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Abstract—Radio-frequency (RF) impairments, that exist inti-
mately in wireless communications systems, can severely degrade
the performance of traditional multiple-input multiple-output
(MIMO) systems. Although compensation schemes can cancel
out part of these RF impairments, there still remains a certain
amount of impairments. These residual impairments have fun-
damental impact on the MIMO system performance. However,
most of the previous works have neglected this factor. In this
paper, a training-based MIMO system with residual transmit RF
impairments (RTRI) is considered. In particular, we derive a new
channel estimator for the proposed model, and find that RTRI
can create an irreducible estimation error floor. Moreover, we
show that, in the presence of RTRI, the optimal training sequence
length can be larger than the number of transmit antennas,
especially in the low and high signal-to-noise ratio (SNR) regimes.
An increase in the proposed approximated achievable rate is also
observed by adopting the optimal training sequence length. When
the training and data symbol powers are required to be equal,
we demonstrate that, at high SNRs, systems with RTRI demand
more training, whereas at low SNRs, such demands are nearly
the same for all practical levels of RTRI.

I. INTRODUCTION

MIMO point-to-point systems offer wireless communication
with high data rates, without requiring additional bandwidth or
transmit power. The pioneering works of [1] and [2] illustrated
a linear growth in capacity in rich scattering environments by
deploying more antennas at both the transmitter and receiver
sides. However, to fully reap the advantages that MIMO
systems can offer, instantaneous channel state information
(CSI) is essential, especially at the receiver.

In practical systems, a training-based (or pilot-based) trans-
mission scheme is usually utilized to estimate the channel and
thereafter to transmit/receive data. This area is well covered
in the literature (e.g., [3]–[8]); however, most of these works
assume ideal RF hardware, which is quite unrealistic in prac-
tice. RF impairments, such as in-phase/quadrature-phase (I/Q)
imbalance, high power amplifier non-linearities, and oscillator
phase noise, are known to have a detrimental impact on
practical MIMO systems [9], [10]. Even though one can resort
to calibration schemes to mitigate part of these impairments
[9], there still remains a certain amount of residual distortions
unaccounted for. These residual impairments stem from, for
example, inaccurate models which are used to characterize

the impairments, as well as, errors in the estimation of
impairments’ parameters. To the best of our knowledge, the
only paper that considers training-based MIMO systems with
residual impairments is [11]. The authors therein analyzed the
impact of impairments on the uplink channel estimation in
a massive MIMO configuration. They reported an estimation
error floor, and observed that by increasing the number of
pilot symbols, one can average out the impact of impairments.
However, they did not provide detailed power allocation and
training sequence schemes, which are of pivotal importance in
training-based point-to-point communication systems.

Motivated by the above discussion, we hereafter assess
the impact of RTRI on training-based MIMO systems. More
specifically, we first evaluate how RTRI affect channel esti-
mation in the estimation phase, and observe an estimation
error floor in the high SNR regime, which is analytically
deduced. After that, we analyze an approximation for the
achievable rate, using the classical technique of [3], in the
presence of channel estimation errors, as well as, residual
distortions in the data transmission phase. Through optimizing
power allocation and training sequence length, we find that,
the optimal training duration can be larger than the number
of transmit antennas, especially for low and high SNR values.
Moreover, for more practical systems, which have the same
transmit power per channel use during the estimation and data
transmission phases, our results indicate that systems with
higher RTRI require more training at high SNRs, whilst at low
SNRs, the training demands almost the same for all practical
levels of RTRI.

Notation: Upper and lower case boldface letters denote
matrices and vectors, respectively. The trace of a matrix is
expressed by tr {·}. The n× n identity matrix is represented
by In. The expectation operation is E[·], while the matrix
determinant is denoted by det(·). The superscripts (·)H and
(·)−1 stand for Hermitian transposition and matrix inverse,
respectively. The Frobenius norm is denoted by ‖·‖2F . The
symbol CN (m,Σ) denotes a circularly-symmetric complex
multi-variate Gaussian distribution with mean m and covari-
ance Σ, while , refers to “is defined as”.
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II. SIGNAL AND SYSTEM MODELS

In this paper, we consider a block fading channel with a
coherence time of T channel uses. During each block, the
channel is constant, and is a realization of the uncorrelated
Rayleigh fading model. Channel realizations between different
blocks are assumed to be independent.

