH and W-PEACH
disturbance terms of the forRP”PX;P¥. These terms are estimators converge to the non-zero MSE floors
small if R and X; have very different span, or ifr(%;) is

weak altogether—this is easily observedRf/P is a scaled tr(R+RB(R+ ) %)B.R - 2RB.R) (43)
identity matrix. Similar observations were recently mauléhe ez

capacity analysis of [6] and when developing a pilot allmrat and

algorithm in [10]. Under certain conditions, the subspaces tr (R — BHA—lf,) (44)

of the useful channel and pilot contamination can be made

orthogonal by coordinated allocation of pilot resourcemss respectively, wherd = max,, A, (R4 ;7 ;) +min, A, (Rt

cells [10] or by exploiting both received pilot and data sitgn YierZi), Br = %Zfzo I- 2R+ X, zi))l,

for channel estimation as ih [11]. [Al;; = oifitr (R2R+Y,c, %)) and b, =
Similar to the noise-limited scenario, we want to under(sttarggl‘ijv‘Dr (RQ(R +Yier Ei)i‘l).

how the MSE with different estimators behave as the pilot o - )

powerP; — co. We begin with the MMSE estimator and the Proof: The prpof is similar to Propos_mdﬂ 2._ In this case,

proposed diagonalized estimator, for which the MSEs starat® MSE expression i (12) for PEACH is rewritten as

in the asymptotic regime under pilot contamination. o2 i
- . _  tr(RAR(PAL)(R+Y Bt —I)(P, A )R-2R(P:AL)R)

Proposition 3. As the pilot powerP; — oo with the pilot Py Py

matrix P = /P.I, the MSEs with the MMSE estimator and 545)

diagonalized estimator converge to the MSE floors whereP, A = ZZL:O Pra(I-Pa(R+>, o7 Ei—i-%—il)) —

B;. This is due to the fact tha;il — 0 and Py — % as
tr <R —R*R+ Z 21-)1> (41) P — oo, whereA=max, \, (R—i—iiez 3,;) + min, A\, (R+
el > ez i) .- By considering all these limits, the MSE in_{45)

converges to the non-zero MSE flobr43).

and NN, NN, 2 Also, for W-PEACH, we follow the similar approach where
Z rj— Z S N— (42) the limits of each element dAD andDb asP; — oo are
=1 =TT Xiez iy given by
respectively, where; ando; ; are thejth elements oR gjag [DAD],;; — o4 7tr(R*(R + Z Ei)iﬂq) (46)
andX . i, respectively. Note th&gi., = Py ZieI Ydiag,it+ ' icT
0?1
and
Proof: We start by noting that the MSE of the MMSE [Db]; - altr(R* R+ %)), (47)
estimator behaves as ieT
MSE = tr (R— RP# (PRPY S)flf)R) As in Proposition[R, it is concluded thdDAD and Db
. converge toA andb in the limit which results ib” A~'b =
) o2 b?A~'b. Then, it is easily shown that the MSE expression
=tr |[R-R*|(R+) %)+ EI (@38) converges to the non-zero flobr44), which is a function
i€z of the covariance matrices of the desired and interfering
) o channels, but not the pilot power or noise power. |
—tr[ R—R*(R+ Z 3) as Py — oo, We conclude that the performance of all of the estimators
i€T

(i.e., the conventional MMSE and the proposed diagonalized

The first expression above is obtained by applying the WooBEACH and W-PEACH estimators) saturate as the pilot power

bury matrix identity to [(B). Equivalently, for the diagoimdd grows large under pilot contamination. This is an expected

estimator we only need to considBri.es and Sqiae instead result for the PEACH estimators, for which the MSEs satufate

of R andS in the above equations which results nl(42) aslso in the noise-limited case, while the saturation for the

the MSE floor. m MMSE and diagonalized estimators is completely due to pilot
This proposition shows that the MMSE estimator and trgontamination.

