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Networks: A Quasi-Variational Inequality Approach

Ivan Stupia,Member, IEEE Luca Sanguinettivember, IEEE Giacomo BacciMember, IEEE Luc Vandendorpe,
Fellow, IEEE

Abstract—This work deals with the power allocation problem A. Related works
in a multipoint-to-multipoint network, which is heterogenous in

the sense that each transmit and receiver pair can arbitrardy As is well-known, the theoretical tool for studying and
choose whether to selfishly maximize its own rate or energy designing complex interactions among rational entitiesrop

efficiency. This is achieved by modeling the transmit and reziver ting i distributed . th | i
pairs as rational players that engage in a non-cooperative aling In a distributed manner game theoryin recent years,

game in which the utility function changes according to each there has been a growing interest in adopting game theory
player's nature. The underlying game is reformulated as a qasi to model many communications and networking problems
variational inequality (QVI) problem using convex fractional (a good survey of the results on this topic can be found
program theory. The equivalence between the QVI and the non- in [3]). Among the early contributions in this area, it is

cooperative game provides us with all the mathematical tosl to LS I . L
study the uniqueness of its Nash equilibrium (NE) points ando worth mentioning [[4]-[6], n which th? rat(? ma_X|m|zat|on
derive novel algorithms that allow the network to converge o Problem for autonomous digital subscriber lines is addr@ss
these points in an iterative manner both with and without the following a competitive optimality criterion. Followinghe
need for a centralized processing. Numerical results are esl to  route of such early works, most of the existing literature
validate the proposed solutions in different operating coditions.  , \wireless communications is focused on developing power
control techniques for the maximization of the individu& S
while satisfying individual power constraints. Some ex&msp
|. INTRODUCTION in the area of non-cooperative game theory are represented
by the distributed power control strategies proposed_in [7]
The vision of seamless and pervasive wireless communi¢ar multi-user multiple-input multiple-output systemsdahy
tion system has paved the way to an extraordinary prolitarat those developed in [8] and][9] for interference relay chasmne
of wireless network infrastructures and ubiquitous se@wicwhereas a two-tier network is consideredin|[10].[In/ [11R][1
[1]. In this challenging arena, we consider a multipoint-tathe authors propose a detailed analysis of the Nash equitibr
multipoint network in which each transmit and receiver pa{NE) point for the rate maximization problem in parallel
can arbitrarily choose whether to selfishly maximize its owGaussian multiple access channels in which mobile users
spectral efficiency (SE) (in terms of maximum achievablgutonomously take decisions on the resource usage and com-
rate) or its own energy efficiency (EE) (in terms of tradingete with each other to exploit the available resources.eMor
off achievable rate and energy consumption). An example figcently, in [13] the authors rely on the variational indifya
which this heterogeneous multitude of users interact vatthe (V1) framework to model and analyze the competitive rate
other might be represented by small-cell networks, whieh amaximization problem. The analogy between NE problems
founded on the idea of multiple radio access technologiesd Vis is also exploited iri [14] to design distributed power
architectures and transmission techniques coexistinghén fcontrol algorithms for rate maximization under interfaren
same area to ensure the most efficient usage of the spectigmperature constraints in a cognitive radio context.

resource with the minimum waste of energy [2]. All the aforementioned distributed power allocation sirat
Despite its promise, the deployment of small-cell networksies have the great advantage of avoiding the excessive in-
poses several technical challenges mainly because differyrmation exchange to achieve signal coordination as well a
small cells are likely to be connected via an unreliable backvolved computational processing [13]. On the other hand,
haul infrastructure whose features may strongly vary frasec users aggressive attitude towards interference can lead to
to case, with variable characteristics of error rate, dedaygl a large transmission power at the mobile stations, thereby
capacity. This calls for developing flexible and decertedi fostering an inefficient use of batteries. All this makestsuc
power allocation strategies relying on local channel stifte-  existing solutions not suited for the development of energy
mation, and requiring only a small exchange of informationefficient networks. This has motivated a great interest in
_ _ o studying and designing resource allocation schemes taking
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the theoretical framework developed in [19] does not previdhen used in Sectioh Il[IB to formalize the heterogeneous
a systematic study of the relationship between the SE and tame in which both SE and EE users coexist. The uniqueness
EE maximization problems. To the best of our knowledge, @nditions for the NE points of the heterogeneous game are
unified framework accommodating both is still missing. studied in Sectiom V. The QVI framework is also used in
Section[V to derive and study the convergence properties of
two different iterative algorithms for achieving the NE pts.

The aim of this paper is to fulfill the gap mentionedn Section[V], numerical results are shown for a network
above using the QVI framework, originally introduced byperating under different settings. Finally, some conicigd
Bensoussan in_[20] as a modeling tool to be used in differemmarks and discussions are drawn in Sedtion VII.
fields such as economics and biology (see alsd [21] and
references therein). Unlike the traditional VI framewoitkat
has been widely applied in the wireless communications,field Consider ak —userN —parallel Gaussian interference chan-
the use of QVI theory for developing numerical algorithms i8€l, in which there are<” transmitter-receiver pairs sharing
relatively recent([22]. In this work, we apply the QVI to sjud V parallel Gaussian subchannels, that might represent time
the solution properties of power allocation ihaterogeneous ©f frequency bins. The channel transfer function oversttie
game defined as non_cooperative game in Wh|Ch the usék@channel betWeen the transmiﬁaﬂd receivek iS denoted
can locally choose whether to pursue their own SE or thdly Hk.i(n). The transmission strategy of each ugeis the
own EE. This allows us to overcome the main limitationgower allocation vectopy, = [pk(1), pi(2), - .., pr(N)]" over
of existing approaches, which fail to provide closed-forrifie IV subchannels satisfying the following (local) transmit
conditions on the uniqueness of the equilibrium points ar@Wer constraints:
on the convergence properties of iterative solutions. Tdwa _ N .
this goal, a two-step approach is used. First, the EE maxi- Pe= {pk CRe: P (pe) < O} @
mization problem introduced in [19] is reformulated as a QWhereh;, (p) is an affine function op;, given by
using convex fractional programming theory [17]. The same T
approach is then exploited to reformulate the heterogenieou hi (Pi) = 17k — i @
game as a QVI. This iper-sesufficient to elaborate somewith P, being the total power available at transmitterWe
insights on the properties of the NE points and to providgssume that th& transmitter-receiver pairs do not cooperate
us with all the mathematical tools to study the uniqueness @fth each other and that the multi-user interference is 5imp
the NE points of the heterogeneous game, and the convergesggted as additive colored noise at each receiver. Morgove
properties of iterative algorithms. In particular, we fipgbpose |ocal perfect channel state information is available athbot
a centralizedapproach, which relies on an iterative methogransmitter and receiver sides.
for solving QVIs whose convergence is guaranteed underin the above circumstances, the maximum achievable rate

mild assumptions. Then, we propose an alternative solutign link % for a specific power allocation profilp =
exploiting the equivalence between the QVI and a nonlineﬂ{{,pg, L ,p;{]T is given by

complementary problem (NCP), which gives each pair the
possibility to reach the NE in distributedmanner without the N H 2
, : : _ | Hie,i:(n)]” pre(n)
need for any centralized processing. The developed sobitidR: (Pk, P—k) = E log [ 1+ 3
i ive si - or(n) + X [Hii(n)|” pi(n)
are then validated by means of extensive simulations. n=1 k Z kyi ¢

