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Abstract—Anticipating multimedia file requests via caching at
the small cell base stations (SBSs) has emerged as a promising
technique for enhancing the quality-of-service (QoS) of cellular user
equipments (UEs). Nevertheless, in traditional caching approaches,
files are retrieved from evolved packet core (EPC) of the network,
and without coordination among SBSs, which introduces new
challenges of content duplication and unbalanced traffic load on
the backhaul. In this paper, we propose a collaborative framework
in which the SBSs can access files from the caches of other SBSs
within the same network domain (i.e., connected to the same service
gateway). We design a cost model for the content retrieval of
contents across SBSs and from the EPC, and we propose a cost-
aware decentralized algorithm, based on which the SBSs devise
individual caching strategies (i.e., which files to cache, and from
where). Simulation results show that the proposed cooperative
caching scheme yields significant gains in terms of in-network
content availability, reaching up to 21% improvement compared
to a traditional approaches based on geographical distribution of
the UEs.

I. INTRODUCTION

Meeting the stringent quality-of-service (QoS) requirements
of emerging multimedia services has led to the introduction of
novel decentralized wireless cellular architectures, such as those
based on the concept of small cell base stations (SBSs), such as
picocells, microcells or femtocells. SBS deployments promise
to deliver high QoS, at low operational costs [1], yet, in order
to reap those benefits, a number of technical challenges must
be addressed, notably in the field of load balancing and limited
backhaul capacity [2].

To overcome the backhaul capacity limitations, state-of-the-
art SBS architectures propose the integration of data storage
units and offloading techniques, based on data caching. Caching
has been originally proposed in content distribution networks for
enhancing data locality, i.e., by content replication at strategic
nodes of the network (e.g., proxy servers, gateways), while
balancing the network traffic during off-peak intervals [3]. In
essence, by decoupling the time instant in which a file content
is downloaded, from the one in which it is delivered to a UE,
an SBS can boost the QoS experienced by its users while saving
backhaul resources.

Caching for SBS networks entails a number of technical
challenges. Notably, retrieving files from the respective con-
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tent providers incurs a cost in terms of backhaul bandwidth
utilization. Such a cost is typically different for each SBS,
based on their current backhaul bandwidth availability. Also,
due to the limited storage capacity of each memory units, each
SBS is required to implement a decision policy – so as to
select which files to cache – and a replacement policy – for
updating the cache composition, when the disk space is full. The
complexity of such operations is exacerbated by the fact that each
SBS performs caching operations independently and without
coordination, which introduces issues of content duplication and
unbalanced backhaul load. In summary, implementing caching at
SBS level needs to carefully account for the cost for retrieving
the files to cache, balance the resulting traffic load increase on
the backhaul, and to manage the content duplication.

A promising alternative to address the above challenges is to
allow the SBSs to implement cooperative caching mechanisms,
such as in-network caching techniques [3], [4]. The rationale
behind cooperative caching is that if two SBSs are aware of
their respective cache composition, they can pool resources,
and coordinate future requests. In-network caching is a specific
case in which the cooperative SBSs are connected to the same
service gateway, which defines a network domain, as depicted
in Figure 1. Exchanging information among SBSs in the same
network domain does not involve higher level network elements,
such as the packet gateways in the evolved packet core (EPC) of
the network. As a result, in-network caching enable the SBSs to
devise cooperative caching policy, pool resources and increase
the hit-ratio (i.e., the probability that a file requested by a UE
is found in the cache of its serving SBS), while harnessing the
backhaul congestion at EPC network elements.