diagonalized estimator exhibit non-zero error floors in the

high-powgr regime. The error floors .ilﬂ41) arld1(42) arg  \umerical Examples

characterized by the covariance matrix of the own channel )

and the interfering channels. Clearly, the pilot contamiara 10 €valuate the performance of our proposed estimators,

is the cause of the error floor, which explains the fundament¥e consider a large-scale MIMO system with. = 100 and

difference from the noise-limited case where the MSEs ap+ = 10 antennas and the pilot leng# = 10. Without loss

proached zero asymptotically. o_f generality, we assume zero-mean channe_zl and disturbance
The next proposition shows that the PEACH and W-PEACE|NCe the non-zero mean ass_umptlon has no impact on the MSE

estimators also exhibit MSE floors under pilot contamimatioPerformance as shown earlier in Sectfoq Ill. We follow the

Kronecker model[[41] to describe correlation among antenna
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of the desired and disturbance MIMO channels. In the simula-fixed L = 10 and vary the SNRy. As expected, the
tion, the covariance matrix of a MIMO channel is modeled &dSEs of MMSE, diagonalized and MVU estimators decay
R = R; ® R;, whereR; € CN+*Mt andR, € CN-*N- are steeply to zero when the increases in the noise-limited
the spatial covariance matrices at the transmitter andverce scenario. However, as proved in Propositldn 2, the MSEs
sides, respectively. Following the same modeling, we haweé PEACH and W-PEACH saturate to non-zero error floors.
3 = VBiZt, ® VBiEy, for i € T where the covariance Under pilot contamination (i.e3 # 0) the performance of
matrices are weakened by the factey > 0. This factor all these estimators converge to non-zero error floors. This
represents how severe the pilot contamination parsjis= 0 observation comply with the results stated in Proposit@ns
represents the noise-limited case, while= 1 represents the and[4. This behavior can be interpreted from another view
case when the useful channel and itte interfering channel point. The MSE values are affected by another feature of
are equally strong. the system:signal-to-interference-and-noise ratio (SINE)

To generate covariance matrices, we use the exponentialder pilot contamination, the SINR converges to a constant
correlation model from [42]. All the covariance matricevda as~ increases. More specifically, note that the SINR (when

diagonal elements equal to one which resultstifR) = B = N,) is defined as

NN, and tr(X%;) = B;N:N,. We assume that there are ~

two dominating interfering cells; = 1,2. The correlation g - ZUPBITY 7 __ " (48)
coefficients for the spatial covariance matridgs, R,, 3¢, E{||n|?} o2+ PKB 1+~Kp

and 3, wherei = 1,2 are as follows, respectively: where K is the number of interferers. As increases, the

re =040, rp=0.9- e 7092897 SINR in (48) approachegi; > 0, thus making the MSEs
011 = 0.35 - ¢ 9085377 Gt = 0.9 ¢~ 07464 ahpprqlach some non-zero limits and become independent of
—j0.4583m the pilot powerpP;.
' ’ We observe from Fid.]3 that pilot contamination only has

Note that the phases for the correlation coefficients can BeSmall impact on the PEACH and W-PEACH estimators;

chosen randomly, but describe certain channel directivig " fact, pilot contamination is beneficial in the sense that i
define the normalized pilot SNR as — % where P, — reduces the gap to the optimal MMSE estimator; for example,

%tr(PHP) is the average pilot power. whengs = 1the performanc_e of W—PEAC_ZH estimator is identi-
We use the normalized MSE, defined E cal to that of the MMSE estimator. This important result seow

#S— as the
) WR)" ; _anfi ; et g
performance measure. In all the figures, we compare tﬂ@t PEACH estimators are near-optimal in realistic sdesar

performance of the proposed estimators with the convealltithe result is explained as follows. For any fixé_d PEACH
MMSE and MVU estimators. The pilot matrix B = /7;1. and W-PEACH converge to a non-zero MSE wheincreases,

In [16], it has been shown that this choice of pilot matrik‘,jue to the bias generated by the approximation error. Siise t

i.e., the scaled identity, performs (in the MSE sense) aﬂlm(ﬂso happens for the MMSE and MVU estimators under pilot

identical to the optimally robust designed pilot when thgontalrmr_lanon,. the relative Iﬁss COf using thel proposed l(;)W'
channel covariance matrix is uncertain and this uncestairff®MP!exity estimators is smaller. Consequently, we cance
is bounded by using some norm constraints. L as 3 increases and still achieve near-optimal performance.