B. Contributions

II. NASH EQUILIBRIUM PROBLEMS

o 3)
c. Orgamza.tlon _ . . where o7 (n) is the noise variance over theth subcarrier
The remainder of this paper is organized as follBws. on link % and p—x = [P1.PY,....pf 1Pl PRT

SectionlD), we first introduce the signal model, some basigllects the power allocation vectors of all transmittes;
notations and the problem under investigation. We als@vevi cept thekth one. Following [[15]-[19], the energy efficiency
the available literature on both the SE-only and the EEZ, (pr, p_i) Of the kth link can be computed as
only maximization problems, with particular emphasis oa th R
major limitations of classical approaches when studyirg th Er(pr,p—i) = M{;M (4)
EE problem. Sectiofdll illustrates the mathematical steps Vi +1%ps
reformulate the EE-only game as a QVI. This approach vgith ¥, > 0 being the RF circuitry power consumed at
transmitterk.

1The following notation is used throughout the paper. Masiand vectors As mentioned earlier. one of the major objectives of this
are denoted by boldface letters.and 0 are the all-one and all-zero vectors, . . ' .
respectively, whereaa = diag{a(n); n = 1,2, ..., N} denotes aiv x N WOFK is to provide a fram_ework for studying heterogeneous
diagonal matrix with entriea(n) along its main diagonal. The notatigA]; , ~ multi-user systems in which each user can choose whether
is used to indicate thé, k)th entry of the enclosed matriA. We use] [, X; i i ; ;
to denote the Cartesian product of the safs whereas> stands for the to maximize its own SE or EE. To this end, V\./e fII’S.t recall
element-wise greater or equal relatiofis|| denotes the Euclidean norm of SOMe fundamemal_reSU|ts er the '_\IE prot_)le_m n _Wh|Ch each
vector x, and [z]T = max (0,z). In addition, Amax(A) and Amin(A)  player (the transmitter-receiver pair) maximizes its owl S
denote respectively the maximum and the minimum eigenvafuaatrix A. ; it 'grmh'
1% denotes the indicator function of a sétand it is such thatlf = 1 if (Segth@). Then, the C"?‘SG.Of. competitive pla_yers a .
k € K and zero otherwise. The notatien| y stands forxTy — 0 whereas Maximizing the EE of the link is introduced and its Nash equi-

Vxf(x) denotes the gradient vector ¢fx) with respect tox. libria are mathematically characterized (Sectionlll-B3jng



a fractional programming approach. Finally, in SectiorCll- Interestingly, in[[11] it is also shown that the Nash equitb
we combine the results from these two game formulatioirs (§) can be interpreted as a set of Euclidean projections
to properly formalize and study the heterogeneous problemto the facets ofK polytopes. To see how this comes

sketched above. about, let&, = [&(1),&(2),...,&(N)]T and Dy, =
S diag{ Dy s(n);n = 1,2,...,N}. Define alsoP = [, Pw
A. Rate maximization where eactP;, is the simplex

The rate maximization problem refers to a system in which = N . _
each transmitter-receiver pair aims at selfishly choosirey t Pi={pr € RY : I (p) = 0} (13)
power allocation strategy that maximizes its own rate for @btained from[{lL) when the power constraint is satisfied with
given set of other players’ power profile. Mathematicalhist equality.

amounts to jointly solving the following problems: Proposition 2 ([12]). A power allocation profilep* is an NE

max Rp(pr,p_x) VE (5) of the rate maximization problem if and only if
Pk
subject to  px € Py. . .
pr =15 [-&— Z D..p; | Vk (14)
As is known, the joint solution of {5p* = [p7,...,p%] = itk

[pzaptk]! SUCh thatpz = a'rg maxpkepk Rk (pkaptk)y cor- . - H Z\ H
responds to the NE of the non-cooperative game with complt\ggerenp (z) computes the vector in the simply, that is

information defined axfr = (K,{Pr},{Rr}) in which: osest toz in the Euclidean norm.

K = {1,2,...,K} is the set of players P, denotes the One of the major advantages of reformulating the NE
strategy set of playek, defined as in[{1); and, is player problem as in[{14) is that the sufficient conditions for the
k's payoff function that is the rate defined inl (3). unigueness of the NE @fr can be derived by simply studying
the contraction property dfl, () with respect to the vector
p- In addition, the analysis of the convergence of iterative
waterfilling-inspired algorithms is greatly simplified éalse

Proposition 1 ([11]). The Nash equilibrigp* of G are found
to be the fixed points of the waterfilling mappings given by

pr(n) = [Wfk(pilw/LZ)]n (6) refer tp _[12] for more details on this subject). As we shall
see, similar results can be proved to hold true for the energy
where efficient maximization problem.
Jr
. o2(n) + 3 |Hy.i(n)]> pt(n) B. Energy-efficient maximization
i#k o . :
(Wi (P™ u;)}n = |- z 5 The EE maximization problem refers to a network in which
H | He (1))

each playet aims at selfishly choosing a power vectsyr €
7) P to maximize its own energy efficiendy(px, p—x) for a
and pj;, is the water level, chosen such that given set of other players’ powegs_,. The problem can be
mathematically formulated as:

1"p} = By (8)
_ Ri(pr,pP-k)
In [13], the authors provide a convenient way to study max Er(pr, P-r) = U+ 17ps vk (19)
the properties op* by showing that the rate maximization  gybject to  py € Py.
NE problem is equivalent to the nonlinedr(P, F) in which o ) )
F(p) = {Fx(p)}<,, with An_alogously t_o what is introduced in Sec_:tl-A, the
solution of [I5) is the NE of the noncooperative gaghe =
Fi(p) = —Vp, Rk (Pk, P-k) 9) (K, {Pr},{Ex}). Since the utility functionsEy(px,p_&),
N Vk € K, are strictly quasiconcave anf; is a convex

K -1 )
_)_ i Dy ; 10) Set the players’ bes_,t response to the opp_oqent_ strategies
{ <£k(n) ; ka(n)p (n)> } (10) can be computed using different convex optimization tools.

