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Fellow, IEEE

Abstract—This work deals with the power allocation problem
in a multipoint-to-multipoint network, which is heterogenous in
the sense that each transmit and receiver pair can arbitrarily
choose whether to selfishly maximize its own rate or energy
efficiency. This is achieved by modeling the transmit and receiver
pairs as rational players that engage in a non-cooperative
game in which the utility function changes according to each
player’s nature. The underlying game is reformulated as a quasi
variational inequality (QVI) problem using convex fractional
program theory. The equivalence between the QVI and the non-
cooperative game provides us with all the mathematical tools to
study the uniqueness of its Nash equilibrium (NE) points andto
derive novel algorithms that allow the network to converge to
these points in an iterative manner both with and without the
need for a centralized processing. Numerical results are used to
validate the proposed solutions in different operating conditions.

I. I NTRODUCTION

The vision of seamless and pervasive wireless communica-
tion system has paved the way to an extraordinary proliferation
of wireless network infrastructures and ubiquitous services
[1]. In this challenging arena, we consider a multipoint-to-
multipoint network in which each transmit and receiver pair
can arbitrarily choose whether to selfishly maximize its own
spectral efficiency (SE) (in terms of maximum achievable
rate) or its own energy efficiency (EE) (in terms of trading
off achievable rate and energy consumption). An example in
which this heterogeneous multitude of users interact with each
other might be represented by small-cell networks, which are
founded on the idea of multiple radio access technologies,
architectures and transmission techniques coexisting in the
same area to ensure the most efficient usage of the spectrum
resource with the minimum waste of energy [2].

Despite its promise, the deployment of small-cell networks
poses several technical challenges mainly because different
small cells are likely to be connected via an unreliable back-
haul infrastructure whose features may strongly vary from case
to case, with variable characteristics of error rate, delay, and
capacity. This calls for developing flexible and decentralized
power allocation strategies relying on local channel stateinfor-
mation, and requiring only a small exchange of information.
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A. Related works

As is well-known, the theoretical tool for studying and
designing complex interactions among rational entities oper-
ating in a distributed manner isgame theory. In recent years,
there has been a growing interest in adopting game theory
to model many communications and networking problems
(a good survey of the results on this topic can be found
in [3]). Among the early contributions in this area, it is
worth mentioning [4]–[6], in which the rate maximization
problem for autonomous digital subscriber lines is addressed
following a competitive optimality criterion. Following the
route of such early works, most of the existing literature
in wireless communications is focused on developing power
control techniques for the maximization of the individual SE
while satisfying individual power constraints. Some examples
in the area of non-cooperative game theory are represented
by the distributed power control strategies proposed in [7]
for multi-user multiple-input multiple-output systems and by
those developed in [8] and [9] for interference relay channels
whereas a two-tier network is considered in [10]. In [11], [12],
the authors propose a detailed analysis of the Nash equilibrium
(NE) point for the rate maximization problem in parallel
Gaussian multiple access channels in which mobile users
autonomously take decisions on the resource usage and com-
pete with each other to exploit the available resources. More
recently, in [13] the authors rely on the variational inequality
(VI) framework to model and analyze the competitive rate
maximization problem. The analogy between NE problems
and VIs is also exploited in [14] to design distributed power
control algorithms for rate maximization under interference
temperature constraints in a cognitive radio context.

All the aforementioned distributed power allocation strate-
gies have the great advantage of avoiding the excessive in-
formation exchange to achieve signal coordination as well as
involved computational processing [13]. On the other hand,
users aggressive attitude towards interference can lead to
a large transmission power at the mobile stations, thereby
fostering an inefficient use of batteries. All this makes such
existing solutions not suited for the development of energy-
efficient networks. This has motivated a great interest in
studying and designing resource allocation schemes takinginto
account the cost of energy in the performance metrics. Towards
this end, the concept of link capacity per unit cost originally
proposed by Verdú in [15] has been widely adopted in many
different contexts (see for example [16]–[19] and references
therein). In [19], the authors focus on the same scenario
investigated in [11], [12] and study the NE problem for a group
of players aiming at maximizing their own EE while satisfying
power constraints or rate requirements. Although interesting,
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the theoretical framework developed in [19] does not provide
a systematic study of the relationship between the SE and the
EE maximization problems. To the best of our knowledge, a
unified framework accommodating both is still missing.