In Fig. 2, the MSE has been plotted as a function of the !N t€rms of computational complexity, we note that the
polynomial degreeL. The noise-limited scenario is givenMVU estimator has the same low complexity as the proposed
by 3 = 0, while 3 = 0.1 and 3 = 1 (we assume that diagonalized estimator in the noise-limited scenario aod f

%e scaled identity pilot matrix. However, Figl 2 and Hig. 3

51 = B2 = ) represent the scenarios when the two interferirk ! ] )
cells have interfering channels which afedB weaker than or SOW that the diagonalized estimator always outperform the

equally strong as the desired channel, respectively. THe sivU _estimator. This is because_ the diagonalized estimator
is v — 5 dB. As can be seen from Fifll 2, the MSEs of botfXPIOits parts of the channel statistics. _ _
PEACH and W-PEACH estimators decrease when increasing\nother interesting observation from Fid. 3 is how differ-
L. Interestingly, W-PEACH approaches the MSE-values of tgatly the diago_nalized estimator performs in differenernt
MMSE estimator very quickly, while PEACH needs a higheférence scenarios and SNR ranges. The MSE tends to zero
L than W-PEACH to get close to the MMSE curves. Thd the n0|§e-llmlteq scenario. Th|_s |mpI|e_s that ther(_a faeli
W-PEACH estimator outperforms the MVU, diagonalized anl®SS Of using the simple diagonalized estimator at high SNRs
PEACH estimators in all interference scenarios for any wal§ince the estimator does not need the spatial correlation to
of L. Whereas the PEACH estimator outperforms the Mv@chieve low MSEs in this SNR regime. Hence, the PEACH

and the diagonalized estimators under pilot contaminatigestimators are only useful at low and medium SNRs in the
ie., B # 0, and outperforms them fof > 2 and L > 4 noise-limited case. However, in the pilot contaminatec¢hs

respectively, in the noise-limited case. It is concludeat #- PEACH estimators have a performance advantage throughout

PEACH is near-optimal at quite smdll and that PEACH and the whole SNR range.
W-PEACH estimators achieve a better performance than the
diagonalized estimator even for small 11The SINR is intimately connected to the MSE. For example, \aeeh

. . ) . . MSE > -MtNe_in the special case & = 71, R =1, andX; = 8;L
= 1+SINR ’ ’ v v
In F'Q-B’ we compare different estimators with or W'thoultiquality is then achieved by the MMSE estimator. In genehal, SINR needs

additional interference from pilot contamination. We ddes to grow asymptomatically to infinity if the MSE should appchazero.

)

—3j0.26497

0t,2 =04-¢ Or,2 =09-e
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lized MSE (dB)
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(a) B = 0: Noise-limited scenario. (b) B = 0.1: Pilot contaminated scenario.  (c) 8 = 1: Pilot contaminated scenario.

Fig. 2. MSE comparison of different estimators as a functbrthe polynomial degred. for different interference scenarios.

Normalized MSE (dB)

Normalized MSE (dB)
Normalized MSE (dB)

35 -35
S0 -5 o 5 5 20 25 30 C10 -5 [ 5 o 15 20 25 3 -0 -5 0 5 10 15 20 25 30

10 1
SNR (dB) SNR (dB) SNR (dB)

(a) B8 = 0: Noise-limited scenario. (b) B = 0.1: Pilot contaminated scenario.  (c) 8 = 1: Pilot contaminated scenario.

Fig. 3. MSE comparison of different estimators as a functdériSNR ~ for different interference scenarios.