= 5 = —>—~—. (11) points. This makes it hard to provide closed-form condgion
| Hy o (1) | Hi 1o (1) for the uniqueness of the NE points 6§ and to study the
Thanks to the equivalence between the NE problem and #@nvergence properties of iterative algorithms based @ be

VI(P, F), the following result can be proved. response dynamics.
An alternative route (e.g., followed in [17]) relies on obse

ing that [I5) belongs to the class of concave-convex fraatio
programs, sinceRy(px, p—x) iS a concave function opy
(p— p*)T F(p*)>0 VpeP (12) wh_ereasllk—i—lTpk is affine and positive. Interestingly, the so-
lution of such problems can be computed through methods that
with P = Hszl Pr. rely on different convex reformulations or duality apprbes

n=1 Although possible, this direct approach, originally pegun
with [19], presents some disadvantages, mainly because it does
2 N2 not bring any insights into the structure of the equilibrium
fk (n) Ok (n) and Dk,i(n) _ |Hk,l(n)|

Theorem 1 ([13]). A power allocation profilep* is an NE of
the rate maximization problem if and only if



Algorithm 1: Dinkelbach method Remark 1. Similarly to Gz, the NE points ofj5 are found
Data. Seti = 0 andv® = 1, with a randomz > 0. Choose {0 be the fixed points of a waterfilling mapping, with the only

e 1. difference that the water level must be chosen so as to ysatisf
Step 1. Sequentially, compute (22) rather than(8).
Zz(f)(’/zii)) = whk(pk,v"). Remark 2. Sincet} (p_x) plays a major role in all subsequent
Step 2. Sequentially, set discussions, let us point out its physical meaning and prop-
P erties. As mentioned before/t}(p_x) € [P, 00) represents
(i+1) Ry, (Z;f (v, )JLk) the total power dissipation that is required to maximize the
. 0y + 1720 (W) EE for any givenp_; when the constrainty, (p;) < 0 is

neglected. Mathematically; (p_y) is obtained as the solution
of the following optimization problem (see Apperidix A):
max th Ry (Yr/th, P—k) (23)

i ifi * (i+1) {katk}GRerl
is satisfied for anyk € Kg, then returnv; = v, and ] T
STOP; otherwise, go to Step 4. subject to  t(¥p + 1" yi/tr) = 1.

Step 3. If the condition

(B (27 (). ps) — o (i + 172 )

<e€

Step 4. Seti + i+ 1; and go back to Step 1. wherepy, = yi/t,. From the above problem, it turns out that
1/t3(p-x) — Uy is the total radiated power that would be
needed by playek to maximize its own EE for a givgm_.

(see [[28] for more details on this subject). Although digfer The maximum power constraiff) acts as an upper bound to

in principle, all these methods are very closely relatedaithe the strategypj, as follows from(17)
other since they all lead to the same optimality conditiasl- F |t is worth observing that computing the NE as [@](21),
lowing the parameter-free convex fractional program appino although useful to characterize its structure, does notigeo
(whose main steps are reported in Apperidix A for the salgy particular advantage in deriving conditions for thequiei
of completeness), it turns out that playk’s best response ness of the NE points ofz. Similarly, the analysis on the
Bi(p-x) to an opponents’ vectgs_. takes the form: convergence properties of the resulting iterative sohsiés
o * still much open. For this reason, analogously to what was
Bi(p-n) = whk(p—k, A (P-)) (16) done in [13] for the rate maximization game using the VI
where A} (p—x) must satisfy the condition approach, in Sectidn]ll we will make use of the above results
1 to reformulateGg as a QVI so as to exploit the powerful
_— - \Ifk} (17) tools provided by the QVI theory. Before delving into this,
b (P—r) we briefly introduce the heterogeneous maximization prable
The value of1/¢;(p_x) corresponds to the total (radiatedhat will be analyzed in Sectidn 1I[iB.
and fixed) power consumption for any givgn ; when the o
constrainthy (pr) < 0 in (I8) is neglected, and can beC- Heterogeneous maximization

]_TBk(p,k) = min {Pk,

computed as (see AppendiX A) Consider now a heterogeneous scenario in which & get
1 of players follows a rate maximization strategy, while the
th(p—k) = m (18) remaining setCg is interested in maximizing its own EE.
g Tk Let us defineG = (KC, {Px}, {ur}) the corresponding game
wherezy, (1) is given by in which: K = Kr U K is the set collecting both types of
21 () = Wiy (P, ) (19) Users; the strategy s&%; is defined as in(1); andy (px, p—«)

is the utility function, defined as
with v} being iteratively obtained via Algorithfd 1 (originally _
proposed by Dinkelbach in_[24]) and such that wk(Drs Pr) = {Rk(PkaP—k) if ke Kgr (24)

N N A En(pr.p_i) if ke Kp.
Re (zx(v1), p_i) — v (Wi + 172(s)) =0.  (20) k(Pr, P—r) 2

. . . .The problem to be solved for each playkercan thus be
Using the above results, the following proposition easil . : )
: 2 . athematically formalized as follows:
follows from the observation that a poipt is an NE if and

only if p* € B(p*), with B(p) = Hszl Bi(p—k)- max  ug(pPk,P—k) Yk (25)
Pk
Proposition 3. The Nash equilibrigp* of G are obtained as

g ) ) ] -~ - subject to  pi € P
the fixed-point solutions of the following waterfilling mamgn

and the corresponding Nash equilibria are obtained aswello

Pi, = Be(PZy) = wik(PZy, Ak (PZ1)) (21)  sing the results of Theorerfs 1 dAd 3.
with A7 (p” ;) being such that Proposition 4. The Nash equilibrigp* of G are obtained as
the fixed-point solutions of the following waterfilling ma
1"pj; = min {Pk, e 1* - \Ifk} . (22) P 9 9 mapp
i(PZy) pi = whi(py, i (P21)) (26)



with Af(p*,) being such that the following equality holds re
true:

Py if ke Kgr
1 . (27)
min Pk,i—\lfk} if ke Kg. Ly
{ (P )

Similarly to the energy-efficient maximization problem, W By
characterizing the properties of the NE points @f such 7
as uniqueness conditions, and developing iterative swisiti P B D
for achieving these points in a distributed manner are open i
problems that call for an alternative approach. As mentione v
earlier, we address all these issues reformulafiras a QVI. —i—éDuPe

1"p; =

Max-SE
best-response

PA2)
I11. QVI FORMULATION OF Gg

Next, we make use of the results of Section 1l1-B to show A
how G can be reformulated as a QVI. To this end, for any [
given p_y, let us introduce the functiops(px, p—x) Of pk, ,
defined as 1

— ¥ EE-SE

“tL) trade-off
1 1 - region
T P .7 4
k(Pk,P-k) =1 pk—<7—wk> 28 - \
i ( ) o) (28) e ‘,

LI A P

Max-SE
best-response

where t;(p_x) is computed through (18)-(R0). Let us also - ‘ T
denote B -4 *%th ; .
Max-EE
Q (p) = H Qk(pfk) (29) best-response
k=1

where Q;, : P_, — 2P*, Vk collects the set-valued functions Fig. 1. Graphical illustration of SE and EE best responses.
given by
N reveals thaty, (pr, p—«) depends on the index linkand it is
Qk(p—+) = P N {pr € RY : gi(Pr, P—1) <0} (30) not jointly convex with respect to the power allocation peofi

wherea2”* is the power set collecting all the possible subseRs FOr this reason the VI approach adopted in [14] cannot be

of P, [25]. Then, the following result can be obtained. applied to the problem at hand while the QVI framework is
shown to be of great help.