A. System Model With Residual Transmit RF Impairments

RF impairments exist widely in practical wireless commu-
nication systems. Due to these impairments, the transmitted
signal is distorted during the transmission processing, hence
cause a mismatch between the intended signal and what is
actually transmitted. Even though compensation schemes are
usually adopted to mitigate the effects of these impairments,
there is always some amount of residual impairments. In [9],
[10], the authors have shown that these residual impairments
on the transmit side act as additive noise. Furthermore, exper-
imental results in [10] revealed that such RTRI behave like
zero-mean complex Gaussian noise, but with the important
property that their average power is proportional to the average
signal power. For sufficient decoupling between different RF
chains, such impairments are statistically independent across
the antennas. Moreover, impairments during different channel
uses are also assumed to be independent. We now denote the
RTRI noise as ∆. Then, the input-output relationship of a
training-based MIMO system with Nt transmit antennas and
Nr receive antennas within a block of T symbols, can be
expressed as

Y =

√
ρ

Nt
H(S + ∆) + V, (1)

where S ∈ CNt×T is the transmitted signal, ρ is the average
SNR at each receive antenna, and H ∈ CNr×Nt is the channel
matrix. The receiver noise and the received signal are denoted
as V ∈ CNr×T and Y ∈ CNr×T , respectively. Each element
of H and V follows an independent CN (0, 1) distribution.
We also assume that the entries of S have unit variance, so
that ρ is the average received SNR at each receive antenna.
At last, according to the above discussion, we can characterize
the RTRI noise ∆ ∈ CNt×T as

∆(i) ∼ CN
(
0, δ2INt

)
,E
[
∆(i)∆

H
(j)

]
= 0

i, j = 1, 2, . . . , T, i 6= j, (2)

where ∆(i) denotes the i-th column of ∆. The proportionality
parameter δ characterizes the level of residual impairments in
the transmitter. Note that δ appears in practical applications as
the error vector magnitude (EVM) [12], which is commonly
used to measure the quality of RF transceivers. For instance,
3GPP LTE has EVM requirements in the range [0.08, 0.175]
[12]. The relationship between δ and EVM is defined as

EVM ,

√√√√√E∆

[
‖∆‖2F

]
ES

[
‖S‖2F

] = δ. (3)

When δ = 0, it indicates ideal hardware implementation.

We can now decompose the system model in (1) into
training phase and data transmission phase as follows:

1) Training Phase:

Yp =

√
ρp
Nt

H (Sp + ∆p) + Vp, tr{SHp Sp} = NtTp, (4)

where Sp ∈ CNt×Tp is the deterministic matrix of training
sequences and is known by the receiver, ρp is the average
SNR during the training phase, and Yd is the Nr × Tp
received matrix. The distortion noise caused by the RTRI is
characterized as

∆p(i) ∼ CN
(
0, δ2INt

)
,E
[
∆p(i)∆p

H
(j)

]
= 0,

i, j = 1, 2, . . . , Tp, i 6= j. (5)

Note that this model is mathematically similar to the systems
which use a superimposed pilot scheme [6], where part of the
data symbol is conveyed during the training phase, and acts
like noise.

2) Data Transmission Phase:

Yd =

√
ρd
Nt

H (Sd+∆d)+Vd,E
[
tr{SHd Sd}

]
= NtTd, (6)

where Sd ∈ CNt×Td is the matrix of data symbols with
CN (0, 1) entries, ρd is the average SNR during the data
transmission phase, and Yd is the Nr × Td received signal
matrix. The distortion noise caused by the RTRI during this
phase is characterized as

∆d(i) ∼ CN
(
0, δ2INt

)
,E
[
∆d(i)∆d

H
(j)

]
= 0,

i, j = 1, 2, . . . , Td, i 6= j. (7)

Recall that conservation of time and energy yields

T = Tp + Td, ρT = ρpTp + ρdTd. (8)

The models in (1), (4), and (6) include the characteristics of
RTRI, and enable us to identify some fundamental differences
in the training-based MIMO systems as compared to the ideal
hardware case of [3].

III. LMMSE CHANNEL ESTIMATION

In this section, we analyze the impact of RTRI on the
channel estimation phase. Channel estimation is carried out
during the first Tp channel uses. Within each block, the
estimator compares the received signal Yp with the predefined
training sequence matrix Sp. The classical results on training-
based channel estimation consider Rayleigh fading channels,
which have independent complex Gaussian noise with known
statistics [3], [7]. However this is not the case herein since
the distortion noise ∆p depends on the unknown random
channel H through the multiplication H∆p. Although the
distortion noise is Gaussian when conditioned on a channel
realization, the effective distortion is the product of Gaussian
variables. Thus, it has a complex double Gaussian distribution
[13], which does not admit tractable manipulations.

We now derive the LMMSE estimator of H under the model
in (4), which is given by the following lemma.