In order to illustrate that the estimation performance @ tiNext, in Fig.[6, we study how imperfect statistical inforiat
proposed PEACH estimators does not scale with the numiadfects the performance of the MMSE and W-PEACH estima-
of antennas for fixed., we plot in Fig[4 the MSE of PEACH tors. For this numerical example, we consider a noise-ichit
and W-PEACH for different number of receive antenigs scenario withN, = 4, N, = 100, L = 8, and~v = 5 dB.
while N, is fixed to10. From Fig.[4, we conclude that for aNote that in large-scale noise-limited cases, the noisewee
given L, there is a certain level of approximation accuracy far? can be easily obtained. However, it is important to evaluate
the matrix inversion and it determines the MSE performant@w sensitive the estimators are to imperfect channebsti
while there is no clear dependence on the channel dimensidnsthis figure, we compare the different estimators. The esirv
This result complies with the reasoning in Secfioh Ill rethto marked by—est at the end of their names are based on the
Lemmal, as well as the corresponding results in the detectiestimated covariance matriR described in Sectiof 1II=D,
literature [20]. This property is indeed one of the main bigee where the optimal parameter* is obtained using Theorem
of the PEACH estimators. [. The other curves are based on the true covariance matrix

Next, we focus on the low-complexity approach in AlgoR. Fig.[8 shows that even for number of sampléssmaller
rithm [ for finding the weights. First, in Fif]l 5 we illustratethan the matrix dimensiofV; N,., we can achieve a reasonably
how the approximate weights compared to the optimal weighgsod performance usin® (recall that it is an affine function
perform when the perfect covariance matrices are availabt# the sample covariance matrix). Moreover, it is shown that
Then, in Fig[® we investigate what happens if we only have #me proposed W-PEACH estimator, either using its optimal
imperfect estimatd® of the channel covariance matrix usingveights from Theoreriil3 (Exact W-PEACH) or approximate
some finite number of samplé$ < N, N,.. Fig.[3 considers a weights from Algorithni L (Approximate W-PEACH), is robust
noise-limited scenario and a time window of length= 100. to the statistical uncertainty and performs close to the N\EMS
Although T < BN,.,, we observe that the approximate Westimator. As expected, it is also observed that using Attgor
PEACH estimator which exploits the approximate weighfE, we are able to track the channel’s variations better wieeh
from Algorithm[d gives almost identical performance as the Wults in a superior performance as compared to MMSE-est and
PEACH estimator with optimal weights computed accordingxact W-PEACH-est. Observe that the W-PEACH estimator
to TheoreniB. This confirms that the W-PEACH estimator @&learly outperforms the diagonalized estimator, implyihgt
indeed a low-complexity channel estimator suitable fogéar we gain from exploiting some of the spatial correlation even
scale MIMO systems. when the channel covariance matrix is not perfectly known.

All the simulations so far are done under the assumption thatFinally, in the Figs[6 andl7 we compare the exact computa-
the covariance matrices are perfectly known at the receivéonal complexities of four estimators: MMSE, MVU, PEACH
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Fig. 4. Normalized performance of PEACH and W-PEACH estorafor Fig. 6. Performance comparison of different estimatorsgishe true and

different number of receive antennas. sample covariance matrices.
-4 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ estimator in terms of complexity whe® = 100, while it is
= B WEACH less complex forV,. > 65 when@ = 50. Note that from Figl P2
— = = Approximate W-PEAC

it can be concluded that even with= 2 and 4, we achieve

a reasonably good performance. Also, recall that all thetexa
complexity analysis is done under the assumption ghat I,

i.e., pilot contaminated scenario, for which the given ealof

L provide even better performance compared to the optimal
MMSE estimator.

Normalized MSE (dB)

V. CONCLUSIONS

Large-scale MIMO techniques provide high spatial reso-
lution and array gains, which can be exploited for greatly
improved spectral and/or energy efficiency in wireless com-
munication systems. However, achieving these potential im
o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ provements in practice rely on acquiring CSI as precisely as

