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[1] This paper presents a predictability study of the
Madden-Julian Oscillation (MJO) that relies on combining
empirical model reduction (EMR) with the “past-noise fore-
casting” (PNF) method. EMR is a data-driven methodology
for constructing stochastic low-dimensional models that
account for nonlinearity, seasonality and serial correlation
in the estimated noise, while PNF constructs an ensemble
of forecasts that accounts for interactions between (i) high-
frequency variability (noise), estimated here by EMR, and
(ii) the low-frequency mode of MJO, as captured by singu-
lar spectrum analysis (SSA). A key result is that—compared
to an EMR ensemble driven by generic white noise—PNF
is able to considerably improve prediction of MJO phase.
When forecasts are initiated from weak MJO conditions,
the useful skill is of up to 30 days. PNF also significantly
improves MJO prediction skill for forecasts that start over
the Indian Ocean. Citation: Kondrashov, D., M. D. Chekroun,
A. W. Robertson, and M. Ghil (2013), Low-order stochastic model
and “past-noise forecasting” of the Madden-Julian Oscillation,
Geophys. Res. Lett., 40, 5305–5310, doi:10.1002/grl.50991.

1. Introduction
[2] The Madden-Julian Oscillation (MJO) is the dom-

inant mode of intraseasonal variability across the global
tropics. The MJO is a natural component of the coupled
atmosphere-ocean system and it affects other important cli-
mate processes, in both the tropics and extratropics; these
processes include the seasonal evolution of temperature
and precipitation, tropical cyclone frequency, and weather
extremes.

[3] In this paper, we built on the extensive studies to
improve prediction of the daily indices of the Real-Time
Multivariate MJO Index, known as RMM1 and RMM2
[Wheeler and Hendon, 2004]. These indices are dominated
by intraseasonal fluctuations due to MJO variability in the
40–50 day band. The predictive statistical models used so far
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can be grouped roughly into (i) multiple lagged regression-
based models [Jiang et al., 2008; Seo et al., 2009; Maharaj
and Wheeler, 2005; Kang and Kim, 2010] and (ii) models
based on advanced time series analysis, such as singu-
lar spectrum analysis (SSA) and wavelets [Kang and Kim,
2010], neural networks [Love and Matthews, 2009], and
analogs [Seo et al., 2009]. The useful predictive skill for the
MJO of such empirical models is typically of about 15–20
days, and it is similar to the MJO forecast skill achieved by
state-of-the-art dynamical models [Vitart and Molteni, 2010;
Zhang and van den Dool, 2012; Zhang et al., 2013].

[4] We propose here to bring to bear on empirical MJO
prediction a combination of novel tools (i) for the construc-
tion of stochastic low-dimensional models (LDMs) and (ii)
for the application of the LDMs so constructed to prediction.
The LDM construction is carried out by data-driven empir-
ical model reduction (EMR), which accounts for nonlinear-
ity, seasonality, and serial correlation in the noise estimate
[Kravtsov et al., 2005, 2009]. The prediction method is the
pathwise past-noise forecasting (PNF) method [Checkroun
et al., 2011a], which improves predictions by accounting for
the modulation of high-frequency variability, or “noise,” by
the MJO’s low-frequency mode (LFM), as captured by SSA.

[5] The understanding and reliable description of LFMs
is of the essence for the prediction of the high amplitude
but irregularly occurring events in the frequency bands of
interest [Ghil and Robertson, 2002]. Furthermore, it is cru-
cial to understand the interaction between LFMs and the
higher-frequency variability [Chekroun et al., 2011a].

[6] This interaction can be better understood in the frame-
work of random dynamical systems (RDS) theory, in which
the stochastic dynamics is studied pathwise—i.e., for indi-
vidual realizations of the noise—rather than being merely
sampled by an ensemble of forward trajectories that aim to
approximate the system’s probability density function (PDF)
[Chekroun et al., 2011b]. This pathwise view of the dynam-
ics helps in applying inverse stochastic nonlinear models to
prediction, since such an inverse model “lives” naturally on
the estimated path of the noise, as derived from the data.

[7] So far, though, it was not clear how to derive such
pathwise models. Most of the inherent difficulties have been
overcome by using the EMR methodology [Kravtsov et al.,
2005, 2009] to yield nonlinear stochastic inverse models
that successfully capture the LFMs of the climatic phenom-
ena of interest [Kondrashov et al., 2011, 2005], while also
estimating the path of the noise.