Lemma 1: Given the received signal Yp and the RTRI level
δ, the LMMSE estimator of H is

Ĥ = Yp

(
SHp Sp +

(
δ2ρp + 1

)
ITp

)−1

SHp . (9)

Proof: Since the rows of Yp are independent and iden-
tically distributed (i.i.d.), we can write the LMMSE estimator
in the general form Ĥ = YpA, where A should minimize the
mean square error (MSE), which is defined as MSE , tr (Ce).
Herein, Ce , E

[
HH
e He

]
is defined as the estimation error

covariance matrix, where He , H − Ĥ is the estimation
error matrix. The estimator in (9) is found by taking the first
derivative of the MSE with respect to A, and equating the
result to zero.

Corollary 1: The training sequence matrix Sp that mini-
mizes the MSE should satisfy

SpS
H
p = TpINt (10)

and the corresponding MSE is given by

MSE =
NrNt
1 + g

with g ,
ρpTp

Nt(ρpδ2 + 1)
. (11)

Proof: This corollary can be proved by applying the
Lagrange multiplier method [14] on the MSE, subject to the
power constraint tr{SHp Sp} = NtTp. The resulting estimation
error covariance matrix becomes

Ce =
Nr

1 + g
INt . (12)

Since He has zero mean, the variance of its entries can
be expressed as σ2

He
= 1

NrNt
tr{Ce} = 1

1+g , which is also
defined as the normalized MSE. By the orthogonality principle
of LMMSE estimators [15], each element in Ĥ has a variance
of σ2

Ĥ
= 1− σ2

He
= g

1+g .
Figure 1 shows the normalized MSE, σ2

He
, of a 4×4 MIMO

system for different levels of impairments. In this case, we use
Tp = 4 channel uses to transmit pilot symbols, which is the
minimum length required to estimate all channel dimensions.
Without the existence of RTRI, increasing the transmit power
decreases the MSE monotonically towards zero. However, in
the presence of RTRI, we observe a fundamentally different
behavior. Specifically, when the transmit power becomes high,
impairments will generate an irreducible error floor, which is
explicitly provided in the following corollary.

Corollary 2: Asymptotically as ρp → ∞, the normalized
MSE approaches the limit

MSE
ρp→∞
normalized =

1

1 +
Tp
Ntδ2

. (13)

Proof: This corollary is simply achieved by making ρp in
(11) large and normalize the MSE with respect to the number
of transmit and receive antennas.

Obviously, the value of this floor depends on the level
of impairments; in general, large RTRI will cause severe
degradation of the channel estimates. We can also see from
(13) that, for a fixed level of RTRI, an increase in the training
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Fig. 1. Normalized mean square error (MSE) for different levels of
impairments (Nt = Nr = 4, T = 100, Tp = 4).

sequence length Tp decreases the MSE monotonically. As
expected, for low SNR values, impairments have only limited
impact, which is in line with the results of [11].

IV. DATA TRANSMISSION

This section analyzes the achievable rate of the non-ideal
training-based MIMO system. The results in [3], under the
assumption of ideal hardware, are frequently used as reference.

During the data transmission phase, the estimated channel
Ĥ is available at the receiver. The receiver uses Ĥ as if it were
the true channel realization to recover the intended signal Sd.
Recalling that H=Ĥ+He, we may rewrite the received signal
as

Yd =

√
ρd
Nt

Ĥ (Sd + ∆d) +

√
ρd
Nt

He (Sd + ∆d) + Vd

=

√
ρd
Nt

ĤSd+

√
ρd
Nt

(
Ĥ∆d+HeSd+He∆d

)
+Vd︸ ︷︷ ︸

Ṽ

,

(14)

where Ṽ is the “effective noise” matrix. Note that each entry
of Ṽ has zero-mean and the variance

σ2
Ṽ

=
1

NrTd
E
[
tr
{

ṼHṼ
}]

=

(
1

1 + g
+ δ2

)
ρd + 1. (15)

On a similar note, we can define H̄ , 1
σ2
Ĥ

Ĥ, which has

uncorrelated and approximately CN (0, 1) entries. 1

Given that Ĥ is known to the receiver, it is straightforward
to prove that Sd and Ṽ are uncorrelated. From [3], we know
that the worst-case effective noise is circularly-symmetric
complex Gaussian distributed, with the same covariance as Ṽ,

1As we have emphasized in Section III, Ĥ contains the multiplicative
term H∆p, which is complex double Gaussian distributed. This additional
distortion, however, is insignificant for practical levels of RTRI; thus, the
assumption of Gaussian distribution on the elements of Ĥ is rather realistic.



Then, we can straightforwardly obtain a capacity lower bound
as in [3, Theorem 1].