The main contribution of this paper is to propose a novel,
decentralized caching strategy for coordinating the content re-
trieval in cooperative small cell networks. The proposed solution
enables the SBSs to make individual decisions on which SBS
they can cooperate with – based on their cache composition –
and how to update the respective caches, based on the cost of file
retrieval, and their respective backhaul bandwidth availability.
To solve this problem, we formulate a cost model for retrieving
files from the EPC or from neighboring SBSs. Based on this
cost model, we propose a heuristic algorithm and we compute
its performance lower-bound. Simulation results show that, in the
proposed cooperative caching approach, the SBSs overcome the
backhaul capacity limitations and improve the UE’s QoS delivery
of traditional UE-SBS associations, yielding gains of up to 21%.
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The rest of this paper is organized as follows. In Section II,
we present the related work and our contributions. In Section III,
we introduce the system model and formulate the in-network
cooperative caching problem. In Section IV, we present a de-
composition of the original problem and propose an algorithm
that implements the cooperative caching in a distributed way.
Simulation results are analyzed in Section V. Finally, conclusions
are drawn in Section VI.

II. RELATED WORK AND CONTRIBUTION

In the existing literature on small cell networks, a number of
works have delved into the aspects of caching. As the efficiency
of caching depends on the ability of each SBS to intelligently
select which files to store, i.e., to enhance the hit-ratio of content
requests, several works have aimed at maximizing the hit-ratio,
by adequately dimensioning the SBSs’ caches [4], or based on
the mobility estimation of UEs [5]. The file selection and content
placement, i.e., the most suitable SBSs in which the files should
be cached have been addressed in [3], [6], based on the file
popularity distribution. In this respect, additional information on
the spatial and social links across the users has been shown to
further improve the QoS by tracking the data content popularity
at the SBSs [7], [8].

With concern to the methodologies, caching optimization
frameworks have been proposed in [3], [6], [9] but an underlying
assumption is that the network optimization is pursued by
taking individual decision at each SBS. The aforementioned
works deploy cost-unaware performance indicators (e.g., hit-
ratio or number of hops), which do not account for the cost
of file retrieval. Moreover, such works assume decentralized,
uncooperative caching operations at each SBS. Unlike those
works, we propose a cost-aware caching mechanism in which
the SBSs can cooperate so as to pool their caches and optimize
the file selection, while accounting for a cost of file retrieval. As
the SBS network architecture includes communication interfaces
among SBSs (i.e. X2, interface) and between SBSs and gateways
(i.e., S1 interface), 3GPP specification has proposed local IP
access (LIPA) and selective IP traffic offload (SIPTO) as effective
solutions for enabling coordinated policies among neighboring
SBSs, notably in the context of proactive caching [10]. Our work
is aligned to this research direction, and in summary, our main
contributions are:

• We design an in-network caching mechanism for SBSs,
which accounts for both storage and backhaul capacity
limitations.

• We evaluate the worst-case performance of the proposed
solution and discuss possible upgrades.

• Main caching performance indicators are evaluated and
compared with those of other benchmark caching schemes.

III. SYSTEM MODEL

Consider the downlink transmission of a single orthogonal
frequency division multiple access (OFDMA) macro-cell. In this
network, M mobile UEs and N SBSs are deployed, respectively
denoted by the sets M = {1, ...,M} and N = {1, ..., N}. Let
Li denote the set of UEs serviced by SBS i. The SBSs are
connected to the core network via a backhaul of capacity B.
Each UE m requests a set of files Fm = {1, ..., Fm}, Fm ⊂ F .

For simplicity, we assume that all files have the same size s.
The request probability associated to each file f ∈ F , with
popularity rank k across the UEs in M, is assumed to follow
a Zipf distribution with skewness parameter ψ [11]. Thus, each
UE m requests file f with probability ρm,f = f−ψ∑|F|

x
1
x
ψ , x ∈ F ,

which we assume it is known.
In order to accommodate the UE’s traffic requests, each SBS

allocates a backhaul bandwidth Bi,m to each UE m ∈ Li, such
that

∑
m∈Li Bi,m ≤ B. When a file requested by UE m ∈ Li

is not locally available at its SBS, it is downloaded from the
content provider, through the backhaul at constant rate Bi,m.
Due to the fact that the number of serviced UEs |Li| varies at
each small cell, each SBS i experiences a different backhaul
bandwidth availability, defined as:

Bi = B −
∑
m∈Li

Bi,m. (1)

Each SBS is equipped with a data storage unit having a
capacity of Ki bytes and the set of files that are locally stored at
SBS i is denoted by Di = {1, . . . , Di}. This caching procedure
can continue until the storage capacity Ki is exhausted. Upon
reaching the maximum storage capacity Ki, the least popular
files are systematically dropped to accommodate new file entries,
while verifying the storage capacity constraint:

Di · s ≤ Ki [bits]. (2)

In traditional networks, the files requested by an UE that are
not available in the cache of its serving SBS are downloaded
from a content provider via the backhaul. Clearly, this operation
entails a number of challenges, such as the verification of
delay or data rate constraints, which are greatly affected by
the backhaul traffic congestion. Moreover, files stored in remote
content providers are generally processed by a number of packet
gateways, each one introducing a delay, whose estimation is
difficult. As a result, a caching approach which maximizes the
hit-ratio cannot ensure high QoS delivery, and it can compromise
the QoS of uncached file requests. To alleviate this issue, an
alternative is to allow the SBSs to retrieve files also from the
caches of other SBSs in the same network domain ( i.e., from
other SBSs which are connected to the same network gateway)
other than traditional content providers, as depicted in Figure 1.
Each service gateway is connected to a smaller set of SBSs,
defining a network domain. The file exchange across SBS of the
same domain only involves the service gateway of that domain,
which limits the delay and does not affect traffic congestion in
the EPC. In this work, we consider that, within each network
domain, the SBSs can form cooperative groups, called coalitions,
and jointly decide on which files to cache. Hence, given the file
requests of each UE, each coalition is formed so as to exploit
cache diversification and increase the hit-ratio.

We now introduce some preliminary definitions. Based on the
file popularity distribution and the caching policy at each SBS,
it is possible to determine the probability πL

m,i,f that a file f ,
requested by UE m, is available at a local SBS i [6]. Hence,
the probability that a UE m requests an uncached file f /∈ Di is
given by πM

m,i,f = 1 − πL
m,i,f . In-network caching mechanisms

add a third scenario to the above two. A file which is requested
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Fig. 1: Network architecture and in-network caching. The net-
work is partitioned into two network domains. In domain A,
SBS {1, 2, 3} have pooled their caches, based on the require-
ments of their respective UEs. SBS 4 and 5, 6 cache their files
from the EPC. Accordingly, network domains A and B are
respectively partitioned into {(SBS1, SBS2, SBS3), (SBS4)}
and {(SBS5), (SBS6)}.

at SBS i, and is thereby unavailable, can be found in the cache
of SBS j (in the same network domain) with probability πR

m,i,f .
In summary, the three probabilities that a file requested by UE
m, serviced by SBS i is locally cached, or cached at another
cooperative SBS j, or unavailable are respectively expressed by:

πL
m,i,f = Prob{f ∈ Di|f ∈ Fm,m ∈ Li}, (3)

πR
m,i,f = Prob{f ∈ Dj |f ∈ Fm,m ∈ Li, {i, j} ∈ S}, (4)

πM
m,i,f = 1− πL

m,i,f − πR
m,i,f . (5)

In order to formulate an optimization problem for the proposed
in-network caching architecture, we introduce a cost model for
the file acquisition. Specifically, when a copy of file f is available
at the local cache of an SBS i, the cost for SBS i to acquire file
f is equal to zero. Instead, retrieving a file that is available at
another SBS j in the same coalition S has a cost cm,i,f = dR(S)
that depends on the number of cooperating SBSs. In fact, for the
proposed in-network caching mechanism, we assume that such a
cost depends on the number of requests managed by the service
gateway, and thus, the cost grows linearly with |S|. Finally, when
a file is unavailable both locally and within a coalition, the cost
for its acquisition is dM , where dM > dR(S). Namely, the cost
of retrieving files from the cache of another SBS within the
network domain (e.g., serviced by the same network gateway) is
smaller than fetching data from the content provider, in which
the number of network gateways and the routing path may yield
intolerable delays. In summary, the cost for obtaining file f ∈
Fm, of UE m, serviced by SBS i in coalition S is:

cm,i,f =

 0, f ∈ Di,
dR(S), f ∈ Dj , {i, j} ∈ S,
dM , f /∈ Di, ∀i ∈ S.