[8] Chekroun et al. [2011a] extended the results of
Kondrashov et al. [2005] beyond the sampled PDF approach
and developed PNF as a general pathwise method for non-
linear stochastic systems that exhibit LFMs. This method
exploits information on the estimated path on which
the inverse stochastic model evolves, as well as on the
interaction between the model’s deterministic, nonlinear
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components and the stochastic ones. PNF has been shown
to outperform classical ensemble prediction techniques on
synthetic, model-generated data, as well as on observational
data for El Niño–Southern Oscillation (ENSO) [Chekroun
et al., 2011a].

2. Methods
2.1. Empirical Model Reduction

[9] The EMR approach represents a generalization of lin-
ear inverse modeling (LIM) [Penland and Sardeshmukh,
1995]. As an operational prediction methodology, EMR con-
structs a low-order nonlinear system of prognostic equations
driven by stochastic forcing; the method estimates the
model’s deterministic part, as well as the properties of the
driving noise from the observations or from a more detailed
model’s simulation.

[10] EMR relies on multilevel polynomial inverse model-
ing: It thus allows (a) the model to be nonlinear and (b) the
noise terms to be correlated in space and serially correlated
in time [Kravtsov et al., 2005]. Like other model-reduction
methodologies, it adopts a stochastic approach to describe
a system of coupled, slow-and-fast variables. Kravstov
et al. [2009] reviewed EMR and its applications and com-
pared it with other methodologies. They showed EMR to
be particularly effective (1) when variability of the faster
parts of the system is both modulated by and feeds back on
the slower components of the system and (2) when there is
no significant time scale separation between slow and fast
variables.

[11] A multilevel EMR model can be formally written as
the following set of M + 1 vector equations:

Px = F – Ax + B(x, x) + r0
t ,

Prm–1
t = L(m)(x, r0

t , : : : , rm–1
t ) + rm

t , 1 � m � M, (1)

Here x = (xi; i = 1, : : : , d) represents the resolved modes on
the main level of the model, while rm

t at additional levels
accounts for unresolved modes, which at the last level are
approximated as spatially correlated white noise rM

t � †
PW.

[12] For our MJO application, d = 2 and x1 and x2
are the RMM1 and RMM2 indices. The terms –Ax and
B(x, x) represent the linear dissipation and the quadratic self-
interactions, respectively, while F accounts for the deter-
ministic forcing [Kondrashov et al., 2011]. Memory effects
of the interactions between the resolved variables x and
the unresolved rm

t arise as convolution terms by integrat-
ing recursively the “matrioshka” of levels from the lowest
level M to the main level [Wouters and Lucarini, 2013;
D. Kondrashov et al., Data-driven reduction by multilay-
ered stochastic models with energy-preserving nonlineari-
ties, submitted to Physica D-Nonlinear Phenomena, 2013].
The coupling between the variable rm

t and the variables
(x, r0

t , : : : , rm–1
t ) from the previous levels is modeled by

rectangular matrices L(m) of increasing size.
[13] When deriving a time-discrete formulation of

equation (1), instantaneous tendencies ıx/ıt and ırm
t /ıt are

computed numerically by Euler time differencing and are
used to estimate by recursive least squares the coefficients
F, A, B, and L(m), as well as computing the regression resid-
uals rm+1

t , to be modeled at the next level. The procedure is
stopped when the estimated �t � rM

t has an autocorrelation

that vanishes at unit lag and its spatial covariance matrix has
converged to a constant matrix †.

[14] Standard forecasting by EMR relies on forward inte-
gration of the model from a given initial state and driven
at the last model level by a large ensemble of random
realizations of the estimated noise † PW. ENSO real-time
prediction by EMR [Kondrashov et al., 2005] is highly com-
petitive among other dynamical and statistical forecasts in
the ENSO multimodel prediction plume of the International
Research Institute for Climate and Society (IRI) at Columbia
University, [Barnston et al., 2012].

[15] For this study, we tested an energy-conserving EMR

formulation to ensure that kxk =
dP

i=1
x2

i < 1 (see the sup-

porting information). We have found that in the case of
MJO, there was no noticeable difference in prediction skill
between strictly energy-conserving EMR and its nonenergy
conserving implementation.

2.2. Past-Noise Forecasting by EMR
[16] We start by building a nonlinear EMR model using

past observations and we estimate the path of the “weather”
noise �t (see section 2.1) that drove this model over previ-
ous finite time windows. The PNF method is then applied in
two steps. First, noise snippets—obtained as copies of this
estimated path—are selected from past time intervals during
which the LFM phase resembles that observed prior to a par-
ticular forecast. Second, these noise snippets—which have
the same length as the forecast lead time—are used to drive
the system into the future.