Theorem 2. A power allocation profilep* is an NE of the

EE maximization problem given {@5) if and only if it solves A. Energy-efficiency maximization as a projector

the QVI(Q, F), whereF(p) = {Fi(p)}i_,, andF(p) is the

mapping defined iff9). Stated formallyp* is an NE ofGg if

and only if it is such that

For the sake of completeness, we observe that (similarly
to what has been done for the rate maximization problem in
[11]) the NE of Gg can also be interpreted as the Euclidean

(p—p ) F(p*)>0 Vpe Qp*) (31) Projection of the vector-§;, — 3, ., Di,ip; onto the simplex

Proof: The proof is given in AppendiKIB and relies on @k (P—) = {px € RY : max {hy(pk), gk (P, P—k)} = 0}
proving that the Karush-Kuhn-Tucker (KKT) conditions of (33)
QVI(Q,F) are satisfied if and only if there exists a vectowhereg,(px, p—x) = 0 is an affine hyperplane ip,, for any
p* and a suitable Lagrange multipliex* e Rf such that givenp_x. This is summarized in the following proposition.

(21) and [(2P) hold true. ®  Pproposition 5. A power allocation profilep* is an NE ofG

Remark 3. The results of Theorel 2 are reminiscent of thodé
in [L4] in which the authors make use of the VI framework

to solve the rate maximization problem in a cognitive radio pj, = Hék(pik) &k — ZD’WP: ‘ (34)
network under interference constraints. In that case, titk-i i#k
vidual strategy set®y(p_x), Vk € K, are defined as Proof: The proof is given in AppendikIC and relies on
V=P N eRY : I(pr.p_y) <0 3p) Proving that the KKT conditions of (34) are satisfied by the
Or(p—&) =Pe N {pr € RY : I(pr,p—x) <0}  (32) solution to [15) .

where I(px,p-x) denotes the interference constraint. The Capitalizing on the interpretation of the NE point as a
latter turns out to be the same for any likkand moreover it Euclidean projection, a graphical comparison between the
is shown to be convex with respect to the entire strategyl@rofspectral-efficient (or rate-maximizing) and energy-ediiti

p. This property allows the authors in [14] to reformulate thébest responses is provided in FIg. 1 for the caée= 2.

rate maximization problem as a VI. A close inspectiorf@d) In particular, Fig.[lL shows the playédrs best response to



two different strategies of the other players, namply, and As far as the uniqueness of the NE is concerned, the
p’,. As seen, the playet’s best responses are obtained a®llowing theorem provides a sufficient condition guaraiine
the projections of the interference vecterg, — « Drip; the uniqueness of the power allocation veqgwrin (37) and
and—¢&;, — Z#k D, ;p} onto the corresponding ﬁyperplanesthus in [25).
hi(pr) = 0 for rate maximization andy(px, p—r) = 0 for
energy-efficient maximizatidhIn sharp contrast thx(py) =
0, the hyperplangy(px, p—x) = 0 (corresponding to the
straight lines below the grey regions) depends on the other Py, if ke g
play_ers’ strategies through/t;(p_k), .which varies V\{ith_in P)l), = 1/ti(p_y) — W) if k€ Kg
the interval[¥},, co). It is worth observing that all admissible
power allocation profiles lie into the grey zone between tifd define the matriceA and B whose elements are
two hyperplanes. Due to space limitations, we cannot peovid \H, _(n)|2 |H, k(n)|2
more details on this interpretation of the best response. We [A];; = Inax{ a T0m) }

k

Theorem 3. (Uniqueness Conditions): L& (p) be the map-
ping with elements given by

(38)

(39)

’ n

just observe that it can be useful to get further insights int
the energy-aware optimization problem and more speciﬁcagnd
into the trade-off between SE and EE policies in a competitiv
environment. Moreover, it might turn useful in some cases to 1, if i =k,
study the convergence properties of distributed solutiasis [Blk,i = { max{ |He,i(n)|? (n )} if i £k (40)
happened for the rate maximization problem (please refer to [Ho o) ok ’ ’
[12] for more details on this subject). However, this is Feft  with ¢, ;(n) being defined as
future work and not pursued further in the sequel. ) 5

o7 (n) + > ¢ [Hie(n)|” Py

. Sk,i(n) = (42)
B. QVI Formulation ofg () op(n)

Let us consider now the heterogeneous scenario. The fbhe uniqueness of the NE {@3) is guaranteed under the
lowing result can be proved. following conditions.

o The matrixB is positive definite;

Proposition 6. Let 5, denote the set given by » There exists a nonnegative constant 1/T" such that

Se(p_y) =4 Theke (35) I2p) - @) <sllp-p| Yp.p €P (42)
Qk(pfk) if ke Kg
where
and letS : P — 2% be the set-valued function defined as the A (A)
following Cartesian product: r'= T (B max {Sk(n)}  (43)
= H Sk(p—k)- (36) is the so-called condition number &F with
kek |Hk
Then, the NE problem ir25) is equivalent toQVI(S, F), Sk(n) = |Hkk Z |Hkk P». (44)
which is to find a vectop* such that
(p—p*)T F(p*) >0 Vp e S(p*) (37) Proof: The proof is given in Appendl@ and relies on
[26, Theorem 4.1]. Observe that, unlike [14], the positive
whereF : RVE — RVK js obtained as in(9). definiteness oB is not sufficient to guarantee the uniqueness
Proof: The proof follows the same steps as those us&g the NE point (see discussion below). u

in Appendix[B to prove Theorer] 2. In particular, it relieRemark 4. Observe that wheilCr, = 0 and thusk = Kg
on showing that the power allocation profijg, satisfying then (@2) is always satisfied sincé€ (p) — Q (p’)|| = 0.
the KKT conditions of the QVI is also a solution of thi¢h Therefore, the uniqueness conditions only require the imatr

maximization problem in[{25). B B to be positive definite. Not surprisingly, this result cades
with that in [14], wherein the authors show that the positive
IV. ANALYSIS OF THE NASH EQUILIBRIA definiteness oB is a sufficient condition to claim the unique-
The existence and uniqueness of the NE pointgjadre ness of the NE for the rate maximization game. As rigorously
now studied. discussed in[[14]B is positive definite if for any: one (or

. _ both) of the following conditions is fulfilled:
Proposition 7. The gameG admits a nonempty set of NE

points for any non-null maximum transmit power of the users. Hii(n)[?
_szmax |H (n)r <1 (45)

( )|2<kz

Proof: The existence follows due to the quasi-concavity
of the utilities Ry, (px, p—x) and B (px, p—k) in G. [ |

1 | Hy,i(n)[?
2|f the projection of the interference vector is outside theygregion then E ‘ Wk mrzlmx { |2 g’“( ) <1 (46)
all the power is allocated only over the subchannel with tighdst gain. ki



Algorithm 2: Sequential penalty approach for solving [et also {a)} € RE*! pe a sequence of some arbitrary
QVI(S,F). vectors, and denote bp?) the solution of the following

Data. Choose an increasing sequerigé® }>°, satisfying [48), penalizedvl (P, F + VC) on the setP:

and a sequence of vectofsx(}:°,. Setj = 0 and choose , , ,
anyp € Py for k=12 K. (p—pY)" (F(p“)) + vpmc(p(”)) >0 VYpeP