(6)

Given the above cost model, the overall network cost for
delivering the files requested by the UEs to their respective SBSs
is:

∑
i∈N

∑
m∈M

∑
f∈Fm

cm,i,f

=
∑
i∈N

∑
m∈M

∑
f∈Fm

dR(S)πR
m,i,f + dMπM

m,i,f

=
∑
i∈N

∑
m∈M

∑
f∈Fm

dR(S)πR
m,i,f + dM (1− πL

m,i,f − πR
m,i,f )

=
∑
i∈N

∑
m∈M

∑
f∈Fm

dM (1− πL
m,i,f )− (dM − dR(S))πR

m,i,f .

(7)

Note that the first term in (7), i.e.,∑
i∈N

∑
m∈M

∑
f∈Fm d

M (1 − πL
m,i,f ) represents the cost

for retrieving the missing files by each single SBS, in a
non-cooperative approach. For example, a traditional approach
for minimizing this cost is by caching the files which maximize
the hit-ratio, as shown in [6]. In this work, we focus on the
second term, which we define cooperative caching utility U ,
that represents the cost that can be saved by cooperative caching
management of the SBSs.

In such a setting, we aim at finding a network par-
tition, i.e., a collection of disjoint, nonempty coalitions,
P (N ) : {S1,S2, . . . } ∈ N , and an file selection strategy Di

at each SBS, that maximize the utility U , by considering the
limitations on the backhaul capacity and the storage capabilities
at each SBS. Essentially, this yields the following optimization
problem:

argmax
P (N ),Di

U =
∑
i∈N

∑
m∈M

∑
f∈Fm

(dM − dR(S))πR
m,i,f (8)

s.t., Di · s ≤ Ki, (9)
Bi > 0, ∀i ∈ N (10)

In terms of complexity, the optimization problem in (8–10)
is NP-complete. Even by relaxing some of the constraints, the
exponential complexity makes a centralized approach intractable,
notably in small cell networks in which the number of UEs and
SBSs can considerably grow. The problem complexity coupled
with the need for self-organizing solutions in small cells mandate
distributed approaches in which the SBSs can autonomously
decide on in-network caching policy, based on available backhaul
bandwidth and storage capacity, as we will present in the
following section.

IV. PROPOSED ALGORITHM FOR CLUSTER FORMATION

For the sake of mathematical tractability, we decompose the
original problem into sub-problems, each one focusing on a
smaller set of SBSs R ⊂ N in the same network domain (i.e.,
connected to the same service gateway). In each sub-problem,
we aim at finding a partition P (R) : {S1, S2, . . . } ∈ R, in
which the SBS i ∈ R join the coalition S in order to maximize
the coalitional caching utility US , as defined in the following
optimization problem:

argmax
P (R),Di

US =
∑
i∈S

∑
m∈Li

∑
f∈Fm∩Di

(
dM − dR(S)

)
(11)



Algorithm 1: Proposed Algorithm for In-Network Cache
Management

Data: Li, ρm,f , ΠN = N , Fm.
Phase I - SBS Discovery;
• S = {i};
• Each SBS i discovers the SBSs in its network domain R;
• Each SBS i sorts the found SBSs j by their residual bandwidth Bj ;
Phase II - Cooperative Cache Management;
for m ∈ Li do
• j ← argmax

j

∑
f∈Fm∩Di

(
dM − dR({i, j})

)
;

• S ← S ∪ {j};
while |Di| ≤ Ki and Bi > 0 do
• j ← argmaxBj ;

• f ← argmax
f

∑
i∈S

∑
m∈Li

∑
f∈Fm∩Di

(
dM − dR(S)