In the considered case though, where the channel estimate
(9) contains the multiplicative term H∆p, Ĥ is only approx-
imately Gaussian. Then, we can work out the approximated
achievable rate according to

R̃ =
Td
T

E
[
log2 det

(
INr + ρeff

H̄H̄H

Nt

)]
, (16)

where ρeff denotes the effective SNR,

ρeff ,
ρdσ

2
Ĥ

σ2
Ṽ

(17)

=
ρdρpTp

Nt(1 + ρpδ2)(1 + ρd + ρdδ2) + ρpTp + ρdρpTpδ2
.

(18)

A. Optimizing over Power Allocation
First, we optimize the power allocation to maximize the

effective SNR ρeff .
Let α denote the fraction of the total transmit power that is

assigned to the data transmission phase. Then, we have

ρdTd = αρT, ρpTp = (1− α)ρT, 0 < α < 1. (19)

Proposition 1: The optimal power allocation α, ρdTd
ρT in a

training-based MIMO system with RTRI is given by

αopt =

{
r−
√
r2−rs
s , for s 6= 0

1
2 , for s = 0

(20)

where for concision, we have defined

r , ρT +
NtρTδ

2

Tp
+Nt,

s , ρT +
NtρTδ

2

Tp
− NtρT (1 + δ2)

Td
.

Proof: Substituting ρp= (1−α)ρT
Tp

and ρd= αρT
Td

into (18),
then taking the first and second derivatives of ρeff with respect
to α and equating the result to be zero, the proof follows
immediately.

Specifically, for high and low SNRs, we have
Corollary 3: At high and low SNRs, the optimal power

allocation α reduces to
• At high SNRs, as ρ→∞

αopt =

(
1 + Ntδ

2

Tp

)(
1 +

√
Nt(1+δ2)

Td

)
1 + Ntδ2

Tp
− Nt(1+δ2)

Td

, (21)

• At low SNRs, as ρ→ 0

αopt =
1

2
. (22)

Clearly, at low SNR, half of the transmit power should be
assigned to the training phase, which is consistent with the
results of [3]. With the help of (20), we can further optimize
the training length to maximize the approximated achievable
rate.

B. Optimizing over Tp
In this part, we seek to determine the optimal training length

Tp. Recall from [3] that, for ideal hardware systems over i.i.d.
Rayleigh fading channels, it is always optimal to use as few
channel uses as possible (i.e., Nt) for pilot symbols, regardless
of the values of ρ and T . However, for non-ideal hardware
systems, we will show that this is no longer the case, since
the optimal training length could be larger than Nt.

The standard way of finding the optimal training sequence
length Tp requires to substitute the optimal power allocation
scheme αopt back to the approximated achievable rate in
(16), and then take the derivative of R̃ with respect to Tp.
Unfortunately, this is not analytically tractable. To overcome
this problem, we first derive the approximated achievable rate
in (16) in closed-form, which only depends on the values of
SNR and Tp for a given system setup (Nt, Nr, and T ). Then,
for each value of SNR, we can perform an exhaustive search
over the integer Tp to find the global optimum.

To facilitate our analysis, we herein present the following
proposition.

Proposition 2: The approximated achievable rate in (16), is
analytically given by

R̃ =
qKTd
ln(2)T

q∑
n=1

q∑
m=1

(−1)
n+m

det (Ω)Γ (t) e
Nt
ρeff

×
t∑

k=1

Γ
(
−t+ k, Ntρeff

)
(
ρeff
Nt

)t−k
(23)

where q , min(Nr, Nt), p , max(Nr, Nt) and t , n+m+

p − q − 1. Also, K =
[∏q

i=1(p− i)!
∏q
j=1(q − j)!

]−1

is a
normalization constant. Moreover, Γ(x) and Γ(y, z) denote the
Gamma function [16, Eq. (8.310.1)] and the upper incomplete
Gamma function [16, Eq. (8.350.2)], respectively. Finally, Ω
is a (q − 1)× (q − 1) matrix whose (i, j)-th element is given
by

Ωi,j =
(
γ

(n)(m)
i,j + p− q

)
! q−

1
q−1

where

γ
(n)(m)
i,j ,


i+ j − 2, if i < n and j < m

i+ j, if i ≥ n and j ≥ m
i+ j − 1, otherwise.

(24)

Proof: We can rewrite (16) as

R̃ =
Td
T

E
[
log2det

(
Iq +

ρeff

Nt
W

)]
, (25)

where W is defined as

W ,

{
H̄H̄H , if Nr ≤ Nt,
H̄HH̄, if Nr > Nt.

