Romain Couillet 
email: romain.couillet@supelec.fr
  
Matthew Mckay 
email: eemckay@ust.hk
  
Large Dimensional Analysis and Optimization of Robust Shrinkage Covariance Matrix Estimators ✩

Keywords: random matrix theory, robust estimation, linear shrinkage

.

Introduction

Many scientific domains customarily deal with (possibly small) sets of large dimensional data samples from which statistical inference is performed. This is in particular the case in financial data analysis where few stationary monthly observations of numerous stock indexes are used to estimate the joint covariance matrix of the stock returns [START_REF] Laloux | Random matrix theory and financial correlations[END_REF][START_REF] Ledoit | Improved estimation of the covariance matrix of stock returns with an application to portfolio selection[END_REF][START_REF] Rubio | Performance analysis and optimal selection of large minimum variance portfolios under estimation risk[END_REF], bioinformatics where clustering of genes is obtained based on gene sequences sampled from a small population [START_REF] Schäfer | A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics[END_REF], computational immunology where correlations among mutations in viral strains are estimated from sampled viral sequences and used as a basis of novel vaccine design [START_REF] Dahirel | Coordinate linkage of HIV evolution reveals regions of immunological vulnerability[END_REF][START_REF] Quadeer | Statistical linkage of mutations in the non-structural proteins of hepatitis C virus exposes targets for immunogen design[END_REF], psychology where the covariance matrix of multiple psychological traits is estimated from data collected on a group of tested individuals [START_REF] Steiger | Tests for comparing elements of a correlation matrix[END_REF], or electrical engineering at large where signal samples extracted from a possibly short time window are used to retrieve parameters of the signal [START_REF] Scharf | Statistical Signal Processing: Detection, Estimation and Time-Series Analysis[END_REF]. In many such cases, the number n of independent data samples x 1 , . . . , x n ∈ C N (or R N ) may not be large compared to the size N of the population, suggesting that the empirical sample covariance matrix CN = 1 n n i=1 (x i -x)(x i -x) * , x = 1 n n i=1 x i , is a poor estimate for C N = E[(x 1 -x)(x 1 -x) * ]. Several solutions have been proposed to work around this problem. If the end application is not to retrieve C N but some metric of it, recent works on random matrix theory showed that replacing C N in the metric by CN often leads to a biased estimate of the metric [START_REF] Mestre | On the asymptotic behavior of the sample estimates of eigenvalues and eigenvectors of covariance matrices[END_REF], but that this estimate can be corrected by an improved estimation of the metric itself via the samples x 1 , . . . , x n (Mestre, 2008a). However, when the object under interest is C N itself and N ≃ n, there is little hope to retrieve any consistent estimate of C N . A popular alternative proposed originally in [START_REF] Ledoit | A well-conditioned estimator for large-dimensional covariance matrices[END_REF] is to "shrink" CN , i.e., consider instead CN (ρ) = (1 -ρ) CN + ρI N for an appropriate ρ ∈ [0, 1] that minimizes the average distance E[tr( CN (ρ) -C N ) 2 ]. The interest of ρ here is to give more or less weight to CN depending on the relevance of the n samples, so that in particular ρ is better chosen close to zero when n is large and close to one when n is small.

In addition to the problem of scarcity of samples, it is often the case that outliers are present among the set of samples. These outliers may arise from erroneous or inconsistent data (e.g., individuals under psychological or biological tests incorrectly identified to fit the test pattern), or from the corruption of some samples by external events (e.g., interference by ambient electromagnetic noise in signal processing). These outliers, if not correctly handled, may further corrupt the statistical inference and in particular the estimation of C N . The field of robust estimation intends to deal with this problem [START_REF] Huber | Robust Statistics[END_REF][START_REF] Maronna | Robust Statistics: Theory and Methods[END_REF] by proposing estimators that have the joint capability to naturally attenuate the effect of outliers [START_REF] Huber | Robust estimation of a location parameter[END_REF] as well as to appropriately handle samples of an impulsive nature [START_REF] Tyler | A distribution-free M-estimator of multivariate scatter[END_REF], e.g., elliptically distributed data. A common denominator of such estimators is their belonging to the class of M-estimators, therefore taking the form of the solution to an implicit equation. This poses important problems of analysis in small N, n dimensions, resulting mostly in only asymptotic results in the regime N fixed and n → ∞ [START_REF] Maronna | Robust M-estimators of multivariate location and scatter[END_REF][START_REF] Kent | Redescending M-estimates of multivariate location and scatter[END_REF]. This regime is however inconsistent with the present scenario of scarce data where N ≃ n. Nonetheless, recent works based on random matrix theory have shown that a certain family of such robust covariance matrix estimators asymptotically behave as N, n → ∞ and N/n → c ∈ (0, ∞) similar to classical random matrices taking (almost) explicit forms. Such observations were made for the class of Maronna's M-estimators of scatter [START_REF] Maronna | Robust M-estimators of multivariate location and scatter[END_REF] for sample vectors whose independent entries can contain outliers (Couillet et al., 2013a) and for elliptically distributed samples (Couillet et al., 2013b), as well as for Tyler's M-estimator [START_REF] Tyler | A distribution-free M-estimator of multivariate scatter[END_REF] in [START_REF] Zhang | Marchenko-Pastur Law for Tyler's and Maronna's M-estimators[END_REF].

In this article, we study two hybrid robust shrinkage covariance matrix estimates ĈN (ρ) (hereafter referred to as the Pascal estimate) and ČN (ρ) (hereafter referred to as the Chen estimate) proposed in parallel in [START_REF] Pascal | Generalized robust shrinkage estimator -Application to STAP data[END_REF] and in [START_REF] Chen | Robust shrinkage estimation of highdimensional covariance matrices[END_REF], respectively. Both matrices, whose definition is introduced in Section 2 below, are empirically built upon Tyler's M-estimate [START_REF] Tyler | A distribution-free M-estimator of multivariate scatter[END_REF] originally designed to cope with elliptical samples whose distribution is unknown to the experimenter and upon the Ledoit-Wolf shrinkage estimator [START_REF] Ledoit | A well-conditioned estimator for large-dimensional covariance matrices[END_REF]. In [START_REF] Pascal | Generalized robust shrinkage estimator -Application to STAP data[END_REF] and [START_REF] Chen | Robust shrinkage estimation of highdimensional covariance matrices[END_REF], ĈN (ρ) and ČN (ρ) were proved to be well-defined as the unique solutions to their defining fixed-point matrices. However, little is known of their performance as estimators of C N in the regime N ≃ n of interest here. Some progress in this direction was made in [START_REF] Chen | Robust shrinkage estimation of highdimensional covariance matrices[END_REF] but this work does not manage to solve the optimal shrinkage problem consisting of finding ρ such that E[tr( ČN (ρ) -C N ) 2 ] is minimized and resorts to solving an approximate problem instead.

The present article studies the matrices ĈN (ρ) and ČN (ρ) from a random matrix approach, i.e., in the regime where N, n → ∞ with N/n → c ∈ (0, ∞), and under the assumption of the absence of outliers. Our main results are as follows:

• we show that, under the aforementioned setting, both ĈN (ρ) and ČN (ρ) asymptotically behave similar to well-known random matrix models and prove in particular that both have a well-identified limiting spectral distribution;

• we prove that, up to a change in the variable ρ, the matrices ČN (ρ) and ĈN (ρ)/( 1 N tr ĈN (ρ)) are essentially the same for N, n large, implying that both achieve the same optimal shrinkage performance;

• we determine the optimal shrinkage parameters ρ⋆ and ρ⋆ that minimize the almost sure limits lim

N 1 N tr( ĈN (ρ)/( 1 N tr ĈN (ρ)) -C N ) 2 and lim N 1 N tr( ČN (ρ) -C N ) 2 ,
respectively, both limits being the same. We then propose consistent estimates ρN and ρN for ρ⋆ and ρ⋆ which achieve the same limiting performance. We finally show by simulations that a significant gain is obtained using ρ⋆ (or ρN ) and ρ⋆ (or ρN ) compared to the solution ρO of the approximate problem developed in [START_REF] Chen | Robust shrinkage estimation of highdimensional covariance matrices[END_REF].

In practice, these results allow for a proper use of ĈN (ρ) and ČN (ρ) in anticipation of the absence of outliers. In the presence of outliers, it is then expected that both Pascal and Chen estimates will exhibit robustness properties that their asymptotic random matrix equivalents will not. Note in particular that, although ĈN (ρ) and ČN (ρ) are shown to be asymptotically equivalent in the absence of outliers, it is not clear at this point whether one of the two estimates will show better performance in the presence of outliers. The study of this interesting scenario is left to future work.

The remainder of the article is structured as follows. In Section 2, we introduce our main results on the large N, n behavior of the matrices ĈN (ρ) and ČN (ρ). In Section 3, we develop the optimal shrinkage analysis, providing in particular asymptotically optimal empirical shrinkage strategies. Concluding remarks are provided in Section 4. All proofs of the results of Section 2 and Section 3 are then presented in Section 5.

General notations: The superscript (•) * stands for Hermitian transpose in the complex case or transpose in the real case. The notation • stands for the spectral norm for matrices and the Euclidean norm for vectors. The Dirac measure at point x is denoted δ x . The ordered eigenvalues of a Hermitian (or symmetric) matrix X of size N ×N are denoted λ 1 (X) ≤ . . . ≤ λ N (X). For ℓ > 0 and a positive and positively supported measure ν, we define M ν,ℓ = t ℓ ν(dt) (may be infinite). The arrow " a.s.

-→" designates almost sure convergence.