. (49)
Step 1. Computep?) as the solution of the penalized VI iR {49). . . .
where V,;, C(pV)) = {meCk(p(J))}f:l is the penalty
Step 2. If a suitable termination criterion is satisfied, then raturmapping at thejth iteration, with

p°>™ = p and STOP, otherwise go to Step 3.
S AR @ o\’
Step 3. Setj « j + 1; and go back to Step 1. Ck(P(J)) = 290 ({Oék' + P(J)gk (Pk' ,p_k)} > . (50)
The resulting iterative procedure is reported in AlgoritZm
wherew = [wy,ws, ..., wx]? is some positive vector. The@nd its convergence properties are stated in the following

above inequalities say that the positive definitenesBdg Proposition.
ensur_ed if the received and/or generated multi-user ieterf proposition 8. Let pS*A denote
ence is relatively low. On the other hand kifz # @ then

SPA _ i )
p~ " = lim p (51)
2@ -2@E)°= > (2®)], - QE))" @) 1=
kEKE with pl) being the solution off@9). If {a)} is a bounded

where[Q2 (p)],. is the total power consumption on likkgiven sequence of vectors, i.e.,
by (38). Therefore, the positive definitenessBfalone is no )
longer sufficient sincd42) is not always satisfied. A close mgx‘%
inspection of leads to the following interpretation . . : .
of 5“5 additio%)-g%ition: The gamé has g uniqSe NE jf With @ some non-negative number, thpP™ is a solution of

at a variation of the opponent players’ strategy correspmnoQVl(S’ F) and thus ofG.

a relatively small variation of the total power consumption  Proof: The proof is given in Appendik]E and exploits
in (7). This comes from the definition itself of the conditiothe most general result provided Hy [22, Theorem 3] which,
number, which is formally defined as the value of the asymip-turn, requires to prove thajx(px, p—x) iS @ continuous
totic worst-case relative change in output for a relativaabe function with respect to the entire power veciar [ ]

in input. Observe also thdt in (43) is always bounded since As seen, each iteration of Algorithh 2 requires only to solve
F is a smooth function. a penalized VI. Next, we briefly illustrate how this can be
done using standard optimization techniques. Let us ioted

V. ITERATIVE ALGORITHMS TO SOLVEG . ) ) _
_ a slack variable\;”” such that\;”” = 0 if k¥ € K and
In what follows, we show how to exploit the above theoret-

ical framework to compute the NE @. Towards this goal, 0 <Y | (A — o) — ;0 g, pY) pUy)y >0  (53)
two different solutions are proposed. The first one exploit . .
the equivalence betweagn andQVI(S, F) and show how the Mk € Kp. From the KKT condmons of!:@9) and ob;ervmg
solution of G can be computed by resorting to an iterativg?:flt th?_ T;Iquar%(]j max functiol_{50) is once continuously
method for solving QVIs. As we shall see, this results intgI erentiable wi

an iterative procedure that, in principle, requires a @dized {V @-)C’k(p(j))] — {agcj) + pD g, (pg)’f’(-ji)r (54)
implementation. The second approach relies on showing that n

QVI(S,F) is equivalent to a nonlinear complementary prohit follows that p#) is the solution ofVI() (P,F +VC) if

lem (NCP), which gives each player the possibility to reacind only if there exist some vectogg?) € RX such that the
the NE ofg in a distributed manner without the need for anyollowing stationarity condition is satisfied for ary

centralized processing.
A. A sequential penalty approach

The solution toG is next numerically obtained throughwith 0 < 1 L hy(p?’) < 0 and A defined above.
the iterative procedure for solving QVIs known as sequéntigloreover, for any giver\() = [)\gﬂ’)\gj)’ N _7)\%>]T and
penalty approach (SPA) (e.g., seel[22]). The latter is espi (/) the vectop'?) solving [55) can be easily found in closed
by the augmented Lagrangian approach for nonlinear prograggrm as a function oAl and ). Therefore, the solution of
ming and its key idea is to solve the QVI by iteratively solyin the jth iteration can be obtained solving a constrained system
a properly defined sequence of penalized Vls on theéPset  of equations im\(/) and 7). This can be done using standard

Specifically, letj be the iteration index and lép")} € R, methods for nonsmooth continuous equatiéns [27, Chapter 8]

<a Vj (52)

Fr(py,p)) + 0 + 1 =0 (55)

be a sequence of given positive scalars satisfyifig< ot In general, the implementation of Algorithfd 2 requires
and tending to, i.e., a centralized unit or an excessive exchange of information
lim p@) — cc. (48) among the users. Although possible, this is clearly noesluit

j—roo for those applications (such as small-cell networks) winere



Algorithm 3: Distributed algorithm for solving QVI(S,F)

Data. Setj =0,v? = 0x and®(v?) = 0x. Choose: < 1.
Step 1. Usev) to computep"'(v?)) solving
- (FE"( ) +47) 20 vpeP
using the IWFP (e.g., via Algorithii] 4).

Step 2. Usep“'(v%)) to computet} (p¥', (v7)) for anyk € K
via the Dinkelbach method (e.g., via AlgoritHm 1).

Step 3. Usepy'(v) andt}(pY', (7)) to set

. 1 .
P 7) _ : _p, — 1TpY 7)
(20, = g, oy~ e~ RO
foranyk € Kg.

(4)

maxy ’% < e, then return

Step 4. If [@(«,U))} ’
) k
p* = p"'(v") and STOP, otherwise go to Step 5.

Step 5. Chooser) > 0. Set
. . . . +
'YI(CJH) _ [%gy) ) [(I,(,Y(J))Lj
foranyk € Kg.

Step 6. Setj + j + 1; and go back to Step 1.

the exchange of information among the users is unreliable
even impossible. For this reason, in what follows we propo
an alternative solution, which operates in a distributedimea
and requires only local information.
B. An NCP-based approach

Assume thaty € R is a given vector and denote"'(v)
as the solution of the following penalized VI:

(p-p"'(M)" (FP"'(7)+v) >0 VpeP.

Let us also define the mappiry : R — RX as

(56)

0 it k€ K
1 T VI .
wev ey~ Ve UTPE () if k€ Kp
(57)

[@(V)]k = {

with ¢ (p¥, (7))
p—x with p¥', (7). Then, the following result can be proven.

Proposition 9. A power allocation profilep* is an NE ofG
if it solves(58) and ~ is solution of theNCP(®) given by:

NCP(®): 0<~Ll ®(v)=>0. (58)

Algorithm 4: Sequential IWFP for a given () = 0

Data. Setrn = 0and choose ang” € Py fork =1,2,..., K.
Step 1. Sequentially fork = 1,2,..., K compute
() = why (€700 44

wherewfy, is defined as in[{7), angtﬁcm) is chosen to satisfy
the power constraintz¢\™ = P, if

ity (£5.50) = P

n) _(m

ko Xk

(m)

v =0 otherwise.

whereasy

Step 2. If a suitable termination criterion is satisfied, then
p” (7)) = £ and STOP, otherwise go to Step 3.

Step 3. Setm < m + 1; and go back to Step 1.

iterative waterfilling with pricing (IWFP) procedure progexd

in [14] and reported in Algorithm 4 for completeness. The
outer layer makes use qf!'(v\)) (provided by Step 1) to
updatey?) through Steps 2 — 5. The convergence properties of
Algorithm[3 are stated in the following proposition, in whic
{r())} represent the scalar parameters used in Step 5.