)
;

• Dj ← Dj ∪ {f};
end

end
Result: S,Di, i ∈ S.

s.t., Di · s ≤ Ki, (12)
Bi > 0, ∀i ∈ S. (13)

In order to find a solution for the problem in (11), we propose
Algorithm 1. Algorithm 1 consists of two main phases: SBS
discovery and cooperative cache management. Initially, each SBS
is servicing a set of UEs Li and has cached a set of files Di

(which can be also be an empty set or randomly formed). Then,
each SBS i discovers the SBSs j ∈ R in the same network
domain, using standard techniques such as in [2]. Next, each SBS
sorts the neighboring SBSs in R by their backhaul bandwidth
availability. In the second phase, SBS i sends a proposal to the
SBS j ∈ R which can provide most of the files originally
requested by the UE m ∈ Li. The cost dR(S) is updated
accordingly. With respect to the content selection, the SBS with
the largest available backhaul bandwidth is appointed to the
selection of the files which maximize the cooperative caching
utility of S as in (11). Next, the SBSs periodically update their
respective utilities according to the current cache composition.
Therefore, based on the requests of the UEs m ∈ Li, the
outcome of Algorithm 1 is a set of cooperative SBSs S, and
the composition of their respective caches Di.

V. ALGORITHM PROPERTIES

Proposition 1. The worst-case performance ŨS of Algorithm 1,
with respect to the optimal solution U∗ of the problem in (8),
is such that: U∗

S ≤ ŨS , where S is the maximum number of
iterations of Algorithm 1 required at each SBS.

Proof. Let ŨS and D̃i respectively denote the utility obtained
though our proposed algorithm, and the set of files selected at
each SBS in a coalition S. Accordingly, the utility in (11) can
be expressed in terms of the files f ∈ D̃i that are stored at each
SBS i ∈ S:

ŨS =
∑
i∈S

∑
m∈Li

{ ∑
f∈Fm∩D̃i

dM − dR(S)
}
. (14)

We now introduce a binary variable If,i whose value is 1
when an file f ∈ Fm is available at SBS i, and 0 otherwise.
Accordingly, we can rewrite the utility ŨS as:

ŨS =
∑
m∈Li

∑
f∈Fm

{
(dM − dR(S)) ·min

(
1,
∑
i∈S

If,i

)}
(15)

Now, let us denote the optimal collaborative caching utility by
U∗ and use {I∗f,i} to denote the optimal selection of files to be
cached at each SBS, and S∗ the respective coalition, leading to
the utility maximization in (11). In order to show the worst-
case performance of our algorithm, we need to demonstrate
that U∗

ŨS
≤ S, where S = |S| denotes the maximum number

of SBSs that SBS i has to interrogate in order to obtain a
file f ∈ Fm which it has not been cached. By noting that,
min(1,

∑N
x ax) ≥ 1

N

∑N
x min(1, ax), for a generic binary

variable ax, we can rewrite (15) as:

ŨS ≥
∑
m∈Li

∑
f∈Fm

{(
dM − dR(S)

)
· 1
S

∑
i∈S

min(1, If,i)
}

=
1

S

∑
i∈S

∑
m∈Li

∑
f∈Fm

{
(
dM − dR(S)

)
·min(1, If,i)}. (16)

Note that
∑

i∈S
∑

m∈Li
∑

f∈Fm{
(
(dM − dR(S)

)
·

min(1, If,i)} in (16) is equivalent to (11), when the latter
is formulated using binary variables If,i. Since {I∗f,i} are
chosen to maximize (8) as opposed to (11), the following
inequality holds:

∑
i∈S

∑
m∈Li

∑
f∈Fm

{(dM − dR(S) ·min(1, If,i)} ≥∑
i∈S

∑
m∈M

∑
f∈Fm

{(dM − dR(S) ·min(1, I∗f,j)}. (17)

Combining the results in (16) and (17) yields:

ŨS ≥ 1

S

∑
j∈S

∑
m∈Li

∑
f∈Fm

{(dM − dR(S) ·min(1, I∗f,j)}

=
1

S

∑
m∈Li

∑
f∈Fm

{
(dM − dR(S)) ·

∑
j∈S

min(1, I∗f,j)
}

≥ 1

S

∑
m∈Li

∑
f∈Fm

{
(dM − dR(S)) ·min

(
1,
∑
j∈S

I∗f,j

)}
=

1

S
U∗. (18)

in which the last inequality holds as
∑N

x min ax ≥
min

(
1,
∑N

x ax
)
, where ax is a binary variable. Combining

(18) with the definition of utility in (15), it can be noted that
ŨS ≥ 1

SU
∗, or equivalently, U∗

S ≤ ŨS .

Proposition 2. The complexity of Algorithm 1 is polynomial and
scales in the order of O(S ·Di · |Li|).

Proof. The number of iterations depends solely depends on the
number of potential cooperative partners, the number of file
requests for each serviced UE (one instance per UE) and the
number of cached files at each SBS.
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Fig. 2: Average utility US per SBS vs backhaul bandwidth.
|Li| = 2 UEs, S = 3 SBS, Ki = 5 TB.

VI. PERFORMANCE EVALUATION

For our simulations, we considered a single macro-cell of
500×500 m. The macro-cell also represents one network domain
R composed by |R| = [0, 200] SBSs, uniformly deployed,
each one servicing |Li| = [1, 5] UEs. The backhaul bandwidth
assigned to each UE is Bi,m = 200 Mbps. For caching pur-
poses, each SBS has a storage capacity chosen from an interval
Ki = [0.1, 5] TB. At each SBS, only complete files can be
cached, and the size of each file in F is s = 10 MB. The file
requests follow a Zipf distribution with parameter ψ = 1.12.
Each UE m requests |Fm| = 100 files, out of a set of |F| = 104

files. The backhaul capacity is equal for all SBSs and it is chosen
from an interval B = [0.1, 1] Gbps. In the proposed cost model,
the cost of retrieving a missing file from the EPC is dM = 10,
while the cost for in-network retrievals is dR(S) = 2 · S. Prior
to the performance evaluation, the SBSs’ caches are composed
by randomly selected files.

For comparison purposes, we consider two popular schemes
from the recent literature. The first is the FemtoCacher so-
lution proposed in [12], in which the caching operations are
carried out in a cooperative fashion, based on the geographical
distribution of the UEs. The second solution is a cooperative
greedy approach, in which the SBSs can still access other SBSs’
caches within the network domain, but such caches are composed
without coordination among the SBSs, by selecting the most
popular files (i.e., based on the Zipf distribution).

Figure 2 shows the average utility per SBS as a function of
the backhaul bandwidth B, in a network domain with |R| =
180 SBSs, and a storage capacity of Ki = 5 TB. Figure 2 shows
that, for smaller bandwidth availability (B < 200 Mbps) the
studied approaches perform similarly, due to the fact that, in the
considered simulation setting, most of the backhaul bandwidth is
allocated to the UEs’ requests, while little is left for cooperative
caching (while in-network caching operations need to verify
condition (10)). Conversely, for larger backhaul capacities, (i.e.,
B > 200 Mbps), the proposed Algorithm 1 reaps the cooperative
gains by balancing instantaneous traffic requests and file caching
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Fig. 3: Average utility US per SBS vs storage capacity per SBS
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from in-network SBSs. For example, Figure 2 shows that the
performance gains of Algorithm 1 reaches up to 21% and
45% with respect to the FemtoCacher and greedy approaches,
respectively, for SBSs with backhaul capacity of B = 800 Mbps.
Finally, for larger backhaul capacities, the gains stemming from
caching tend to saturate since larger cooperative sets S of SBSs
start to form and the cost of retrieving files from the EPC or
from other SBSs in R becomes similar. Therefore, Figure 2
demonstrates that the proposed approach yields significant utility
gains by exploiting in-network content availability.