PR R ey ° possible. On the other hand, enlarging the array size makes t

computational complexity of the signal processing schemes
Fig. 5. Comparison of W-PEACH estimator and Approximate BARH g key challenge. The conventional pilot-based MMSE and
estimator in a noise-limited scenarig & 0) for different SNR~ values. MVU channel estimators have a computational complexity

unsuitable for such real-time systems. In order to addifess t

and W-PEACH. In these figures, we plot the number of FLOR®mplexity issue, we have proposed a set of low-complexity
per second versus the number of antennas at the rece®EIACH estimators which are based on approximating the
side NV, for different vales of@ (i.e., different stationarity inversion of covariance matrices in the MMSE estimator by
conditions) and different polynomial degreés We assume an L-degree matrix polynomial.
Tiot = 7s = 5 sec. As mentioned in Sectidn III-E, these The proposed PEACH estimators converge to the MMSE es-
factors affect the exact computational complexity. Obeéimat timator asL grows large. By deriving the optimal coefficients
the presumed value of, (or 7.) change the number of FLOPsin the polynomial for anyL,, we can obtain near-optimal MSE
but it has no effect on the relative computational compiesgit performance at small values &f It is shown thatZ does not
of these different estimators. From both figures, we coreludcale with the system dimensions, but, in practice, theesegr
that the PEACH estimator has the lowest computational comb-can be selected to balance between complexity and MSE
plexity, which was also proved analytically. performance. By performing an exact complexity analysis,

As can be seen in Fifll 6 fdr = 2, the W-PEACH estimator we have investigated how the proposed estimator perform
has lower complexity than the MMSE estimator wh&h > compared to the MMSE and MVU estimators from complexity
35 for @ = 50 and N,, > 73 for Q = 100. However, by point of view under different assumptions of channel statio
increasing the polynomial degree fo = 4 (i.e., achieving arity, the polynomial degreé and number of antennas. The
near-optimal MSEs) a higher number of antennas is needmthlysis proves that the proposed estimators are beneficial
for W-PEACH estimatorN,. > 135 to outperform the MMSE for practically large systems. Numerical results are gif@n
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noise-limited scenarios as well as under pilot contamomati
from pilot reuse in adjacent systems. Although pilot coritam

REFERENCES

nation generally creates an MSE floor, it is actually benafici [1] N. Shariati, E. Bjornson, M. Bengtsson, and M. Debbahow-

from a complexity point of view since the proposed estimator
achieve good performance at smalletthan in noise-limited

scenarios. Furthermore, we introduced the lower-comylexi
diagonalized estimator. It serves as a viable alternative t

complexity channel estimation in large-scale MIMO usindypomial
expansion,” inProc. IEEE PIMRC 2013.
[2] A. Lozano and N. Jindal, “Transmit diversity vs. spatmdlltiplexing in
modern MIMO systems,JEEE Trans. Wireless Commumol. 9, no. 1,
pp. 186-197, 2010.

PEACH estimators in noise-limited scenarios with high SNRS[S] H. Holma and A. ToskalaLTE Advanced: 3GPP Solution for IMT-

whereas PEACH estimators outperform it in the whole SN

Advanced 1st ed. Wiley, 2012.
] T. Marzetta, “Noncooperative cellular wireless withliamited numbers

range under pilot contamination. By using imperfect ch&nne  of base station antenna$ZEE Trans. Wireless Communwol. 9, no. 11,

covariance matrices, we have illustrated numerically that
proposed estimators are robust to statistical uncertainty

pp. 3590-3600, 2010.

] J. Jose, A. Ashikhmin, T. Marzetta, and S. VishwanathilotPcon-
tamination and precoding in multi-cell TDD systems$ZEE Trans.
Commun. vol. 10, no. 8, pp. 2640-2651, 2011.

[6] J. Hoydis, S. ten Brink, and M. Debbah, “Massive MIMO iretb)L/DL
of cellular networks: How many antennas do we neelEEE J. Sel.
Areas Communwyol. 31, no. 2, pp. 160-171, 2013.



(7]

(8]

El

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

F. Rusek, D. Persson, B. Lau, E. Larsson, T. Marzetta, @ors, and
F. Tufvesson, “Scaling up MIMO: Opportunities and challesgwith

very large arrays,IEEE Signal Process. Magvol. 30, no. 1, pp. 40—
60, 2013.