Proposition 10. Assume that:

ore The matrixB defined in[{4D) is positive definite;
se. The mapping®(vy) is a co-coercive function of with
constants > 0, i.e.,

(v1 —72) " (B(71) — B(72)) > 5| B (1) — (7)1

(59)
for any~y,, v, € RE.
If the scalarsr(¥) are chosen such that
0 <inf ) < sup ) < 24 (60)
’ _

J

then the sequence of vectop"'(v))} generated by Algo-
rithm [3 converges to the NE ¢f.

Proof: The convergence of the inner layer to the solution
of (58) follows from the results in_[14], in which the authors

i N i \4
being obtained via(18J(20) after replacingmove that if the mappin@ is strongly monotone thep"' ()

can be computed in a distributed manner for any giyen 0
through IWFP. As pointed out in Appendix] D, the condition
on the strong monotonicity oF' holds true whenever the
matrix B in (4Q) is positive definite. On the other hand,
the convergence of the outer layer can be proved by simply
observing that it is equivalent to the projection methodhwit

Proof: The proof is provided in AppendiX F and relies ornvariable steps described in [27, Algorithm 12.1.4]. Theref

showing that the solution diCP(®) along with the solution the convergence proof follows frorn [27, Theorem 12.1.M].
of the penalized VI satisfies the KKT @VI(S,F), and thus  Unlike Algorithm[2, Algorithm[3 enables the computation
p* is also an NE point of;. m of the NE points ofG in a distributed manner without the
Taking advantage of the above proposition, we develop theed for any centralized processing. To see how this comes
iterative scheme illustrated in Algorithfd 3, which opemteabout, observe that the evaluationpjj'('y(ﬂ')) through IWFP
through a2-layer procedure. More in details, at thgh inthe inner layer only requires knowledge of the local measu
iteration the inner layer represented by Step 1 makes useobfthe overall interference plus noise. This informatiom ca
~(9) to compute the solution of {56). This is achieved using theasily be estimated at each transmitter during its own teep



phase. The same information is needed in the outer layer ' T

by each playei for updating the value off(pV', (v/))) in o /’/&/
Step 2. Once;(pY', (v\7))) is computed, thed®(v())], is oss //
evaluated in Step 3 and later used in Step 5 to upalﬁfél).

Remark 5 (On the design of 7(/)} in Algorithm [3). From Lo
(®0), it follows that a judicious design dfr/)} would require S el /.
to computex in closed form as a function of the system 055 //
parameters. Unfortunately, this is a challenging task,alihis

still much open. In Appendix F, we make use of some heuristic
arguments to conjecture that if the uniqueness conditidns 0 oss

TheorenB are satisfied, theB(+) is a co-coercive function 0305 . L . : . )
of v with constant Average SIR
o — B (61) Fig. 2: Convergence probability of Algorithid 3.
S 1+0D-2
where 055 ‘ ‘
)\min B 0.50 — + ‘:;"njax-EE users..... -
B = (B) (62) 7

_m;;ix max {Sk(n)}

is the strong monotonicity constant & while T is its
condition number (see also Appendix D). A formal proof of
(61) is beyond the scope of this work, and it is currently
under investigation. Herewith, we limit to observe that, al
though building upon heuristics, such a condition has been
validated by means of the extensive simulations shown in the
next section. In particular, we observed that the proposed ‘ ‘ ‘
distributed algorithm converges with probability one wheer o 1 2 % “ %0

Iterations (outer loop)
the uniqueness conditions depicted in Theorem 3 are satisfie "
Fig. 3: Energy efficiency dynamics when SIR) = 3 dB.

i max-rate users

Energy Efficiency (bits/sec/Joule)

VI. NUMERICAL RESULTS

Numerical results are now provided to assess the perfor-

mance of the proposed solutions when applied to a heteYé_‘-lueS of SIRs. On t_h_e other hand, the convergence is ensured
geneous network. In particular, we consider a scenario wiffith almost probability one for moderate-to-high values of
K = 8 players in which four of them aim at maximizing theSlR_- ) )
EE and the other four are focused on the SE maximization. The~19s-[3 -4 show respectively the EE and the SE dynamics
system parameters are as folloWsthe interference channel isduring the time interval needed by Algorittih 3 to converge.
composed ofV = 16 subchannelsi) the channel coefficients AS it is seen, a stable power allocation strategy is achieved
Hy,;(n) are assumed to k@\(0,1) Vk, i, n; iii) the average while enhancing the EE of the energy efficient users up to

signal-to-noise ratio (SNR) on the generic subchamneter the 113% at the price of a consistent information rate loss.
link & is defined as SNRn) = E{|Hyx(n)[2}/o? and it The equilibrium is also achieved for the SE users with a final

is set to0 dB Vk,n; iv) the maximum normalized power isSE more than doubled with respect the initial uniform power
fixed to P, = N for any k; v) the static power consumptionallocation.
is assumed to bal, = 1 for all k; vi) the starting point
of the distributed algorithms is the uniform power allooati
strategy, i.e.,p,(CO) = 1; vii) the tolerance parameter of the In this work, we have studied a non-cooperative game
Dinkelbach’s algorithm is set te = 105, viii) the sequence modelling the power allocation problem that arises in an
{71} is chosen such that the upper boundin (60) is met witieterogenous multipoint-to-multipoint network whereiack
equality withx given by [61). transmit and receiver pair can arbitrarily choose whetber t
Fig. [@ shows the probability that Algorithfdl 3 convergeselfishly maximize its own SE or EE. To overcome the main
to the solution of the QVI obtained via Algorithri] 2.limitations of existing methodologies, we have reformetht
The convergence probability?. is plotted as a function the underlying game as a QVI problem and then we have
of the average signal to interference ratio (SIR) on thexploited the powerful tools of the QVI theori):to study the
generic subchanneh over link k defined as SIRn) = uniqueness of the NE pointi) and to derive novel algorithms
E{|Hk_,k(n)|2}/(2#k E{|Hy.(n)|?}). As it is seen, in the to converge to the NE points in an iterative manner both with
low SIR regime Algorithni B does not always converge to thend without the need for a centralized processing. Numlerica
solution of the QVI and thus to the NE point ¢f. This is results have been used to validate the performance of the
because the co-coercivity @b is not guaranteed for small proposed solutions in a heterogeneous network.