Figure 3 shows the average utility per SBS as a function of
the storage capacity Ki, in a network with cooperative groups
of maximum size S = 3 SBSs, and a backhaul capacity of
Bi = 1 Mbps. Figure 3 shows the utility US is proportional to
the probability of finding the UE’s files in the serving SBS’ cache
(i.e., the hit-ratio), which grows for large storage capacities Ki.
However, while the Femtocacher only seeks cooperation among
the SBSs in the vicinity of the active UEs, Algorithm 1 enables
the SBSs to access the cache of any other SBS in the same
network domain R. Also note that, unlike Figure 2, the gains
stemming from a larger storage capacity do not saturate, for the
considered simulation settings. This is due to the fact that the
composition of the SBSs’ caches is constantly updated. In this
respect, while the Femtocacher and the greedy solution system-
atically drop the least requested files at each SBS, Algorithm 1
drops the least requested files within the cooperative set S, which
maintains the cache consistency among cooperative SBSs. For
example, the performance gap between the proposed approach
and the FemtoCacher solution is 9%, for SBSs with a storage
capacity of Ki = 2 Mbps and storage units of 3 TB. In summary,
Figure 2 and Figure 3 demonstrate that the proposed Algorithm 1
yields additional gains by sharing resources among SBSs and
intelligently differentiating the composition of the SBSs’ caches,
within the same network domain.

Figure 4 shows the average utility per SBS as a function of the
file library size |F|, normalized to the storage capacity at each
SBS Ki, in a network with N = 120 SBSs, and M = 120 UEs.
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Fig. 4: Average utility US per SBS vs file library size (normalized
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Figure 4 shows that, for all the considered approaches, the utility
US decreases for large file libraries F , since US directly depends
on the hit-ratio. Nevertheless, pooling the caches of in-network
SBSs allows to extend set of available files, which yields a
maximum performance gain of 23% and 46%, respectively over
the Femtocacher and the greedy approach.

In Figure 5, we show the average number of algorithm
iterations (Phase II of Algorithm 1) required at each SBS, as
a function of the number of SBSs in the network. Figure 5
demonstrates that the complexity of Algorithm 1 depends on
the number of SBSs and the UEs they respectively service. For
instance, the average number of algorithm iterations is 17, for a
set of Li = 2 UEs per SBS, while it grows up to 20 for a larger
set of UEs of Li = 6 SBSs. In summary, Figure 5 verifies that
the complexity of the proposed Algorithm 1 is polynomial and
that it converges to a stable solution in a reasonable number of
iterations.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel decentralized solution
for in-network caching management and content placement, in
small cell networks. We have proposed a cost-model which
differentiates between the cases of retrieving files from the
EPC and from SBSs connected to the same service gateway.
Based on this cost model, we have proposed an algorithm that
enables each SBS to select the which contents to cache, by
accounting for the composition of the cache at other cooperative
SBSs in the same network domain. We have demonstrated that
the performance of the proposed algorithm is lower-bounded
and evaluated the cooperation gains. Simulation results have
shown that, by exploiting local files availability at the SBSs, the
proposed cache-based solution enables the SBSs to overcome the
limitations of a congested backhaul, and yield significant gains
in terms of data delivered to the UEs, reaching up to 23%, with
respect to other cooperative caching solutions which only focus
on geographical distribution of UEs and SBSs.
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Fig. 5: Average number of algorithm iterations vs number of
SBSs in the network domain |R|. |Li| = 2, 4, 6 UEs, Ki = 5 TB,
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In this paper, we have assumed static UEs and known pop-
ularity distribution of the requested files. Accounting for user
mobility will affect the UE-SBS association and the scheduling
decisions at each SBS. Similarly, the distribution of file requests
can account for the user context (i.e., indoor/outdoor user, using
a tablet or a laptop) and the history of past requests. As a result,
we plan to further investigate the above aspects and incorporate
them into an extended optimization framework.
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