[17] We rely on SSA to identify a nearly periodic LFM
in the (RMM1, RMM2) data set. SSA is a data adap-
tive, nonparametric method for spectral estimation that
extends classic principal component analysis into the time
lag domain [Vautard and Ghil, 1989]. In practice, the LFMs
are described by the reconstructed components (RCs) given
by SSA [Ghil et al., 2002]. These RCs are then used for the
noise snippet selection here, by finding in the past record
analogs of the LFM that best match the LFM phase just
preceding the start of the forecast. Such a conditioning of
the noise forcing on the LFM phase improves forecast skill,
and so-called linear pathwise response with respect to noise
perturbations helps explain the PNF method’s success [cf.
Chekroun et al., 2011a].

3. Results and Discussion
[18] We developed a quadratic EMR model with three

levels (main plus two, i.e., M = 2 in section 2.1) to
simulate and predict the (RMM1, RMM2) daily indices
(RMM1–2 hereafter) for June 1974 to January 2009 (see
http://cawcr.gov.au/staff/mwheeler/maproom/RMM/ for the
data set). Following Kondrashov et al. [2005], we included
the seasonal cycle effects into the forcing and the linear part,
i.e., F and A in equation (1), on the model’s main level.

[19] Figures 1a and 1b compare the autocorrelation func-
tions (ACFs) of the RMM1–2 time series, EMR simulated
versus observed, when using a large ensemble of EMR
stochastic realizations. Figures 1a and 1b demonstrate that
the EMR model captures very well the ACFs, and hence, the
MJO power spectrum, as well as its 40–60 day LFM. We
found that the use of M > 1 improves the EMR-MJO model’s
prediction skill at long lead times (not shown).
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Figure 1. Comparison between the simulation and prediction capabilities of the EMR model with the PNF-modified ver-
sion thereof. Autocorrelation functions (ACFs) of the (a) RMM1 and (b) RMM2 daily indices: observations—red, ensemble
mean of the EMR simulations—blue, and standard deviation of the EMR ensemble—black. (c) Improved prediction of the
observed RMM1-RMM2 indices (black) by PNF-based driving-noise selection: PNF ensemble mean (blue) versus EMR
ensemble mean (red), and individual members of the PNF ensemble (green); the predictions in Figure 1c, out to 30 days, all
start on 26 August 2007, namely, the date that is marked by the black dashed line in Figure 1. (d) PNF prediction in the time
domain of RMM1 (black) at a 25 day lead is consistent with MJO’s LFM, captured by SSA RCs 1–2 (cyan); x axis is time
in calendar months within the validation interval of July 2005 to January 2009.

[20] The EMR model was trained on the June 1974 to July
2005 portion of the RMM1–2 record, and forecasts were val-
idated for the independent time interval July 2005 to January
2009. In this study, we modified the noise snippet selection
in the PNF procedure of Chekroun et al. [2011a] by adopt-
ing a suggestion of Feliks et al. [2010], namely, to determine
an instantaneous phase 0 < � < 2� of narrowband LFM
components via the Hilbert transform applied to the SSA
reconstruction of the latter, i.e., to the leading RC pair of
RMM1. This selection procedure results in a fixed size of
20 PNF ensemble members per t*, where t* is the forecast
start time within the validation interval, compared to EMR
ensemble driven by 200 independent realizations of white
noise; see the supporting information for details.

[21] In real-time prediction, the PNF algorithm for choos-
ing noise snippets has to deal with “end effects” that bias
the SSA reconstruction and the estimated value of the LFM
phase at the forecast starting time. For the predictability
study presented here, we computed the RC pair that captures
the MJO’s LFM by using the entire data record available, in
order to present the optimal PNF skill as proof of concept. It
is left for future research to explore ways to minimize such
end effects for applications to operational forecasting.

[22] For the purpose of defining MJO forecast skill, we
use the commonly adopted bivariate correlation (corr) and

the root-mean-square error (rmse) between the observed
and forecast RMM indices [Gottschalck et al., 2010]. The
skill of the PNF method is notably better than the standard
EMR: See the blue versus red curves in Figure 2a. More-
over, PNF compares favorably with existing statistical and
dynamical models for MJO prediction (cf. section 1).