Main results

We start by introducing the main assumptions of the data model under study. We consider n samples vectors x 1 , . . . , x n ∈ C N (or R N ) having the following characteristics.

Assumption 1 (Growth rate).

Denoting c N = N/n, c N → c ∈ (0, ∞) as N → ∞. Assumption 2 (Population model). The vectors x 1 , . . . , x n ∈ C N (or R N ) are independent with a. x i = √ τ i A N y i , where y i ∈ C N (or R N ), N ≥ N , is a random zero
mean unitarily (or orthogonally) invariant vector with norm y i 2 = N , A N ∈ C N × N is deterministic, and τ 1 , . . . , τ n is a collection of positive scalars. We shall denote

z i = A N y i . b. C N A N A * N is nonnegative definite, with trace 1 N tr C N = 1 and spectral norm satisfying lim sup N C N < ∞; c. ν N 1 N N i=1 δ λi(C N ) satisfies ν N → ν weakly with ν = δ 0 almost every- where.
Since all considerations to come are equally valid over C or R, we will consider by default that x 1 , . . . , x n ∈ C N . As the analysis will show, the positive scalars τ i have no impact on the robust covariance estimates; with this definition, the distribution of the vectors x i contains in particular the class of elliptical distributions. Note that the assumption that y i is zero mean unitarily invariant with norm N is equivalent to saying that

y i = √ N ỹi ỹi with ỹi ∈ C N standard Gaussian. This, along with A N ∈ C N × N and lim sup N C N < ∞, implies in particular that x i 2 is of order N .
The assumption that ν = δ 0 almost everywhere avoids the degenerate scenario where an overwhelming majority of the eigenvalues of C N tend to zero, whose practical interest is quite limited. Finally note that the constraint 1 N tr C N = 1 is inconsequential and in fact defines uniquely both terms in the product τ i C N .

The following two theorems introduce the robust shrinkage estimators ĈN (ρ) and ČN (ρ), and constitute the main technical results of this article.

Theorem 1 (Pascal Estimate). Let Assumptions 1 and 2 hold. For ε ∈

(0, min{1, c -1 }), define Rε = [ε + max{0, 1 -c -1 }, 1]. For each ρ ∈ (max{0, 1 - c -1 N }, 1], let ĈN (ρ) be the unique solution to ĈN (ρ) = (1 -ρ) 1 n n i=1 x i x * i 1 N x * i ĈN (ρ) -1 x i + ρI N .
Then, as N → ∞,

sup ρ∈ Rε ĈN (ρ) -ŜN (ρ) a.s.
-→ 0

where

ŜN (ρ) = 1 γ(ρ) 1 -ρ 1 -(1 -ρ)c 1 n n i=1 z i z * i + ρI N
and γ(ρ) is the unique positive solution to the equation in γ

1 = t γρ + (1 -ρ)t ν(dt).
Moreover, the function ρ → γ(ρ) thus defined is continuous on (0, 1].

Proof. The proof is deferred to Section 5.1.

Theorem 2 (Chen Estimate). Let Assumptions 1 and 2 hold. For ε ∈ (0, 1), define Řε = [ε, 1]. For each ρ ∈ (0, 1], let ČN (ρ) be the unique solution to

ČN (ρ) = BN (ρ) 1 N tr BN (ρ) where BN (ρ) = (1 -ρ) 1 n n i=1 x i x * i 1 N x * i ČN (ρ) -1 x i + ρI N .
Then, as N → ∞,

sup ρ∈ Řε ČN (ρ) -ŠN (ρ) a.s.
-→ 0

where

ŠN (ρ) = 1 -ρ 1 -ρ + T ρ 1 n n i=1 z i z * i + T ρ 1 -ρ + T ρ I N in which T ρ = ργ(ρ)F (γ(ρ); ρ) with, for all x > 0, F (x; ρ) = 1 2 (ρ -c(1 -ρ)) + 1 4 (ρ -c(1 -ρ)) 2 + (1 -ρ) 1 x
and γ(ρ) is the unique positive solution to the equation in

γ 1 = t γρ + 1-ρ (1-ρ)c+F (γ;ρ) t ν(dt).
Moreover, the function ρ → γ(ρ) thus defined is continuous on (0, 1].

Proof. The proof is deferred to Section 5.2.

Theorem 1 and Theorem 2 show that, as N, n → ∞ with N/n → c, the matrices ĈN (ρ) and ČN (ρ), defined as the non-trivial solution of fixed-point equations, behave similar to matrices ŜN (ρ) and ŠN (ρ), respectively, whose characterization is well-known and much simpler than that of ĈN (ρ) and ČN (ρ) themselves. Indeed, ŜN (ρ) and ŠN (ρ) are random matrices of the sample covariance matrix type thoroughly studied in e.g., [START_REF] Marcenko | Distribution of eigenvalues for some sets of random matrices[END_REF][START_REF] Silverstein | On the empirical distribution of eigenvalues of a class of large dimensional random matrices[END_REF][START_REF] Silverstein | Analysis of the limiting spectral distribution of large dimensional random matrices[END_REF].

As a side remark, it is shown in [START_REF] Pascal | Generalized robust shrinkage estimator -Application to STAP data[END_REF] that for each N, n fixed with n ≥ N + 1, ĈN (ρ) → ĈN (0) as ρ → 0 with ĈN (0) defined (almost surely) as one of the (uncountably many) solutions to

ĈN (0) = 1 n n i=1 x i x * i 1 N x * i ĈN (0) -1 x i . (1) 
In the regime where N, n → ∞ and N/n → c, this result is difficult to generalize as it is challenging to handle the limit ĈN (ρ N ) -ŜN (ρ N ) for a sequence {ρ N } ∞ N =1 with ρ N → 0. The requirement that ρ N → ρ 0 > 0 on any such sequence is indeed at the core of the proof of Theorem 1 (see Equations ( 5) and (6) in Section 5.1 where ρ 0 > 0 is necessary to ensure e + < 1). This explains why the set Rε in Theorem 1 excludes the region [0, ε). Similar arguments hold for ČN (ρ). As a matter of fact, the behavior of any solution ĈN (0) to (1) in the large N, n regime, recently derived in [START_REF] Zhang | Marchenko-Pastur Law for Tyler's and Maronna's M-estimators[END_REF], remains difficult to handle with our proof technique.

An immediate consequence of Theorem 1 and Theorem 2 is that the empirical spectral distributions of ĈN (ρ) and ČN (ρ) converge to the well-known respective limiting distributions of ŜN (ρ) and ŠN (ρ), characterized in the following result.

Corollary 1 (Limiting spectral distribution). Under the settings of Theorem 1 and Theorem 2,

1 N N i=1 δ λi( ĈN (ρ)) a.s. -→ μρ , ρ ∈ Rε 1 N N i=1 δ λi( ČN (ρ)) a.s. -→ μρ , ρ ∈ Řε
where the convergence arrow is understood as the weak convergence of probability measures, for almost every sequence {x 1 , . . . , x n } ∞ n=1 , and where 

μρ = max{0, 1 -c -1 }δ ρ + μρ μρ = max{0, 1 -c -1 }δ
m μρ (z) = γ 1 -(1 -ρ)c 1 -ρ 1 ẑ(ρ) + t 1+c δ(z) ν(dt) where ẑ(ρ) = (ρ -z)γ(ρ) 1-(1-ρ)c
1-ρ and δ(z) is the unique solution with positive imaginary part of the equation in

δ δ = t ẑ(ρ) + t 1+c δ ν(dt).
The measure μρ is the only measure with Stieltjes transform m μρ (z) defined, for

ℑ[z] > 0 as m μρ (z) = 1 -ρ + T ρ 1 -ρ 1 ž(ρ) + t 1+c δ(z) ν(dt)
with ž(ρ) = 1 1-ρ T ρ (1-z)-z and δ(z) the unique solution with positive imaginary part of the equation in

δ δ = t ž(ρ) + t 1+c δ ν(dt).
Proof. This is an immediate application of [START_REF] Silverstein | On the empirical distribution of eigenvalues of a class of large dimensional random matrices[END_REF][START_REF] Silverstein | Analysis of the limiting spectral distribution of large dimensional random matrices[END_REF] and Theorems 1 and 2.

From Corollary 1, μρ is continuous on (ρ, ∞) so that μρ (dx) = pρ (x)dx where, from the inverse Stieltjes transform formula (see e.g., [START_REF] Bai | Spectral analysis of large dimensional random matrices, 2nd Edition[END_REF])) for all x ∈ (ρ, ∞),

pρ (x) = lim ε→0 1 π ℑ m μρ (x + ıε) .
Letting ε > 0 small and approximating pρ (x) by 1 π ℑ[m μρ (x + ıε)] allows one to depict pρ approximately. Similarly, μρ (dx) = pρ (x)dx for all x ∈ (T ρ (1 -ρ + T ρ ) -1 , ∞) which can be obtained equivalently. This is performed in Figure 1 and Figure 2 which depict the histogram of the eigenvalues of ĈN (ρ) and ČN (ρ) the same reasoning holds up to a multiplicative constant. However, when c = 2, the eigenvalues of ČN (ρ) are quite remote from masses in 1/3 and 5/3, an observation known since [START_REF] Marcenko | Distribution of eigenvalues for some sets of random matrices[END_REF].

Another corollary of Theorem 1 and Theorem 2 is the joint convergence (over both ρ and the eigenvalue index) of the individual eigenvalues of ĈN (ρ) to those of ŜN (ρ) and of the individual eigenvalues of ČN (ρ) to those of ŠN (ρ), as well as the joint convergence over ρ of the moments of the empirical spectral distributions of ĈN (ρ) and ČN (ρ). These joint convergence properties are fundamental in problems of optimization of the parameter ρ as discussed in Section 3.