(26)

Note that W is a q × q random, non-negative definite matrix
following the complex Wishart distribution. Thus, it has real
non-negative eigenvalues and the probability density function



(PDF) of its unordered eigenvalue, λ, is found in [17, Eq. (38)]
to be

pλ(λ) = K

q∑
n=1

q∑
m=1

(−1)m+nλn+m+p−q−2

eλ
det (Ω) . (27)

By exploiting the eigenvalue properties, we can now alter-
natively express the approximated achievable rate in (25) as

R̃ =
qTd
T

∞∫
0

log2

(
1 +

ρeff

Nt
λ

)
pλ(λ)dλ. (28)

This integral can be evaluated using the integral identity in
[18, Eq. (40)]. The expression in (23) then follows after some
simple algebraic manipulations.

Based on (23), we perform an exhaustive search over the
integer Tp for different SNR values. Figure 2 compares the
optimal training sequence length, T opt

p , for the ideal and
impaired systems. For the ideal hardware system, the optimal
training length is always equal to the number of transmit
antennas, which has already been proved in [3]. For the non-
ideal hardware systems with RTRI, however, the optimal train-
ing sequence length may become larger than Nt. Generally
speaking, higher impairment levels impose longer training
sequences. At high SNRs, the effective SNR saturates, thus
the overall performance cannot be improved by increasing
the power; however, we can benefit by extending the training
period. This is because the total pilot power is spread over Tp
channel uses, hence the impact of the temporally uncorrelated
RTRI will be averaged over Tp as well. It is also worth
mentioning that in the low SNR regime, where thermal noise
dominates the system performance, there is still an increase
in achievable rate by improving the channel estimation with
longer training sequences. The above results are valid for
different number of antennas, and can be extended to massive
MIMO systems with large receive antenna arrays.

In Fig. 3, we have plotted the approximated achievable rate
with the optimal power allocation scheme. For each SNR
value, we choose the best training sequence length T opt

p .
It is noteworthy that, for the hardware impaired systems,
the achievable rate saturates when SNR becomes high, even
though we have used the optimized scheme. This behavior
remains even if we have perfect CSI as in [19], thus it is a
fundamental effect of hardware impairments. In Fig. 4, we
plot the relative rate gain by adopting the optimal training
sequence length T opt

p . The relative rate gain is defined as

relative rate gain ,
RT opt

p
−RTp=Nt

RTp=Nt

× 100%, (29)

where RT opt
p

and RTp=Nt refer to the approximated achievable
rate (23) when Tp obtains its optimal value and Tp = Nt,
respectively. We can conclude from this figure that, the relative
rate gain provided by utilizing the optimal training sequence
length, varies according to the level of RTRI. Systems with
higher level of impairments benefit far more from the opti-
mization over Tp.
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Fig. 2. Optimal training sequence length for different levels of impairments
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Fig. 3. The approximated achievable rate when both power allocation and
training sequence length are optimized (Nt = Nr = 4, T = 100).

C. Equal Training and Data Power

In practice, communication systems do not often have the
freedom of varying the transmit powers during the training
phase and data transmission phase. As such, the transmit
power for pilot and data symbols is always the same, i.e.,
ρp = ρd = ρ. In this case, the effective SNR in (18) becomes

ρeff =
ρ2Tp

Nt(1 + ρδ2)(1 + ρ+ ρδ2) + (ρ2δ2 + ρ)Tp
. (30)

The corresponding analytical approximated achievable rate
follows straightforward by inserting (30) into (23). Using the
obtained analytical rate expression, we can, once more, resort
to exhaustive search to find the optimal training sequence
length.

Figure 5 depicts the optimal Tp for a 4× 4 MIMO system
with coherence time T = 100. As we can see, for all cases, the
demand for training is especially high at low SNRs, whilst this
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demand decreases as the SNR scales up. Generally speaking,
higher level of RTRI require longer training length in the high
SNR regime, whereas such demands are nearly the same for
all practical levels of impairments at low SNRs.

V. CONCLUSIONS

In this paper, we analyzed the impact of residual transmit
RF impairments on training-based MIMO systems. We derived
a new LMMSE channel estimator for systems with RTRI, and
then found that such residual impairments create an irreducible
estimation error floor. Moreover, the optimal power allocation
scheme and optimal training sequence length were thereafter
investigated. We showed that the optimal training sequence
length may be larger than the number of transmit antennas,
and increases with the level of impairments. An increase in
the relative rate is observed by adopting the optimal training

sequence length. We also investigated the optimal training
sequence length when there is no freedom of varying the
transmit power during the estimation and data transmission
phases, and concluded that the demand for training is the same
at low SNRs, while more training was needed at high SNRs
when the system experiences RTRI.
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