[23] Even though PNF is applied here to RMM1 only,
prediction of RMM2 is also improved, since both indices
are physically coupled. The potential increase in predictabil-
ity by PNF (blue) versus EMR (red) in the time domain
coincides mostly with energetic phases of MJO’s LFM;
these phases are well captured by the leading RC pair
with an SSA window of 50 days (cyan) (cf. Figure 1d).
This PNF feature is due to the method’s intrinsic condi-
tioning of the driving noise on the LFM phase. On the
other hand, EMR and PNF predictions are similar when
LFM is weak, i.e., during March–April 2006, as seen in
Figure 1d.

[24] The time series of EMR forecasts are expected to
have smaller variance than the PNF ones since—at long
lead times and when averaged over a large ensemble of
driving-noise realizations—they converge to the climatolog-
ical mean. PNF, though, picks out certain members of that
ensemble that enhance LFM prediction. Moreover, averag-
ing over the PNF ensemble aims to follow the relatively
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Figure 2. Skill scores for prediction by EMR alone and by EMR driven by PNF snippets. (a) Bivariate correlation (corr)
and (b) root-mean-square error (rmse) between the observed and forecast RMM indices showing increase in predictability
of RMM1–2 beyond 15 days by PNF (blue) versus EMR (red); the black curve shows damped persistence as a basis for
comparison. (c–f) Prediction skill as a function of the MJO strength at the start of the forecast: PNF improvement is most
pronounced for weak MJO, especially in correlation.

smooth LFM trajectory and, therefore, PNF improvement
for rmse (amplitude) is less pronounced than in corr
(phase) (see the supporting information).

[25] Figures 2c–2f compare prediction skill for the fore-
casts started for weak versus strong MJO events, defined
as {(RMM1)2 + (RMM2)2}1/2 < 1 or � 1, respectively.
The rmse barely depends on the MJO strength for either
EMR or PNF predictions (Figures 2d and 2f). Correlation
skill corr when using EMR alone, however, is much worse
for weak versus strong MJO variability (Figure 2c), while
PNF improves forecasts started during strong as well as
weak MJO events. It does so much more dramatically in
terms of corr in the latter case, when it exceeds the over-
all mean skill (Figure 2e). PNF is thus able to better capture
the growth of strong MJO events, an observation that is also

consistent with improvement in the time domain (Figures 1c
and 1d).

[26] Figures 3a–3d present prediction skill conditioned on
the eight MJO phases (as defined by tan–1(RMM2/RMM1)
in Wheeler and Hendon [2004]; cf. Figure 1c) at the start
of the forecast. Physically, these phases describe different
geographical locations of MJO convective activity.

[27] MJO events started in phases 3 and 8, i.e., over the
Indian Ocean and tropical Africa, are best predicted; they
result in forecasts with the largest corr and smallest rmse,
respectively. There is also general improvement in PNF for
rmse around phases 2–5. The decrease in corr for PNF
predictions started during phases 4–5 corresponds to the
well-known difficulties of simulating [Vitart and Molteni,
2010] and predicting [Zhang and van den Dool, 2012] MJO
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Figure 3. Prediction skill conditioned (a–d) on the phase of the MJO and (e–h) on the calendar month at the start of the
forecast for EMR only and EMR driven by PNF snippets.

when it crosses the Maritime Continent. These difficulties
are sometimes referred to as “the Maritime Continent predic-
tion barrier,” reminiscent of the “spring barrier” for ENSO
prediction [Barnston et al., 2012].

[28] Figures 3e–3h show strong seasonality in the corr
and the rmse. The correlation gets higher in boreal sum-
mer and early fall, as well as during boreal winter, while
the rmse is smallest during late summer and early fall.
This result agrees with the perception that MJO is more
active and better organized during certain seasons [Ghil and
Mo, 1991; Wheeler and Hendon, 2004; Zhang and van den
Dool, 2012]. Our results here show that the EMR and PNF
prediction methods can capture well the mostly eastward
propagating MJO in boreal winter, as well as the additional,
northward propagating component in boreal summer.

4. Conclusions
[29] We presented results of a predictability study in

which the EMR and PNF methodologies were applied to

MJO, with the ultimate goal to use and test these methods
in real-time forecasting. The bivariate forecast skill obtained
by PNF, in both phase and amplitude, is useful up to 30 days
and comparable with the skill demonstrated by a dynam-
ical multimodel ensemble [Zhang et al., 2013]. The PNF
improvement over EMR alone is most pronounced for pre-
dictions started during weak MJO events, over Africa and
the Indian Ocean, and during boreal summer and early fall.
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