Corollary 2 (Joint convergence properties). Under the settings of Theorem 1 and Theorem 2,

sup ρ∈ Rε max 1≤i≤n λ i ( ĈN (ρ)) -λ i ( ŜN (ρ)) a.s. -→ 0 sup ρ∈ Řε max 1≤i≤n λ i ( ČN (ρ)) -λ i ( ŠN (ρ)) a.s. -→ 0. This result implies lim sup N sup ρ∈ Rε ĈN (ρ) < ∞ lim sup N sup ρ∈ Řε ČN (ρ) < ∞.
almost surely. This, and the weak convergence of Corollary 1, in turn induce that, for each ℓ ∈ N,

sup ρ∈ Rε 1 N tr ĈN (ρ) ℓ -M μρ,ℓ a.s. -→ 0 sup ρ∈ Řε 1 N tr ČN (ρ) ℓ -M μρ,ℓ a.s.
-→ 0

where, in particular,

M μρ,1 = 1 γ(ρ) 1-ρ 1-(1-ρ)c + ρ and M μρ,1 = 1.
Proof. The proof is provided in Section 5.3.

Application to optimal shrinkage

We now apply Theorems 1 and 2 to the problem of optimal linear shrinkage, originally considered in [START_REF] Ledoit | A well-conditioned estimator for large-dimensional covariance matrices[END_REF] for the simpler sample covariance matrix model. The optimal linear shrinkage problem consists in choosing ρ to be such that a certain distance measure between ĈN (ρ) (or ČN (ρ)) and C N is minimized, therefore allowing for a more appropriate estimation of C N via ĈN (ρ) or ČN (ρ). In [START_REF] Chen | Robust shrinkage estimation of highdimensional covariance matrices[END_REF], the authors studied this problem in the specific case of ČN (ρ) but did not find an expression for the optimal theoretical ρ due to the involved structure of ČN (ρ) for all finite N, n and therefore resorted to solving an approximate problem, the solution of which is denoted here ρO . Instead, we show that for large N, n values the optimal ρ under study converges to a limiting value ρ⋆ that takes an extremely simple explicit expression and a similar result holds for ĈN (ρ) for which an equivalent optimal ρ⋆ is defined.

Our first result is a lemma of fundamental importance which demonstrates that, up to a change in the variable ρ, ŜN (ρ)/M μρ,1 and ŠN (ρ) (constructed from the samples x 1 , . . . , x n ) are completely equivalent to the original Ledoit-Wolf linear shrinkage model for the (non observable) samples z 1 , . . . , z n .

Lemma 1 (Asymptotic Model Equivalence). For each ρ ∈ (0, 1], there exist unique ρ ∈ (max{0, 1 -c -1 }, 1] and ρ ∈ (0, 1] such that

ŜN (ρ) M μρ ,1 = ŠN (ρ) = (1 -ρ) 1 n n i=1 z i z * i + ρI N .
Besides, the maps (0, 1] → (max{0, 1 -c -1 }, 1], ρ → ρ and (0, 1] → (0, 1], ρ → ρ thus defined are continuously increasing and onto.

Proof. The proof is provided in Section 5.4.

Thanks to Lemma 1, we now show that the optimal shrinkage parameters ρ for both ĈN (ρ)/( 1 N tr ĈN (ρ)) and ČN (ρ) lead to the same asymptotic performance, which corresponds to the asymptotically optimal Ledoit-Wolf linear shrinkage performance but for the vectors z 1 , . . . , z n .

Proposition 1 (Optimal Shrinkage). For each ρ ∈ (0, 1], define 1

DN (ρ) = 1 N tr ĈN (ρ) 1 N tr ĈN (ρ) -C N 2 ĎN (ρ) = 1 N tr ČN (ρ) -C N 2 .
Also denote

D ⋆ = c Mν,2-1 c+Mν,2-1 , ρ ⋆ = c c+Mν,2-1 , and ρ⋆ ∈ (max{0, 1 -c -1 }, 1], ρ⋆ ∈ (0, 1] the unique solutions to ρ⋆ 1 γ( ρ⋆ ) 1-ρ⋆ 1-(1-ρ⋆ )c + ρ⋆ = T ρ⋆ 1 -ρ⋆ + T ρ⋆ = ρ ⋆ .
Then, letting ε < min(ρ ⋆ -max{0, 1 -c -1 }, ρ⋆ ), under the setting of Theorem 1 and Theorem 2,

inf ρ∈ Rε DN (ρ) a.s. -→ D ⋆ , inf ρ∈ Řε ĎN (ρ) a.s. -→ D ⋆ and DN (ρ ⋆ ) a.s. -→ D ⋆ , ĎN (ρ ⋆ ) a.s. -→ D ⋆ .
Moreover, letting ρN and ρN be random variables such that ρN a.s.

-→ ρ⋆ and ρN a.s.

-→ ρ⋆ ,

DN (ρ N ) a.s. -→ D ⋆ , ĎN (ρ N ) a.s. -→ D ⋆ .
Proof. The proof is provided in Section 5.5.

The last part of Proposition 1 states that, if consistent estimates ρN and ρN of ρ⋆ and ρ⋆ exist, then they have optimal shrinkage performance in the large N, n limit. Such estimates may of course be defined in multiple ways. We present below a simple example based on ĈN (ρ) and ČN (ρ).

Proposition 2 (Optimal Shrinkage Estimate). Under the setting of Proposition 1, let ρN ∈ (max{0, 1 -c -1 }, 1] and ρN ∈ (0, 1] be solutions (not necessarily unique) to

ρN 1 N tr ĈN (ρ N ) = c N 1 N tr 1 n n i=1 xix * i 1 N xi 2 2 -1 ρN 1 n n i=1 x * i ČN ( ρN ) -1 xi xi 2 1 -ρN + ρN 1 n n i=1 x * i ČN ( ρN ) -1 xi xi 2 = c N 1 N tr 1 n n i=1 xix * i 1 N xi 2 2 -1 1 Recall that, for A Hermitian, 1 N tr A 2 = 1 N tr AA * = 1 N A 2 F with • F the Frobenius norm for matrices.
defined arbitrarily when no such solutions exist. Then ρN a.s.

-→ ρ⋆ and ρN a.s.

-→ ρ⋆ , so that DN (ρ N ) a.s.

-→ D ⋆ and ĎN (ρ N ) a.s.

-→ D ⋆ .

Proof. The proof is deferred to Section 5.6.

Figure 4 illustrates the performance in terms of the metric ĎN of the empirical shrinkage coefficient ρN introduced in Proposition 2 versus the optimal value inf ρ∈(0,1] { ĎN (ρ)}, averaged over 10 000 Monte Carlo simulations. We also present in this graph the almost sure limiting value D ⋆ of both ĎN (ρ N ) and inf ρ∈ Řε { ĎN (ρ)} for some sufficiently small ε, as well as ĎN (ρ O ) of ρO defined in (Chen et al., 2011, Equation ( 12)) as the minimizing solution of

E[ 1 N tr( ČO (ρ) -C N ) 2 ] with ČO (ρ) the so-called "clairvoyant estimator" ČO (ρ) = (1 -ρ) 1 n n i=1 x i x * i 1 N x * i C -1 N x i + ρI N .
We consider in this graph N = 32 constant, n ∈ {2 k , k = 1, . . . , 7}, and

C N = [C N ] N i,j=1 with [C N ] ij = r |i-j| , r = 0.
7, which is the same setting as considered in (Chen et al., 2011, Section 4).

It appears in Figure 4 that a significant improvement is brought by ρN over ρO , especially for small n, which translates the poor quality of ČO (ρ) as an approximation of ČN (ρ) for large values of c N (obviously linked to

1 N x * i C -1 N x i being then a bad approximation for 1 N x * i ČN (ρ) -1 x i ).
Another important remark is that, even for so small values of N, n, inf ρ∈(0,1] ĎN (ρ) is extremely close to the limiting optimal, suggesting here that the limiting results of Proposition 1 are already met for small practical values. The approximation ρN of ρ⋆ , translated here through ĎN (ρ N ), also demonstrates good practical performance at small values of N, n.

We additionally mention that we produced similar curves for ĈN (ρ) in place of ČN (ρ) which happened to show virtually the same performance as the equivalents curves for ČN (ρ). This is of course expected (with exact match) for inf ρ∈(0,1] DN (ρ) which, up to the region [0, ε), matches inf ρ∈(0,1] ĎN (ρ) for large enough N, n, and similarly for DN (ρ N ) since ρN was designed symmetrically to ρN .

Associated to Figure 4 is Figure 5 which provides the shrinkage parameter values, optimal and approximated, for both the Pascal and Chen estimates, along with the clairvoyant ρO of [START_REF] Chen | Robust shrinkage estimation of highdimensional covariance matrices[END_REF]). It appears here that ρO is a rather poor estimate for argmin ρ∈(0,1] ĎN (ρ) for a large range of values of n. It tends in particular to systematically overestimate the weight to be put on the sample covariance matrix.