E. Larsson, F. Tufvesson, O. Edfors, and T. Marzetta, $8i&e MIMO

for next generation wireless systemHE2EE Commun. Mag.to appear.
[Online]. Available:| http://arxiv.org/abs/1304.6690

R. Baldemair, E. Dahlman, G. Fodor, G. Mildh, S. Parkvall Selen,

H. Tullberg, and K. Balachandran, “Evolving wireless conmications:

Addressing the challenges and expectations of the futliedsE Veh.

Technol. Mag.vol. 8, no. 1, pp. 24-30, 2013.

H. Yin, D. Gesbert, M. Filippou, and Y. Liu, “A coordined approach
to channel estimation in large-scale multiple-antenndesys,” |IEEE J.

Sel. Areas Communvol. 31, no. 2, pp. 264-273, 2013.

R. Miller, M. Vehkapera, and L. Cottatellucci, “Btinpilot decontami-
nation,” in Proc. ITG Workshop on Smart Antennas (WS2013.

(31]
[32]
(33]
[34]
(35]

[36]

[37]

S. Kay, Fundamentals of Statistical Signal Processing: Estinmatio [38]

Theory Prentice Hall, 1993.

J. Kotecha and A. Sayeed, “Transmit signal design foinog estimation
of correlated MIMO channels,JEEE Trans. Signal Processvol. 52,
no. 2, pp. 546-557, 2004.

Y. Liu, T. Wong, and W. Hager, “Training signal desigrr festimation
of correlated MIMO channels with colored interferencéEEE Trans.
Signal Process.vol. 55, no. 4, pp. 1486-1497, 2007.

E. Bjornson and B. Ottersten, “A framework for traigibased esti-
mation in arbitrarily correlated Rician MIMO channels wiician
disturbance,”IEEE Trans. Signal Processvol. 58, no. 3, pp. 1807—
1820, 2010.

N. Shariati, J. Wang, and M. Bengtsson, “Robust transequence
design for correlated MIMO channel estimatiot2EE Trans. Signal
Process. vol. 62, no. 1, pp. 107-120, 2014.

S. Moshavi, E. Kanterakis, and D. Schilling, “Multig&linear receivers
for DS-CDMA systems,Int. J. Wireless Information Networksol. 3,
no. 1, pp. 1-17, 1996.

Z. Lei and T. Lim, “Simplified polynomial-expansion kar detectors
for DS-CDMA systems, Electronics Lettersvol. 34, no. 16, pp. 1561—
1563, 1998.

R. Muller and S. Verd(, “Design and analysis of low-qaexity inter-
ference mitigation on vector channel$EEE J. Sel. Areas Commun.
vol. 19, no. 8, pp. 1429-1441, 2001.

M. Honig and W. Xiao, “Performance of reduced-rank &naterference
suppression,1EEE Trans. Inf. Theoryvol. 47, no. 5, pp. 1928-1946,
2001.

G. Sessler and F. Jondral, “Low complexity polynomiaipansion
multiuser detector for CDMA systemsJEEE Trans. Veh. Technol.
vol. 54, no. 4, pp. 1379-1391, 2005.

J. Hoydis, M. Debbah, and M. Kobayashi, “Asymptotic ments for
interference mitigation in correlated fading channels”Aroc. IEEE
ISIT, 2011.

N. L. Josse, C. Laot, and K. Amis, “Efficient series exgian for matrix
inversion with application to MMSE equalizationEEE Commun. Lett.
vol. 12, no. 1, pp. 35-37, 2008.

S. Zarei, W. Gerstacker, R. R. Muller, and R. Schoberow-
complexity linear precoding for downlink large-scale MINVEYstems,”
in Proc. IEEE PIMRGC 2013.

A. Muller, A. Kammoun, E. Bjornson, and M. Debbah, Hsar
precoding based on truncated polynomial expansion—pattaige-
scale single-cell systemslEEE J. Sel. Topics Signal Proces2013,
submitted. [Online]. Available: http://arxiv.org/ab8/10.1806

A. Kammoun, A. Miuller, E. Bjornson, and M. Debbah, Haar
precoding based on truncated polynomial expansion—Partaige-
scale multi-cell systems,JJEEE J. Sel. Topics Signal Proces2013,
submitted. [Online]. Available: http://arxiv.org/ab8/10.1799

Z. Chen, X. Hou, S. Han, C. Yang, G. Wang, and M. Lei, “Low

complexity channel estimation in TDD coordinated multisidransmis-

[39]

[40]

[41]

[42]

sion systems,” iWireless Communications and Networking Conference

(WCNC), 2013 IEEE2013, pp. 3128-3133.