VII. CONCLUSIONS AND PERSPECTIVES
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6.0

Then, thekth maximization problem in(15) can be rewritten
n in the following equivalent parameter-free form:

5.5

5.0

4.5

Jn,a)(*rate users max tk Rk (yk /tk b p_k) (66)
{Yk-,tk}GRfH

subject to  t5(U), + 17 yr/ty) = 1
1y /ty — P, <0

4.0

Spectral Efficiency (bits/sec/Hz)
w
in

A which is convex in(yy, t), since the perspective of a function

preserves convexity [29]. To proceed further, let us deflree t

slack vectorz, = yi /¢, and denote by and u the dual
variables associated with the constraintsl, +17z;)—1 =0

° b eations (outer oop) * * and17z; — P, < 0. Let us also denotg;(p_) the optimum

value of ¢, when the constraint™z; — P, < 0 on the

maximum transmit power is neglected. The KKT conditions

of (€4) yield

This work must be considered as a first attempt in using the 2k = Wik (P, v} +41}) (67)
QVI theory for dealing with EE in a competitive environmentwhere the waterfilling operator is defined aslih (7). From (67)
We do believe that the developed framework will be of gre&sing the complementary slackness conditions it folloves, th
help to deal with several interesting extensions (as thengd t if 1/t5(p—x) — ¥ < Py, thenpy = 0, whereas/;; # 0 and
ory was useful to better study the rate maximization proplenguch that
For example, the above results might be in principle extdnde
t(; a;}nyt;(p,fk) rt]hat ils a continuously dirf]ferentiable rf]unction ~ tr(p—k)
of the set of other players’ powets_j. This means that any - .
additional constraint in[{15) of (25) could be easily haddIev?lﬂetrgzsmt]e;haondén'g/ i’h(é)h_’“tz];u\gk f>( P thf)n Yk _PO
by QVI(S,F) whenever it can be incorporated ii(p_1,). ~ K o it § that tthk III)_k"Mk o f.”.’“'
This might be the case of minimum data rate requirement OPnsequ.en y, itturns out thay has the following waterfilling
maximum allowed interference levels. structure: X _wf \F 69

Another interesting result that builds upon the developed 7, = Whi(P-r Ar) (69)
framework is as follows. Exploiting the well-establishezt r where A7 must satisfy the power constraint
lationship between QVIs and GNE problems (e.g., seé [22],

imax-EE users

Fig. 4: Spectral efficiency dynamics when $[R) = 3 dB.

1
]_TWfk(p,k, V]:) = — — \I/k. (68)

[28]), the heterogeneous gargeturns out to be equivalent to 17z} = min {Pk, *; — \I/k} . (70)
G = (K, {Sk},{Rx}) in which the problem to be solved for t(P—r)
each playelk takes the form: Recalling thatz; = y; /t;, from (64) and[(6b) the results (16)
and [17) easily follow.
EY B (pr, p-r) (63) APPENDIXB
subject to  px € Sk(P—k)- PROOF OFTHEOREMI[Z

We start observing thafx (px, p—x) in (28) is convex and
continuously differentiable with respect tg. for any possible

: . X . . - ctor p_ € P_j. Therefore, we can make use of [21,
is basically equivalent to a gam# in which the utility to Theorem 1] and state that* is a solution ofQVI(Q, F) if
maximize is always the rate but the strategy set of each playé%d only if there exist some vectors € RE and p* ’E RE
depends on the opponents’ strategies, throughSy.(p_x). + +

. 9 ) satisfying the following KKT conditions for any:
This result may be useful to get valuable insights into the fying g y

This means that an heterogeneous gagnén which each
player can choose whether to maximize its own SE or

tradeoff between SE and EE in competitive environments. Fy (pz, p*,k) +uvi+up=0 (72)
APPENDIXA with
PROBLEM (IH) AS A FRACTIONAL PROGRAM * -
o<vy L P ) <0 72
In this appendix, the solution df (IL5) is computed by means 0 ; 'i . ik (pﬁ p< 'E)) (73)
of the parameter-free convex fractional program approach = i K (Pk) < 0. (73)
(e.g., seel[17]). To this end, we set From [71) —[[7B), usind{2) anf (28), we can easily verify that
Pk p* is thus a solution oRQVI(Q, F) if and only if
Y= G 1T, (64) ) L
k Pk pr, = Wik (P4, A}) (74)
and definet;, as the inverse of the total power dissipation ith A% being such that
1 1
th = ————— (65) 1T wfy(p* 4, AL) = min § Py, ———— — Uy 5. 75
Uy, +1TPk w k(pflm k) min k> t;(p* ) k ( )

—k
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The above condition coincides exactly with the definition of « The operatorF is strongly monoton&p, p’ € P, i.e.,
an NE inGg as stated in Theorefd 3. This means thatis

T 2
also an NE ofgp. (p—p') (F(p)—F(@®)) >8lp-p| (84)
APPENDIXC with 8 > 0 being the strong monotonicity constant;
PROOF OFPROPOSITIOND| « The operatorF is Lipschitz continuou§p, p’ € P with

Let us consider the following problem: modulusL > 0, i.e.,

z, =g, p ) <—Ek - ZDk,iPi There exists a constadt> 0 such thatvz, p,p’ € P
i£k
II II <4
which corresponds to the Euclidean projection of the vector H S(p)( 2) - s H o =Pl
—&k — ZZ » Di,iP; onto the simplexQy, (p_) defined as in with § < 8/L.

@3). Mathematlcallyzk is computed looking for the solution Then ,QVI(S,F) has a unique solution.
of the following minimization problem:

= |z — (—Ek - Z#k Dk,ipi)

subject to  zj, € Qk(pP_k)

[F(p)-F@)| <Llip-pl; (85)
) (76) .

) The first condition easily follows fromi_[14, Proposition 2]
’ (77) in which it is stated that iB in (4Q) is positive definite then
the operatofF is strongly monoton&'p, p’ € P with

z; = argmin
Zy

)\min(B)

which is in a convex form for any givep_;. Therefore, its b= ~ max max {¢(n)} (86)
solution is such that the following KKT conditions are sti¢id k "
for any k andn: where
~ Hk n
+§k + Dkz z 9* =0 (78) Skln | ! z'- 87
% g b(n) = |Hkk |2 Z|Hkkn ®7)
z, = 0 (79)  To prove thafF is Lipschitz continuous, we make use Bf(10)
17z} = min {Pk, ﬁ — \Ilk} (80) to get
s f kP . - IFx(p) — Fi(p)]| <
whered; > 0 is a free parameter. Froin (78), imposigg> 0 N
we obtain Xt Dralmpi(n) = %) Dis(n)pi(n)
+ &i(n) el
zj(n) = [92 &+ Dk,i(n)pi(n)} (81) (88)
7k since¢y(n) + X | Dys(n)ps(n) > €x(n). Letting Ay, ; be a
with 85 being such that diagonal matrix with elements
i 1 n Dy,i Hyi(n)[* [ Hy o (n)[*
sz* — min {Pk7 — - \I/k} . (82) ) _ k,l(n) — | RAN k,k
; ti(P—) [A’“L,n €2(n) al(n) (89)
Setting ¢; = 1/X;, we can see that (81) and {82) arérom (88) we obtain
equivalent to[(69) and (T0), respectively. This means that t
parameter-free optimization problem in_{66) is equivalent <
the minimization problem in[{77). Since the optimal power IF5(p) = Fi (@)l ZA’“ Pi — P;) (%0)

allocation profilep; of playerk is always an instance off,
it follows thatp* is a NE of the energy-efficient maX|m|zat|0nObserve now that

problem if and only if it is such that: - K ~
Z Ak (pi—pj)| <) max { [Ak,z} } i — pil
) i=1 i=1 o
P =1Ig. | =&k — Z Dy ipi | - (83) (91)
i#k

so that from[(9D) one gets

The claim of Propositiofl5 is thus proved. X

APPENDIXD [Fx(p) — Fr(p)ll < > [Al,, llpi — pi (92)
PROOF OFTHEOREM[3| i=1
The uniqueness result of Theordm 3 is a consequentith A being defined as i (89). Then, we may write
of the following theorem[[26, Theorem 4.1] (see alsol [30,