Concluding remarks

The article shows that, in the large dimensional random matrix regime, the Pascal and Chen estimators for elliptical samples x 1 , . . . , x n are (up to a variable change) asymptotically equivalent, so that both can be used interchangeably. They are also equivalent to the classical Ledoit-Wolf estimator for the samples z 1 , . . . , z n or, as can be easily verified, for the samples √ N x 1 / x 1 , . . . , √ N x n / x n . This means that for elliptical samples, at least as far as first order convergence is concerned, the Pascal and Chen estimators perform similar to a normalized version of Ledoit-Wolf. Recalling that robust estimation theory aims in particular at handling sample sets corrupted by outliers, the performance of the Pascal and Chen estimators given in this paper (not considering outliers) can be seen as a base reference for the "clean data" scenario which paves the way for future work in more advanced scenarios. In the presence of outliers, it is expected that the Pascal and Chen estimates exhibit robustness properties that the normalized Ledoit-Wolf scheme does not possess by appropriately weighting good versus outlying data. The study of this scenario is currently under investigation. Also, the extension of this work to second order analysis, e.g., to central limit theorems on linear statistics of the robust estimators, is a direction of future work that will allow to handle more precisely the gain of robust versus non-robust schemes in the not-too-large dimensional regime.

In terms of applications, Proposition 2 allows for the design of covariance matrix estimators, with minimal Frobenius distance to the population covariance matrix for impulsive i.i.d. samples but in the absence of outliers, and having robustness properties in the presence of outliers. This is fundamental to those scientific fields where the covariance matrix is the object of central interest. More generally though, Theorems 1 and 2 can be used to design optimal covariance matrix estimators under other metrics than the Frobenius norm. This is in particular the case in applications to finance where a possible target consists in the minimization of the risk induced by portfolios built upon such covariance matrix estimates, see e.g., [START_REF] Ledoit | Improved estimation of the covariance matrix of stock returns with an application to portfolio selection[END_REF][START_REF] Rubio | Performance analysis and optimal selection of large minimum variance portfolios under estimation risk[END_REF][START_REF] Yu | Minimum variance portfolio optimisation with high frequency data: A robust approach based on random matrix theory[END_REF]. The possibility to let the number of samples be less than the population size (as opposed to robust estimators of the Maronna-type [START_REF] Maronna | Robust M-estimators of multivariate location and scatter[END_REF]) is also of interest to applications where optimal shrinkage is not a target but where robustness is fundamental, such as array processing with impulsive noise (e.g., multi-antenna radar) where direction-of-arrival estimates are sought for (see e.g., [START_REF] Mestre | Modified subspace algorithms for DoA estimation with large arrays[END_REF]Couillet et al., 2013a)). These considerations are also left to future work.

Proofs

This section successively introduces the proofs of Theorem 1, Theorem 2, Corollary 2, Lemma 1, Proposition 1, and Proposition 2. The methodology of proof of Theorem 1 closely follows that of (Couillet et al., 2013b). The proof of Theorem 2 also relies on the same ideas but is more technical due to the imposed normalization of ČN (ρ) to be of trace N . The proofs of the corollary, lemma, and propositions then rely mostly on the important joint convergence over ρ proved in Theorem 1 and Theorem 2, and on standard manipulations of random matrix theory and fixed-point equation analysis.

Proof of Theorem 1

The proof of existence and uniqueness of ĈN (ρ) is given in [START_REF] Pascal | Generalized robust shrinkage estimator -Application to STAP data[END_REF].

The existence and uniqueness of γ(ρ) is quite immediate as the right-hand side integral in the definition of γ(ρ) is a decreasing function of γ (since ρ > 0) with limits 1/(1 -ρ) > 1 as γ → 0 (since ν = δ 0 almost everywhere) and zero as γ → ∞. We now prove the continuity of γ on (0, 1]. Let ρ 0 , ρ ∈ (0, 1] and γ0 = γ(ρ 0 ), γ = γ(ρ). Then

t γρ + (1 -ρ)t ν(dt) - t γ0 ρ 0 + (1 -ρ 0 )t ν(dt) = 0.
Setting the difference into a common integral and isolating the term γ0 -γ, this becomes, after some calculus,

(γ 0 -γ)ρ 0 = -γ(ρ 0 -ρ) + (ρ -ρ 0 ) t 2 (γρ+(1-ρ)t)(γ0ρ0+(1-ρ0)t) ν(dt) t (γρ+(1-ρ)t)(γ0ρ0+(1-ρ0)t) ν(dt)
.

Since the support of ν is bounded by lim sup N C N < ∞ and in particular γ(ρ) ≤ ρ -1 lim sup N C N by definition of γ, the ratio of integrals above is uniformly bounded on ρ in a certain small neighborhood of ρ 0 > 0. Taking the limit ρ → ρ 0 then brings γ0 -γ → 0, which proves the continuity. From now on, for readability, we discard all unnecessary indices ρ when no confusion is possible.

Note first that x i can be equivalently replaced by z i from the definition of ĈN (ρ) which is independent of τ 1 , . . . , τ n . Consider ρ ∈ Rε fixed and assume ĈN exists for all N on the realization {z 1 , . . . , z n } ∞ n=1 (a probability one event). We start by rewriting ĈN in a more convenient form. Denoting Ĉ(i)

ĈN -

(1 -ρ) 1 n ziz * i 1 N z * i Ĉ-1
N zi and using (A + tvv * ) -1 v = A -1 v/(1 + tv * A -1 v) for positive definite Hermitian A, vector v, and scalar t > 0, we have

1 N z * i Ĉ-1 N z i = 1 N z * i Ĉ-1 (i) z i 1 + (1 -ρ)c 1 N z * i Ĉ-1 (i) zi 1 N z * i Ĉ-1 N zi so that 1 N z * i Ĉ-1 N z i = (1 -(1 -ρ)c N ) 1 N z * i Ĉ-1 (i) z i
and we can rewrite ĈN as

ĈN = 1 -ρ 1 -(1 -ρ)c N 1 n n i=1 z i z * i 1 N z * i Ĉ-1 (i) z i + ρI N .
The interest of this rewriting is detailed in (Couillet et al., 2013b) and mostly lies in the intuition that 1

N z * i Ĉ-1 (i) z i should be close to 1 N tr Ĉ-1 N for all i, while 1 N z * i Ĉ-1 N z i is a priori more involved.
To proceed with the proof, for i ∈ {1, . . . , n}, denote di (ρ)

1 N z * i Ĉ-1 (i)
z i and, up to relabeling, assume d1 (ρ) ≤ . . . ≤ dn (ρ). Then, using A B ⇒ B -1 A -1 for positive Hermitian matrices A, B,

dn (ρ) = 1 N z * n 1 -ρ 1 -(1 -ρ)c N 1 n n-1 i=1 z i z * i di (ρ) + ρI N -1 z n ≤ 1 N z * n 1 -ρ 1 -(1 -ρ)c N 1 n n-1 i=1 z i z * i dn (ρ) + ρI N -1 z n .
Since z n = 0, this implies

1 ≤ 1 N z * n 1 -ρ 1 -(1 -ρ)c N 1 n n-1 i=1 z i z * i + dn (ρ)ρI N -1 z n . (2) 
Similarly, with the same derivations, but with opposite inequalities

1 ≥ 1 N z * 1 1 -ρ 1 -(1 -ρ)c N 1 n n i=2 z i z * i + d1 (ρ)ρI N -1 z 1 . Our objective is to show that sup ρ∈ Rε max 1≤i≤n | di (ρ) -γ(ρ)| a.s.
-→ 0 where γ(ρ) is given in the statement of the theorem. This is proved via a contradiction argument.

For this, assume that there exists a sequence {ρ n } ∞ n=1 over which dn (ρ n ) > γ(ρ n ) + ℓ infinitely often, for some ℓ > 0 fixed. Since {ρ n } ∞ n=1 is bounded, it has a limit point ρ 0 ∈ Rε . Let us restrict ourselves to such a subsequence on which ρ n → ρ 0 and dn (ρ n ) > γ(ρ n ) + ℓ. On this sequence, from (2)

1 ≤ 1 N z * n 1 -ρ n 1 -(1 -ρ n )c N 1 n n-1 i=1 z i z * i + (γ(ρ n ) + ℓ)ρ n I N -1 z n ên . (3) 
Assume first ρ 0 = 1. From standard random matrix results, we have

ên = 1 -(1 -ρ n )c N 1 -ρ n 1 N z * n 1 n n-1 i=1 z i z * i + (γ(ρ n ) + ℓ)ρ n 1 -(1 -ρ n )c N 1 -ρ n I N -1 z n a.s. -→ 1 -(1 -ρ 0 )c 1 -ρ 0 δ -(γ(ρ 0 ) + ℓ)ρ 0 1 -(1 -ρ 0 )c 1 -ρ 0 e + (4) 
where, for x > 0, δ(x) is the unique positive solution to

δ(x) = t -x + t 1+cδ(x) ν(dt).
The convergence (4) follows from several classical ingredients. For this, we first use the fact that, for each p ≥ 2, w > 0, and j ∈ {1, . . . , n}, (see e.g., [START_REF] Silverstein | On the empirical distribution of eigenvalues of a class of large dimensional random matrices[END_REF]Couillet et al., 2013a) for similar arguments)

E    1 N z * j   1 n i =j z i z * i + wI N   -1 z j -δ(-w) p    = O N -p/2
which, taking p ≥ 4 along with Boole's inequality, Markov inequality, and Borel-Cantelli lemma, ensures that max

1≤j≤n 1 N z * j   1 n i =j z i z * i + wI N   -1 z j -δ(-w) a.s.
-→ 0.

Using successively A -1 -B -1 = A -1 (B-A)B -1 for invertible A, B matrices and the fact that (

1 n i =j z i z * i + wI N ) -1 < w -1 and lim sup n max 1≤i≤n 1 N z i 2 = M ν,1 = 1 < ∞ a.
s., we then have, for any positive sequence

w n → w > 0, max 1≤j≤n 1 N z * j   1 n i =j z i z * i + w n I N   -1 z j - 1 N z * j   1 n i =j z i z * i + wI N   -1 z j = |w n -w| max 1≤j≤n 1 N z * j   1 n i =j z i z * i + w n I N   -1   1 n i =j z i z * i + wI N   -1 z j ≤ |w n -w| 1 w n w max 1≤j≤n 1 N z j 2 a.s.
-→ 0 from which the convergence (4) unfolds.