T. Asté, P. Forster, L. Féty, and S. Mayrargue, “Dawklbeamform-
ing avoiding DOA estimation for cellular mobile communicas,” in
Proc. IEEE ICASSP1998, pp. 3313-3316.

B. Chalise, L. Haering, and A. Czylwik, “Robust uplink downlink
spatial covariance matrix transformation for downlink ipéarming,” in
Proc. IEEE ICC 2004, pp. 3010-3014.

I. Viering, H. Hofstetter, and W. Utschick, “Spatialrig-term variations
in urban, rural and indoor environments,” BOST273 5th Meeting,
Lisbon, Portugal 2002.

16

S. Boyd and L. Vandenberghe, “Numerical linear algebaakground.”
[Online]. Available: www.ee.ucla.edu/ee236b/lectunesi-lin-alg.pd?
V. Strassen, “Gaussian elimination is not optimaNumer. Math,
vol. 13, pp. 354-356, 1969.

V. Williams, “Multiplying matrices faster than Coppamith-Winograd,”
in Proc. STOC 2012, pp. 887-898.

R. Bhatia,Matrix Analysis Berlin, Germany: Springer-Verlag, 1997.
Y. Eldar and N. Merhav, “A competitive minimax approath robust
estimation of random parameterEE Trans. Signal Processvol. 52,
no. 7, pp. 1931-1946, 2004.

O. Ledoit and M. Wolf, “A well-conditioned estimator folarge-
dimensional covariance matricesJournal of Multivariate Analysis
vol. 88, no. 2, pp. 365 — 411, 2004.

G. Matz, “Recursive MMSE estimation of wireless chasnéased
on training data and structured correlation learning,1BEE/SP 13th
Workshop on Statistical Signal Processi)05, pp. 1342-1347.

J. Yang, E. Bjornson, and M. Bengtsson, “Receive beaming design
based on a multiple-state interference modelPmc. IEEE ICC 2011.
C. Shepard, H. Yu, N. Anand, L. Li, T. Marzetta, R. Yangdd.. Zhong,
“Argos: Practical many-antenna base stationsPioc. ACM MobiCom
2012.

F. Fernandes, A. Ashikhmin, and T. Marzetta, “Intel-agterference in
noncooperative TDD large scale antenna systetiEE J. Sel. Areas
Commun,. vol. 31, no. 2, pp. 192-201, 2013.

D.-S. Shiu, G. Foschini, M. Gans, and J. Kahn, “Fadingelation and
its effect on the capacity of multielement antenna systet&B&E Trans.
Commun. vol. 48, no. 3, pp. 502-513, 2000.

S. Loyka, “Channel capacity of MIMO architecture usihg exponential
correlation matrix,”IEEE Commun. Lett.vol. 5, no. 9, pp. 369-371,
2001.


http://arxiv.org/abs/1304.6690
http://arxiv.org/abs/1310.1806
http://arxiv.org/abs/1310.1799
www.ee.ucla.edu/ee236b/lectures/num-lin-alg.pdf

	I Introduction
	I-A Outline
	I-B Notation

	II Problem Formulation
	II-A Complexity Issues in Large-Scale MIMO Systems
	II-B A Diagonalization Approach to Complexity Reduction

	III Low-Complexity Bayesian PEACH Estimators
	III-A Unweighted PEACH Estimator
	III-B Weighted PEACH Estimator
	III-C Low-Complexity Weights
	III-D Imperfect Covariance Matrix Estimation
	III-E Asymptotic and Exact Computational Complexity

	IV Performance Evaluation
	IV-A Noise-Limited Scenario
	IV-B Pilot Contamination Scenario
	IV-C Numerical Examples

	V Conclusions
	References