K K 2
Theorem 9]). IE(p) -FE)I* <> <Z (Al Ipi — péll) (93)

Theorem 4. Let the following assumptions hold. k=1
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or, equivalently, to showing thatt} (p_x) is continuousvp_j, € P_j; with

2 2 P = H#k P;. This is proved by contradiction as follows.
_ < — . . .
IF(P) —F@)I" < lA@-p)l (94)  Assume that there exists a pair of vectdfsd” € RN(K-1)
Observe thatl]|A (p —p)|| < ||A]lllp —p’|| with ||A]| = with d’ # d” such that
max|x|=1 {[AX||} = v/Amax(A) being the induced norm of L o
matrix A. Therefore, we may write lim ¢ (p—y — ed’) # lim 7 (p — ed”). (99)
[F(P) —F@) < VAmax(A) [P — Pl (95) From [I8){I9), this implies that there exist two distinatues
, s . . , . of the Lagrangian multiplier}, namely,»” andv”, such that
ﬁ'ﬁguﬁﬁ‘s’fﬁ tha;F 'S(k')pSCh'tZ continuousp, p’ € P With " o ndition [22D) is fulflled. At the same time, frof120) it
We now proceed proving that the third condition of ThelOllows that any instance aff. is such that
orem[4 holds true if[(42) is satisfied. To this end, we start L Ry, (z1(vf), P—k) (100)
observing that BT W+ 1Tz ()
2
||Hs(p)(z) —Hs(p/)(Z)H = which is nothing else than the maximum value of the EE
2 function E P-k) = tiR ,P—k) In . Since
Z HHSk(p,k)(Zk) _HSk(p’,k)(Zk)H ) (96) k(pk p k) k k(pk p k) @)

Ey(pr, p—k) is strictly quasiconcave [19], it follows that
_ _ must be unique. Accordingly, we must conclude that there
Since the boundaries ofi(p-x) and Sy(p'_;) are two are no distinct vectord’,d” such that[{99) is satisfied. This

keEKE

parallel hyperplanes ip;, we may write concludes the proof.
2
> HHSk(pfk)(zk) - Hsk(plk)(zk)H < APPENDIX F
keKg PROOF OFPROPOSITIOND
2
Z [max (gk(pk,pfk) — g1(Pr, p/_k))} ) (97) We start observing that* is a solution ofQVI(S, F) if and
ex, L P only if there exist some vectors* € RY andp* € R such

Observing that that the following KKT conditions are satisfied [21], [22]:

NE Fr(p*)+ vk + s =0 (101)
k; [H})%X (9x(Pr, P—k) —gk(pk,p_k))] = 0 < i L h(pt) <0 (102)
E
1 1 2 ) with v = 0 if k € Kg, and
= Z (t ( 7 )_ n ( )) = Hﬂ(p)—ﬂ(p/)H
bexp NP P 0< v} La(pipty) <0 (103)
and using[(96) and(97) yields if £ € Kg. Next, we look for a procedure that allows to
s (p) (2) — sy (2)]|* < [2(p) — QP compute a tripletp*, v*, u*) in a distributed manner. To this

end, we observe that the solutipif' () of (588) must be such

from which taking into accounf(42) we eventually obtain that there exists some vectgr € RX satisfying
+

1I z) — 11 N2 <4é —-p 98
| M5 (p) (2) . s<p>f.)|| <dlp—p (98) Fo(pV' (7)) + 7 + v = 0 (104)
as required by the third condition of Theoré&in 4. 0<xhL hk(PX'(v)) <0. (105)
APPENDIXE ) ] )
PROOF OFPROPOSITIONS Let v* be the solution of the following nonlinear complemen-

The proof of Propositioh]8 follows from the most generatlamy problemNCP (&), with & defined as inl(37):

result provided by [[22, Theorem 3], according to which find v>0 (106)
the SPA leads to the solution of a genefI(S,F) with wbiect to B(~) = 0

S(p) = [1X., Si(p_r), and S (p_y) defined as in[(35), if subject to @(y) =

the following conditions are satisfied: 0<vLl®(y)=0.

- F is continuous inp and A (px) is continuously differ- \we can easily see that the triplgs"' (v*), v*, x*) satisfies the

entiable and convex ipy; _ ~ KKT conditions of QVI(S, F) (see also[[27] for more details
* 9r(Pk, P—&) is continuously differentiable and convex ingp, finite-dimensional VIs and complementarity problems).
Pk,
e gx(Pr, P_k) is continuous inp. APPENDIXG

From (2) and[(1D), it follows that the first condition is veeii  according to Propositioi10, the main condition for the

for the problem at hand. The second condition is also m@énvergence of the proposed algorithm is the co-coercivity

since gi(pr, p—«) in (28) is an affine function ofp). for he operatomd, i.e., there exists a constantsuch that
any givenp_,. Therefore, we are only left with proving

that gi.(px, p«) is continuous inp. From [28), this amounts (v, —,)" (®(v,) = ®(75)) > £ [|®(v,) — @(7,)|* (107)



where, from[(3B) and(37), we can observe that

(V1 —72) " (®B(7y) — ®(7,)) =

(1 —72)" QP (7)) — 2" (72)))
K

> (k= 1267V (1) = 17p" (12)).
k=1

(4]

(5]

08)

Let us assume that the uniqueness conditions presented [th
Theoreni B are fulfilled and consider the right side [of {107).
Exploiting the Cauchy-Schwarz inequality, we may write  [8]

[®(vy) - ‘I)(W’z)HQ <

El
192(p(v) = (DI + [PV (v1) - PV (v,)]” (209)

where, from [(4R), one gets (10]
1@ (1) — ®(72)]* < [11]
5 [PV () = PV )|+ [0V () = 2V () | =
(1+072) oV (7) = PV ()| (110)

[12]
with T' = L/8. To proceed further, we take advantage of the
results in [14, Proposition 8] wherein it is proved that [13]

K
= (k= 26)A"P" () =17 (12)) > [14]

k=1
g

B ||PVI(’Y1) - PVI(’)’Q) W

2
"=

B (v,)|*
(111)

At this point, we are only left with the scalar product:

(v —72)" [ (1)) - 2PV (12)] =
K

[@(71) -

[16]

[17]

1 1
2 =) | Gem o T Ty ) 12 6
From [18), on gets [19]
[PV (V)] = m = U =1wh (L)) oy

represents the radiated power we would have at the tramsmitt
k when the EE is maximized givgn'} (). Intuitively speak-
ing, when the penalty coefficients nincrease, the interfering
powers inpY} (v) decrease and the uskrexperiences larger [22]
SINRs. According to the waterfilling principle, a larger &N
implies a larger radiated power, or, in other words,

(Y1 = 712)" (2P (7)) = 2V (72))) 2 0.
Then, collecting[(108) and (I1Ld)-(111), one gets

[23]
(113) [24]

[25]

B 2 [26]
(11=72)" (B(11) = ®(72) = 777 [12(71) - ()l
(114)
[27]
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