Developing the expression of e + then leads to e + being the unique positive solution of the equation

e + = t (γ(ρ 0 ) + ℓ)ρ 0 + t 1-(1-ρ 0 )c 1-ρ 0 +ce + ν(dt)
which we write equivalently

1 = t (γ(ρ 0 ) + ℓ)ρ 0 e + + te + 1-(1-ρ 0 )c 1-ρ 0 +ce + ν(dt). (5) 
Note that the right-hand side term is a decreasing function f of e + . From the definition of γ(ρ 0 ), we can in parallel write

1 = t γ(ρ 0 )ρ 0 × 1 + t×1 1-(1-ρ 0 )c 1-ρ 0 +c×1 ν(dt) (6) 
where we purposely made the terms 1 explicit. Now, since both integrals above equal 1, since ℓ > 0, and since f is decreasing, we must have e + < 1. But this is in contradiction with ên ≥ 1 and the convergence (4).

If instead, ρ 0 = 1, then from the definition of ên in (3), and since 1 N z n 2 a.s.

-

→ M ν,1 = 1 (from lim n max 1≤i≤n | 1 N z i 2 -M ν,1 | a.s.
-→ 0), lim sup n Assumption 2-b. and(Bai andSilverstein, 1998)), andγ(1

1 n n i=1 z i z * i < ∞ a.s. (from
) = M ν,1 = 1, we have ên a.s. -→ M ν,1 M ν,1 + ℓ = 1 1 + ℓ < 1 again contradicting ên ≥ 1.
Hence, for all large n, there is no sequence of ρ n for which dn (ρ n ) > γ(ρ n )+ℓ infinitely often and therefore dn (ρ) ≤ γ(ρ) + ℓ for all large n a.s., uniformly on ρ ∈ Rε .

The same reasoning holds for d1 (ρ) which can be proved greater than γ(ρ)-ℓ for all large n uniformly on ρ ∈ Rε . Consequently, since ℓ > 0 is arbitrary, from the ordering of the di (ρ), we have proved that sup ρ∈ Rε max 1≤i≤n | di (ρ) -

γ(ρ)| a.s.
-→ 0. From there, we then find that

sup ρ∈ Rε ŜN (ρ) -ĈN (ρ) ≤ 1 n n i=1 z i z * i sup ρ∈ Rε max 1≤i≤n 1 -ρ 1 -(1 -ρ)c N di (ρ) -γ(ρ) γ(ρ) di (ρ) a.s.
-→ 0 where we used the fact that lim sup n

1 n n i=1 z i z * i < ∞ a.
s. from Assumption 2-b. and [START_REF] Bai | No eigenvalues outside the support of the limiting spectral distribution of large dimensional sample covariance matrices[END_REF], and the fact that 0 < ε < c -1 .

Proof of Theorem 2

The proof of existence and uniqueness is given in [START_REF] Chen | Robust shrinkage estimation of highdimensional covariance matrices[END_REF]. The proof of Theorem 2 unfolds similarly as the proof of Theorem 1 but it slightly more involved due to the difficulty brought by the normalization of ČN (ρ) by its trace. For this reason, we first introduce some preliminary results needed in the main core of the proof. Note also that, similar to the proof of Theorem 1, we may immediately consider z i in place of x i in the expression of ČN (ρ) from the independence of ČN (ρ) with respect to τ 1 , . . . , τ n .

From now on, for the sake of readability, we discard the unnecessary indices ρ.

Some preliminaries

We start by some considerations on γ(ρ) and F N (x) defined as the unique positive solution to the equation in

F N F N = (1 -ρ) 1 x 1 F N + ρ -c N (1 -ρ). ( 7 
)
Note first that, for x > 0, (7) can be written as a second order polynomial whose solutions have opposite signs, the positive one being explicitly given by

F N (x) = 1 2 (ρ -c N (1 -ρ)) + 1 4 (ρ -c N (1 -ρ)) 2 + (1 -ρ) 1 x .
The function

F N (x) is decreasing with lim x→0 F N (x) = ∞ and lim x→∞ F N (x) = max{ρ -c N (1 -ρ), 0}. As N → ∞, c N → c, and F N (x) → F (x) = F (x; ρ)
defined in the statement of the theorem which therefore satisfies

F (x) = (1 - ρ) 1 x 1 F (x) +ρ-c(1-ρ)
and is decreasing with lim x→0 F (x) = ∞ and lim x→∞ F (x) = max{ρ -c(1 -ρ), 0}. This implies in particular that the function

G : x → t xρ + 1-ρ (1-ρ)c+F (x) t ν(dt) (8)
is decreasing with lim x→0 G(x) = ∞ and lim x→∞ G(x) = 0. Hence the existence and uniqueness of γ(ρ) as defined in the theorem. Now consider the function H N : x → xF N (x) for x > 0 and ρ < 1. Then, for x > 0,

H ′ N (x) = 1 2 A(x) + B(x) ρ-(1-ρ)c N 2 2 x 2 + (1 -ρ)x
where

A(x) = 2 ρ -(1 -ρ)c N 2 ρ -(1 -ρ)c N 2 2 x 2 + (1 -ρ)x B(x) = 1 -ρ + 2 ρ -(1 -ρ)c N 2 2 x.
Although A(x) may be negative, it is easily verified that B(x) 2 = A(x) 2 +(1-ρ) 2 for all x ≥ 0. Therefore, if ρ < 1, for each w 0 > 0, there exists ε > 0 such that lim inf

N sup w0-ε<x<w0+ε H ′ N (x) > 0 (9)
a relation which will be useful in the core of the proof of Theorem 2.

To prove continuity of γ, the same arguments as in the proof of Theorem 1 hold. That is, take ρ 0 , ρ ∈ (0, 1] and denote γ0 = γ(ρ 0 ) and γ = γ(ρ). Then, by definition of γ(ρ), using

F (x) = (1 -ρ) 1 x 1 F (x) + ρ -c(1 -ρ), t γ0 ρ 0 + (1-ρ0)γ0F (γ0) 1-ρ0+ρ0 γ0F (γ0) t ν(dt) - t γρ + (1-ρ)γF (γ) 1-ρ+ργF (γ) t ν(dt) = 0.
Setting these to a common denominator gives, after some calculus,

[(γ 0 -γ)ρ 0 + γ(ρ 0 -ρ)] t D(t) ν(dt) = (1 -ρ)(1 -ρ 0 )(γF (γ) -γ0 F (γ 0 )) + (ρ 0 -ρ)γγ 0 F (γ)F (γ 0 ) (1 -ρ + ργF (γ))(1 -ρ 0 + ρ 0 γ0 F (γ 0 )) t 2 D(t) ν(dt) (10) 
where

D(t) = γ0 ρ 0 + (1 -ρ 0 )γ 0 F (γ 0 ) 1 -ρ 0 + ρ 0 γ0 F (γ 0 ) t γρ + (1 -ρ)γF (γ) 1 -ρ + ργF (γ) t > 0.
Note now that γ(ρ) ≤ ρ -1 lim sup N C N and, on a small neighborhood of ρ 0 ∈ (0, 1], γ = γ(ρ) is uniformly away from zero. Indeed, if this were not the case, on some subsequence ρ k → ρ 0 such that γ(ρ k ) → 0, the definition of γ would imply

1 = t γ(ρ k )ρ k + 1-ρ (1-ρ k )c+F (γ(ρ k )) ν(dt) → 0
which is a contradiction. This implies as a consequence that F (γ) is bounded on a neighborhood of ρ 0 . All this implies that all terms proportional to ρ 0 -ρ in (10) tend to zero as ρ → ρ 0 , so that, in the limit ρ → ρ 0 ,

(γ 0 -γ)ρ 0 tν(dt) D(t) + (1 -ρ)(1 -ρ 0 )(γ 0 F (γ 0 ) -γF (γ)) (1 -ρ + ργF (γ))(1 -ρ 0 + ρ 0 γ0 F (γ 0 )) t 2 ν(dt) D(t) → 0.
But, since x → xF (x) is increasing, γ0 F (γ 0 ) -γF (γ) is of the same sign as γ0 -γ. As D(t) is uniformly bounded for ρ in a small neighborhood of ρ 0 , this induces γ0 -γ → 0, which concludes the proof of continuity.

Main proof

Let us now work on the matrix BN . From the definition of ČN ,

BN = 1 -ρ 1 N tr BN 1 n n i=1 z i z * i 1 N z * i B-1 N z i + ρI N . Denoting B(i) = BN -1-ρ 1 N tr BN 1 n ziz * i 1 N z * i B-1 N zi and using again (A + txx * ) -1 x = A -1 x/(1 + tx * A -1 x), we have this time 1 N z * i B-1 N z i = 1 N z * i B-1 (i) z i 1 + (1 -ρ)c N 1 N z * i B-1 (i) zi 1 N z * i B-1 N zi 1 1 N tr BN so that 1 N z * i B-1 N z i = 1 N z * i B-1 (i) z i 1 -c N (1 -ρ) 1 1 N tr BN . ( 11 
)
From the positivity of both quadratic forms above, this implies in particular that 1 N tr BN -c(1 -ρ) > 0. Replacing the quadratic forms 1 N z * i B-1 N z i in the expression of BN , we can now rewrite BN as

BN = 1 -ρ 1 N tr BN -c N (1 -ρ) 1 n n i=1 z i z * i 1 N z * i B-1 (i) z i + ρI N . ( 12 
)
Denote now ďi

1 N z * i B-1 ( 
i) z i and assume, up to relabeling, that ď1 ≤ . . . ≤ ďn for all n. Then, with the definition of B(i) , we have

ďn = 1 N z * n 1 -ρ 1 N tr BN -c N (1 -ρ) 1 n n-1 i=1 z i z * i ďi + ρI N -1 z n ≤ 1 N z * n 1 -ρ 1 N tr BN -c N (1 -ρ) 1 n n-1 i=1 z i z * i ďn + ρI N -1 z n = 1 N tr BN -c N (1 -ρ) 1 -ρ 1 N z * n 1 n-1 i=1 z i z * i ďn + ρ 1 N tr BN -c N (1 -ρ) 1 -ρ I N -1 z n
where the inequality follows from the initial quadratic form being increasing when seen as a function of ďi for each i. This can be equivalently written

1 ≤ 1 N tr BN -c N (1 -ρ) 1 -ρ 1 N z * n 1 n n-1 i=1 z i z * i + ďn ρ 1 N tr BN -c N (1 -ρ) 1 -ρ I N -1 z n . (13) 
At this point, it is convenient to express (13) as a function of F N defined in (7). From (12), note indeed that

1 N tr BN = 1 -ρ 1 N tr BN -c N (1 -ρ) 1 n n i=1 1 N z i 2 ďi + ρ so that, since 1 N tr BN -c N (1 -ρ) > 0, 1 N tr BN -c N (1 -ρ) = F N   1 n n i=1 1 N z i 2 ďi -1   . (14) 
Since F N is decreasing, the term on the right-hand side is decreasing in ďi for each i. Hence

F N   1 n n i=1 1 N z i 2 ďi -1   ≥ F N   ďn 1 n n i=1 1 N z i 2 -1   .
This implies, returning to (13)

1 ≤ 1 1 -ρ F N   1 n n i=1 1 N z i 2 ďi -1   × 1 N z * n   1 n n-1 i=1 z i z * i + ďn ρ 1 -ρ F N   ďn 1 n n i=1 1 N z i 2 -1   I N   -1 z n . (15) 
With this, similar to the proof of Theorem 1, we will now show via a contradiction argument that sup ρ∈ Řε max 1≤i≤n | ďi (ρ) -γ(ρ)| a.s.

-→ 0. Let us then assume that, on a sequence {ρ n } ∞ n=1 , ďn = ďn (ρ n ) > γ(ρ n ) + ℓ = γ + ℓ infinitely often, for some ℓ > 0, and let us consider a subsequence on which ρ n → ρ 0 ∈ Řε and ďn (ρ n ) > γ(ρ n )+ℓ. Then, from the fact that

H N (x) = xF N (x) is increasing for x > 0, we have 1 ≤ 1 1 -ρ F N   1 n n i=1 1 N z i 2 ďi -1   × 1 N z * n   1 n n-1 i=1 z i z * i + (γ + ℓ)ρ 1 -ρ F N   (γ + ℓ) 1 n n i=1 1 N z i 2 -1   I N   -1 z n . (16) 
Assume first that ρ 0 < 1. We will deal with each factor involving F N on the right-hand side of ( 16). We start with the right-most factor. Using max 1≤i≤n { 1 N z i 2 } a.s.

-→ 1 since 1 N tr C N = 1 for each N , γ(ρ n ) → γ(ρ 0 ) (by continuity of γ) and also the fact that lim N inf {γ(ρ0)-η<x<γ(ρ0)+η} H ′ N (x) > 0 for some η > 0 small (from (9)), from classical random matrix theory results, e.g., [START_REF] Silverstein | On the empirical distribution of eigenvalues of a class of large dimensional random matrices[END_REF], we obtain, with probability one

lim n 1 N z * n   1 n n-1 i=1 z i z * i + (γ + ℓ)ρ n 1 -ρ n F N   (γ + ℓ) 1 n n i=1 1 N z i 2 -1   I N   -1 z n < lim n 1 N z * n   1 n n-1 i=1 z i z * i + γρ n 1 -ρ n F N   γ 1 n n i=1 1 N z i 2 -1   I N   -1 z n (17) = δ
where δ is the unique positive solution to

δ = t ρ0 γ(ρ0)F (γ(ρ0)) 1-ρ0 + t 1+cδ ν(dt).
Note here the fundamental importance of having H ′ N uniformly positive in a neighborhood of γ(ρ 0 ) to ensure the inequality sign in (17) remains strict when passing to the limit over n. We will now show that e F (γ(ρ0)) 1-ρ0 δ = 1. Indeed, from the above equation,

e = t ρ 0 γ(ρ 0 ) + (1-ρ0)t F (γ(ρ0))+(1-ρ0)ce ν(dt) or equivalently 1 = t eρ 0 γ(ρ 0 ) + (1-ρ0)te F (γ(ρ0))+(1-ρ0)ce ν(dt). (18) 
The right-hand side of ( 18) is a decreasing function of e with limits ∞ as e → 0 and 0 as e → ∞. As an equation of e, (18) therefore has a unique positive solution which happens to be 1 by definition of γ(ρ 0 ) in the theorem statement.

Therefore, e = 1. Now consider the leading factor involving F N in ( 16). We will show that this factor is uniformly bounded. For this, proceeding similarly as above with ď1 instead of ďn , note that (15), with ρ = ρ n , becomes (this is obtained by reverting all inequality signs in the preceding derivations)

1 ≥ 1 1 -ρ n F N   1 n n i=1 1 N z i 2 ďi -1   × 1 N z * 1   1 n n-1 i=1 z i z * i + ď1 ρ n 1 -ρ n F N   ď1 1 n n i=1 1 N z i 2 -1   I N   -1 z 1 . (19) 
Assume

1 n n i=1 1 N zi 2 ďi
→ ∞ on some subsequence (of probability one) over

which max i 1 N z i 2 → 1.
In particular ď1 → 0. Then, from the limiting values taken by F N and H N , the quadratic form in (19) has positive limit (even infinite if c > 1) while the first term on the right-hand side tends to infinity. This contradicts (19) altogether and therefore lim sup n

1 n n i=1 1 N zi 2 ďi < ∞. Since in addition ďi ≤ ρ -1 n 1 N z i 2 (using (A + ρ n I N ) -1 ≤ ρ -1
n for nonnegative Hermitian A) is uniformly bounded a.s. for all large n, it follows that

1 n n i=1 1 N zi 2 ďi
is uniformly bounded and bounded away from zero. This implies that F N

1 n n i=1 1 N zi 2 ďi -1
is uniformly bounded, as desired.

Getting back to ( 16) with ρ = ρ n , we can therefore extract a further subsequence on which the latter converges to F ∞ and ď1 converges to ď∞ 1 ( ď∞ 1 can be zero) and we then have along this subsequence

1 < F ∞ 1 -ρ 0 δ = F ∞ F (γ(ρ 0 )) (20)
with the equality arising from F (γ(ρ 0 ))δ = 1 -ρ 0 . Since F N is increasing,

F N   1 n n i=1 1 N z i 2 ďi -1   ≤ F N   ďi 1 n n i=1 1 N z i 2 -1
  so that, taking the limit over n, F ∞ ≤ F ( ď∞ 1 ) (set equal to ∞ if ď∞ 1 = 0). This further implies

F (γ(ρ 0 )) < F ( ď∞ 1 )
so that, if ď∞ 1 > 0, inverting the above inequality, gives ď∞ 1 < γ(ρ 0 ). Obviously, if ď∞ 1 = 0, this is still true. Therefore ď1 (ρ n ) < γ(ρ 0 ) -ℓ ′ infinitely often for some ℓ ′ > 0 along the considered subsequence.

Conserving the same subsequence and reproducing the same steps for the sequence ď1 (ρ n ) instead of ďn (ρ n ) (from ( 19), use ď1 (ρ n ) < γ(ρ n ) -ℓ ′ infinitely often and the growth of H N similar to before), we obtain this time

1 > F ∞ F (γ(ρ 0 ))
which contradicts (20).

Assume now ρ 0 = 1. Starting from ( 13) with ρ = ρ n and the expression of F N , we have

1 ≤ lim sup N F N   1 n n i=1 1 N z i 2 ďi -1   × 1 N z * n   (1 -ρ n ) 1 n n-1 i=1 z i z * i + ďn ρ n F N   1 n n i=1 1 N z i 2 ďi -1   I N   -1 z n ≤ lim sup N F N   1 n n i=1 1 N z i 2 ďi -1   × 1 N z * n   (1 -ρ n ) 1 n n-1 i=1 z i z * i + (γ + ℓ)ρ n F N   1 n n i=1 1 N z i 2 ďi -1   I N   -1 z n = 1 γ(ρ 0 ) + ℓ since ρ n → ρ 0 = 1, since 1 n n i=1 1 N zi 2 ďi
is uniformly away from zero (as shown previously), and since lim sup n [START_REF] Bai | No eigenvalues outside the support of the limiting spectral distribution of large dimensional sample covariance matrices[END_REF]. But then, the fact that γ(ρ 0 ) = 1 by definition along with the above relation leads to 1 ≤ 1/(1 + ℓ), again a contradiction. Therefore, gathering the results, our very initial hypothesis that there exists a subsequence of n and ρ n over which ďn (ρ n ) > γ(ρ n ) + ℓ infinitely often is invalid and we conclude that, instead, sup ρ∈ Řε ďn (ρ) -γ(ρ) ≤ ℓ for all large n a.s.

1 n n i=1 z i z * i < ∞ (
The same procedure works similarly when starting over with ď1 and assuming with the same contradiction argument that ď1 (ρ ′ n ) < γ(ρ ′ n ) -ℓ infinitely often on some sequence ρ ′ n . Taking a subsequence over which ρ ′ n → ρ ′ 0 , this will imply this time that ďn (ρ ′ 0 ) > γ(ρ ′ 0 ) + ℓ ′ for some ℓ ′ > 0 for all large n a.s. which we now know is invalid.

Gathering the results, we finally obtain

sup ρ∈ Řε max 1≤i≤n | ďi (ρ) -γ(ρ)| a.s.
-→ 0 (21)

as desired. This implies from ( 14) that

sup ρ∈ Řε 1 N tr BN -c(1 -ρ) -F (γ(ρ))
a.s.

-→ 0 with inf ρ∈ Řε F (γ(ρ)) > 0 so that, from ( 12), Assumption 2-b., and [START_REF] Bai | No eigenvalues outside the support of the limiting spectral distribution of large dimensional sample covariance matrices[END_REF],

sup ρ∈ Řε BN - 1 -ρ F (γ(ρ))γ(ρ) 1 n n i=1 z i z * i + ρI N a.s.
-→ 0.

Dividing the expression inside the norm by 1 N tr BN and taking the limit finally gives

sup ρ∈ Řε ČN - 1 -ρ ρF (γ)γ + (1 -ρ) 1 n n i=1 z i z * i + ργF (γ) ργF (γ) + (1 -ρ) I N a.s.
-→ 0 with γ = γ(ρ), which is the expected result.

Proof of Corollary 2

We only give the proof for ĈN (ρ). Similar arguments hold for ČN (ρ). The joint eigenvalue convergence is an application of (Horn and Johnson, 1985, Theorem 4.3.7) -→ 0 and from lim sup N sup ρ∈ Rε ŜN (ρ) < ∞ by an application of [START_REF] Bai | No eigenvalues outside the support of the limiting spectral distribution of large dimensional sample covariance matrices[END_REF].

The joint convergence of moments over Rε follows first from the convergence mN (z; ρ) -m μρ (z) a.s.

-→ 0 for each z with ℑ[z] > 0 and for each ρ ∈ Rε where m N (z; ρ) = 1 N tr( ŜN (ρ) -zI N ) -1 (as a consequence of Corollary 1). Since this holds for each such z, the almost sure convergence is also valid uniformly on a countable set of z with ℑ[z] > 0 having a limit point away from the union U over ρ ∈ Rε of the limiting spectra of ŜN (ρ), U being a bounded set since lim sup N sup ρ∈ Rε ŜN (ρ) < ∞. But then, since

(1 -ρ)m N (z; ρ) γ(ρ)(1 -(1 -ρ)c) = 1 N tr 1 n n i=1 z i z * i + ρ -z 1 -ρ γ(ρ)(1 -(1 -ρ)c)I N -1 is analytic in ẑ(ρ) = ρ-z 1-ρ γ(ρ)(1 -(1 -ρ)c
) and bounded on all bounded regions away from U , by Vitali's convergence theorem [START_REF] Titchmarsh | The Theory of Functions[END_REF], the convergence mN (z; ρ) -m μρ (z) a.s.

-→ 0 is uniform on such bounded sets of (z, ρ). Using the Cauchy integrals z k m N (z; ρ)dz = 1 N tr ŜN (ρ) ℓ and z k m μρ (z)dz = M μρ,k for each k ∈ N on a contour that circles around (but sufficiently away from) U implies sup ρ∈ Rε | 1 N tr ŜN (ρ) ℓ -M μρ,ℓ | a.s.

-→ 0, from which the result unfolds.

Proof of Lemma 1

We start with ŜN . Remark first that, for ρ

∈ (max{0, 1 -c -1 }, 1], ŜN (ρ) 
M μρ,1 = 1 - ρ 1 γ(ρ) 1-ρ 1-(1-ρ)c + ρ 1 n n i=1 z i z * i + ρ 1 γ(ρ) 1-ρ 1-(1-ρ)c + ρ I N . Denoting f : (max{0, 1 -c -1 }, 1] → (0, 1] ρ → ρ 1 γ(ρ) 1-ρ 1-(1-ρ)c + ρ = 1 1 ργ(ρ) 1-ρ 1-(1-ρ)c + 1 we have ŜN (ρ) M μρ,1 = (1 -f (ρ)) 1 n n i=1 z i z *
i + f (ρ)I N and it therefore suffices to show that f is continuously increasing and onto. The continuity of f unfolds immediately from the continuity of γ. By the definition of γ, the function ρ → ργ(ρ) is increasing and nonnegative (since ν is distinct from δ 0 almost everywhere) while ρ → 1-ρ 1-(1-ρ)c is decreasing and nonnegative. Therefore, f is increasing and nonnegative. It remains to show that f is onto. Clearly f (1) = 1 since γ(1) = M ν,1 = 1. To handle the lower limit, let us rewrite

f (ρ) = ργ(ρ)(1 -(1 -ρ)c) 1 -ρ + ργ(ρ)(1 -(1 -ρ)c)
which we aim to show approaches zero as ρ ↓ max{0, 1 -c -1 }. For this, assume

ρ k γ(ρ k )(1 -(1 -ρ k )c) → ℓ ∈ (0, ∞] for a sequence ρ k ↓ max{0, 1 -c -1 }. Then, from the defining equation of γ(ρ) in Theorem 1, 1 = (1 -(1 -ρ k )c)t ρ k γ(ρ k )(1 -(1 -ρ k )c) + (1 -ρ k )(1 -(1 -ρ k )c)t ν(dt) ≤ (1 -(1 -ρ k )c) lim sup N C N ρ k γ(ρ k )(1 -(1 -ρ k )c) + (1 -ρ k )(1 -(1 -ρ k )c) lim sup N C N → lim k (1 -(1 -ρ k )c) lim sup N C N ℓ + lim k (1 -ρ k )(1 -(1 -ρ k )c) lim sup N C N < 1 since the limit is either zero (when c ≥ 1) or (1 -c) lim sup N C N /(ℓ + (1 - c) lim sup N C N ) < 1 (when c < 1). But this is a contradiction. This implies that ργ(ρ)(1 -(1 -ρ)c) → 0 and consequently f (ρ) → 0 as ρ ↓ max{0, 1 -c -1 }, which completes the proof for Ŝ(ρ).
Similarly, for Š(ρ), define

f : (0, 1] → (0, 1] ρ → T ρ 1 -ρ + T ρ
where we recall that T ρ = ργ(ρ)F (γ(ρ); ρ) and which is such that ŠN

(ρ) = (1 - f (ρ)) 1 n n i=1 z i z * i + f (ρ)I N .
We will show that f is continuously increasing and onto. The continuity arises from the continuity of γ. We first show that γ is onto. For the upper limit, f (1) = 1. For the lower limit, assume T ρ k → ℓ ∈ (0, ∞] over a sequence ρ k → 0, so that in particular T ρ k ρ -1 k → ∞. Then, by the definition of γ(ρ) and since F (

x; ρ) = (1 -ρ) 1 xF (x;ρ) + ρ -c(1 -ρ), 1 = 1 γ(ρ k )ρ k t -1 + T ρ k ρ -1 k 1-ρ k 1-ρ k +Tρ k ν(dt) → 0
by dominated convergence (recall that ν has bounded support), which is a contradiction. This implies f (ρ) → 0 as ρ → 0. It remains to show that f is increasing. For this, we will rewrite the equation defining γ(ρ) as a function of f (ρ). Using again F (

x; ρ) = (1 -ρ) 1 xF (x;ρ) + ρ -c(1 -ρ), we first have, for each t ≥ 0, γ(ρ)ρ + 1 -ρ (1 -ρ)c + F (γ(ρ); ρ) t = γ(ρ)ρ + 1 -ρ (1 -ρ) 1 γ(ρ)F (γ(ρ);ρ) + ρ t = γ(ρ)ρ + (1 -ρ)γ(ρ)F (γ(ρ); ρ) 1 -ρ + ργ(ρ)F (γ(ρ); ρ) t = ργ(ρ)F (γ(ρ); ρ) F (γ(ρ); ρ) + 1 -ρ ρ f (ρ)t = 1 F (γ(ρ); ρ) (1 -ρ) f (ρ) 1 -f (ρ) + 1 -ρ ρ f (ρ)t
where in the last equality we used (1 -ρ) f (ρ) = (1 -f (ρ))ργ(ρ)F (γ(ρ); ρ). We now work on F (γ(ρ); ρ). By its implicit definition,

1 F (γ(ρ); ρ) = 1 (1 -ρ) 1 γ(ρ)F (γ(ρ);ρ) + ρ -c(1 -ρ) = ργ(ρ)F (γ(ρ); ρ) ρ(1 -ρ) + ρ 2 γ(ρ)F (γ(ρ); ρ) -c(1 -ρ)ργ(ρ)F (γ(ρ); ρ) = (1 -ρ) f (ρ) 1 -f (ρ) 1 ρ(1 -ρ) + ρ (1-ρ) f (ρ) 1-f (ρ) -c(1 -ρ) (1-ρ) f (ρ) 1-f (ρ) = f (ρ) ρ -c(1 -ρ) f (ρ)
where the last equation follows from standard algebraic simplification. Note here in particular that, by positivity of F (x; ρ) for x > 0, ρ -c(1 -ρ) f (ρ) > 0.

Plugging the two results above in the defining equation for γ(ρ), we obtain

1 = t f (ρ) ρ-c(1-ρ) f (ρ) (1-ρ) f (ρ) ρ(1-f (ρ)) + 1-ρ ρ f (ρ)t ν(dt). (22) 
Now assume that f (ρ) is decreasing on an open neighborhood of ρ 0 ∈ (0, 1). Then ρ → 1-ρ ρ f (ρ) and ρ → (1-ρ) f (ρ) ρ(1-f (ρ)) are also decreasing. This follows from the fact that, on this neighborhood, ρ → (1 -ρ)/ρ = 1/ρ -1, ρ → 1 -ρ, and ρ → f (ρ)/(1 -f (ρ)) = -1 + 1/(1 -f (ρ)) are all positive decreasing functions of ρ. Finally,

f (ρ) ρ -c(1 -ρ) f (ρ) = 1 ρ f (ρ) + c(ρ -1)
which is also positive decreasing, since ρ → ρ/ f (ρ) and ρ → c(ρ-1) are both increasing and of positive sum. But then, the right-hand side of ( 22) is increasing on a neighborhood of ρ 0 while being constant equal to one, which is a contradiction. Therefore, our initial assumption that f (ρ) is locally decreasing around ρ 0 does not hold, and therefore f (ρ) is increasing there and thus increasing on (0, 1]. This completes the proof.

Proof of Proposition 1

We only prove the result for ĈN , the treatment for ČN being the same. First observe that, denoting A N (ρ) = ĈN ( ρ) 1 -→ 0 where D(ρ) = (M ν,2 -1)ρ 2 + c(1 -ρ) 2 .

N tr ĈN ( ρ) -ŜN ( ρ) M μ ρ ,1 , sup ρ∈ Rε DN (ρ) - 1 N tr ŜN (ρ) M μρ ,1 -C N 2 = sup ρ∈ Rε 1 N tr A N (ρ) ĈN (ρ) 1 N tr ĈN (ρ) + ŜN (ρ) M μρ ,1 -2C N ≤ sup ρ∈ Rε 2 1 N tr A N (ρ)C N + 1 N tr A N (ρ) ĈN (ρ) 1 N tr ĈN (ρ) + ŜN (ρ) M μρ ,1 ≤ sup ρ∈ Rε A N (ρ) sup ρ∈ Rε 3 + 1 N tr ŜN (ρ) M μρ ,1 where 
Note importantly that, from the Cauchy-Schwarz inequality, 1 = M 2 ν,1 ≤ M ν,2 and therefore M ν,2 -1 ≥ 0 with equality if and only if ν = δ a for some a ≥ 0 almost everywhere. From the above convergence, we then have, for any ε > 0 small, -→ 0 which is the expected result.

Proof of Proposition 2

We first show the following identities

1 n tr 1 n n i=1 x i x * i 1 N x i 2 2 -c N a.s. -→ M ν,2 (24) 
sup

ρ∈ Řε T ρ -ρ 1 n n i=1
x * i ČN (ρ) -1 x i x i 2 a.s.

-→ 0. -→ M ν,2 + cM 2 ν,1 = M ν,2 + c and from max 1≤i≤n | 1 N z i 2 -1| a.s.

-→ 0. As for Equation (25), it is a consequence of the elements of the proof of Theorem 2. Indeed, from (11),

ρ 1 N x * i ČN (ρ) -1 x i = ρ 1 N x * i B(i) (ρ) -1 x i 1 N tr BN (ρ) -c N (1 -ρ)
where B(i) (ρ) = BN (ρ)-

1 n 1-ρ 1 N tr BN xix * i 1 N x *
i BN (ρ) -1 xi , which according to (14) further reads

ρ 1 N x * i ČN (ρ) -1 x i = ρ 1 N x * i B(i) (ρ) -1 x i F N   1 n n i=1 x i 2 1 N x * i B(i) (ρ) -1 x i -1
; ρ   with F N (x; ρ) the same function as F but with c N in place of c (recall that in ( 14), ďi = 1 N z * i B(i) (ρ) -1 z i ). Since the τ i normalization is irrelevant in the expression above, x i can be replaced by z i . Using the convergence result ( 21 -→ 0.

This, and the fact that max 1≤i≤n | 1 N z i 2 -1| a.s.

-→ 0 gives the result. It remains to prove that ρN a.s.

-→ ρ⋆ and ρN a.s.

-→ ρ⋆ . We only prove the first convergence, the second one unfolding along the same lines. First observe from Corollary 2 that the defining equation of ρN implies

f (ρ N ) = c M ν,2 + c -1 + ℓ n
for some sequence ℓ n a.s.

-→ 0, with f :

x → x( 1 γ(x) 1-x 1-(1-x)c + x)) -1 .
Since f is a one-to-one growing map from (max{0, 1 -c -1 }, 1] onto (0, 1] (Lemma 1) and c Mν,2+c-1 ∈ (0, 1), such a ρN exists (not necessarily uniquely though) for all large N almost surely. Taking such a ρ N , by definition of ρ⋆ , we further have f (ρ N ) -f (ρ ⋆ ) a.s.

-→ 0 which, by the continuous growth of f , ensures that ρN a.s.

-→ ρ⋆ . The convergence DN (ρ N ) a.s.

-→ D ⋆ is then an application of Proposition 1.
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 1 Figure 1: Histogram of the eigenvalues of ĈN (Pascal type) for n = 2048, N = 256, C N = 1 3 diag(I 128 , 5I 128 ), ρ = 0.2, versus limiting eigenvalue distribution.

Figure 2 :

 2 Figure 2: Histogram of the eigenvalues of ČN (Chen type) for n = 2048, N = 256, C N = 1 3 diag(I 128 , 5I 128 ), ρ = 0.2, versus limiting eigenvalue distribution.

Figure 3 :

 3 Figure 3: Histogram of the eigenvalues of ČN (Chen type) for n = 512, N = 1024, C N = 1 3 diag(I 128 , 5I 128 ), ρ = 0.8, versus limiting eigenvalue distribution.

  Figure4: Performance of optimal shrinkage averaged over 10 000 Monte Carlo simulations, for N = 32, various values of n, [C N ] ij = r |i-j| with r = 0.7; ρN is given in Proposition 2; ρO is the clairvoyant estimator proposed in(Chen et al., 2011, Equation (12)); D ⋆ taken with c = N/n.

Figure 5 :

 5 Figure 5: Shrinkage parameter ρ averaged over 10 000 Monte Carlo simulations, for N = 32, various values of n, [C N ] ij = r |i-j| with r = 0.7; ρN and ρN given in Proposition 2; ρO is the clairvoyant estimator proposed in (Chen et al., 2011, Equation (12)); ρ ⋆ , ρ⋆ , and ρ⋆ taken with c = N/n; ρ• = argmin {ρ∈(max{0,1-c -1 N },1]} { DN (ρ)} and ρ• = argmin {ρ∈(0,1]} { ĎN (ρ)}.

  on the spectral norm convergence of Theorems 1 and 2. The norm boundedness results from sup ρ∈ Rε | ĈN (ρ) -ŜN (ρ) | a.s.

.

  we used | tr AB| ≤ tr A B for nonnegative definite A along with 1 Ntr C N = 1. Now, sup ρ∈ Rε A N (ρ) ≤ sup ρ∈ Rε M μρ ,1 sup ρ∈ Rε ĈN (ρ) -ŜN (ρ) inf ρ∈ Rε 1 N tr ĈN (ρ)M μρ ,1 + sup ρ∈ Rε ŜN (ρ) sup ρ∈ Rε 1 N tr ĈN (ρ) -M μρ ,1 inf ρ∈ Rε 1 N tr ĈN (ρ)M μρ ,1 ρ)cis uniformly bounded across ρ ∈ Rε , this finally implies from Theorem 1 and Corollary 2 that both right-hand side terms tend almost surely to zero in the large N, n limit (in particular since the denominators are bounded away from zero), and finally sup Lemma 1, for each ρ ∈ (max{0, 1 -c -1 },

N

  ρ ⋆ the minimizer of D(ρ) over[0, 1]. It is easily verified that ρ ⋆ ∈ (0, 1] is as defined in the theorem. Also denote ρ⋆ the unique value such thatρ ⋆ = ρ⋆ ( 1 γ( ρ⋆ ) 1-ρ⋆ 1-(1-ρ⋆ )c +ρ ⋆ ) -1, which is well defined according to Lemma 1. Call also ρ• N the minimizer of DN (ρ) over Rε and ρ• N = ρ• N ( )c + ρ• N ) -1 . If ε is as given in the theorem statement, ρ⋆ ∈ Rε and then D(ρ ⋆ ) ≤ D(ρ • N ) DN (ρ • N ) ≤ DN (ρ ⋆ ) DN (ρ ⋆ ) -D(ρ ⋆) equations following from (23) (the joint convergence in (23) is fundamental since ρ • N and ρ• N are not constant with N ). These four relations together ensure that DN (ρ • N ) -D(ρ ⋆ ) fact that D(ρ ⋆ ) = D ⋆ as defined in the theorem statement conclude the proof of the first part of the theorem. For the second part, denoting ρ N = ρN ( ρN )c + ρN ) -1 , we have that D(ρ N ) -D(ρ ⋆ ) a.s. -→ 0 by continuity of D since ρ N a.s. -→ ρ ⋆ and therefore, since DN (ρ N ) -D(ρ N ) a.s. -→ 0 by (23), DN (ρ N ) -D(ρ ⋆ ) a.s.

  ) and the continuity and boundedness of x → xF N (x), we then havesup ρ) -1 z i -ργ(ρ)F (γ(ρ); ρ) ρ) -1 z i -ργ(ρ)F (γ(ρ); ρ) ρ) -1 z i -ργ(ρ)F (γ(ρ); ρ) a.s.

supported by the ERC MORE EC-120133.