B. Contributions

The aim of this paper is to fulfill the gap mentioned
above using the QVI framework, originally introduced by
Bensoussan in [20] as a modeling tool to be used in different
fields such as economics and biology (see also [21] and
references therein). Unlike the traditional VI framework,that
has been widely applied in the wireless communications field,
the use of QVI theory for developing numerical algorithms is
relatively recent [22]. In this work, we apply the QVI to study
the solution properties of power allocation in aheterogeneous
game defined as non-cooperative game in which the users
can locally choose whether to pursue their own SE or their
own EE. This allows us to overcome the main limitations
of existing approaches, which fail to provide closed-form
conditions on the uniqueness of the equilibrium points and
on the convergence properties of iterative solutions. Towards
this goal, a two-step approach is used. First, the EE maxi-
mization problem introduced in [19] is reformulated as a QVI
using convex fractional programming theory [17]. The same
approach is then exploited to reformulate the heterogeneous
game as a QVI. This isper-sesufficient to elaborate some
insights on the properties of the NE points and to provide
us with all the mathematical tools to study the uniqueness of
the NE points of the heterogeneous game, and the convergence
properties of iterative algorithms. In particular, we firstpropose
a centralizedapproach, which relies on an iterative method
for solving QVIs whose convergence is guaranteed under
mild assumptions. Then, we propose an alternative solution
exploiting the equivalence between the QVI and a nonlinear
complementary problem (NCP), which gives each pair the
possibility to reach the NE in adistributedmanner without the
need for any centralized processing. The developed solutions
are then validated by means of extensive simulations.

C. Organization

The remainder of this paper is organized as follows.1 In
Section II, we first introduce the signal model, some basic
notations and the problem under investigation. We also review
the available literature on both the SE-only and the EE-
only maximization problems, with particular emphasis on the
major limitations of classical approaches when studying the
EE problem. Section III illustrates the mathematical stepsto
reformulate the EE-only game as a QVI. This approach is

1The following notation is used throughout the paper. Matrices and vectors
are denoted by boldface letters.1 and0 are the all-one and all-zero vectors,
respectively, whereasA = diag{a(n) ; n = 1, 2, . . . , N} denotes anN×N
diagonal matrix with entriesa(n) along its main diagonal. The notation[A]i,k
is used to indicate the(i, k)th entry of the enclosed matrixA. We use

∏
i Xi

to denote the Cartesian product of the setsXi whereas� stands for the
element-wise greater or equal relations.‖x‖ denotes the Euclidean norm of
vector x, and [x]+ = max (0, x). In addition, λmax(A) and λmin(A)
denote respectively the maximum and the minimum eigenvalueof matrix A.
1

K

k
denotes the indicator function of a setK and it is such that1K

k
= 1 if

k ∈ K and zero otherwise. The notationx⊥y stands forxTy = 0 whereas
∇xf(x) denotes the gradient vector off(x) with respect tox.

then used in Section III-B to formalize the heterogeneous
game in which both SE and EE users coexist. The uniqueness
conditions for the NE points of the heterogeneous game are
studied in Section IV. The QVI framework is also used in
Section V to derive and study the convergence properties of
two different iterative algorithms for achieving the NE points.
In Section VI, numerical results are shown for a network
operating under different settings. Finally, some concluding
remarks and discussions are drawn in Section VII.

II. NASH EQUILIBRIUM PROBLEMS

Consider aK−userN−parallel Gaussian interference chan-
nel, in which there areK transmitter-receiver pairs sharing
N parallel Gaussian subchannels, that might represent time
or frequency bins. The channel transfer function over thenth
subchannel between the transmitteri and receiverk is denoted
by Hk,i(n). The transmission strategy of each userk is the
power allocation vectorpk = [pk(1), pk(2), . . . , pk(N)]T over
the N subchannels satisfying the following (local) transmit
power constraints:

Pk =
{
pk ∈ R

N
+ : hk (pk) ≤ 0

}
(1)

wherehk (pk) is an affine function ofpk given by

hk (pk) = 1Tpk − Pk (2)

with Pk being the total power available at transmitterk. We
assume that theK transmitter-receiver pairs do not cooperate
with each other and that the multi-user interference is simply
treated as additive colored noise at each receiver. Moreover,
local perfect channel state information is available at both
transmitter and receiver sides.

In the above circumstances, the maximum achievable rate
on link k for a specific power allocation profilep =
[pT

1 ,p
T
2 , . . . ,p

T
K ]T is given by

Rk(pk,p−k) =

N∑

n=1

log


1 +

|Hk,k(n)|
2
pk(n)

σ2
k(n) +

∑
i6=k

|Hk,i(n)|
2
pi(n)




(3)
where σ2

k(n) is the noise variance over thenth subcarrier
on link k and p−k = [pT

1 ,p
T
2 , . . . ,p

T
k−1,p

T
k+1, . . . ,p

T
K ]T

collects the power allocation vectors of all transmitters,ex-
cept thekth one. Following [16]–[19], the energy efficiency
Ek(pk,p−k) of the kth link can be computed as

Ek(pk,p−k) =
Rk(pk,p−k)

Ψk + 1Tpk

(4)

with Ψk > 0 being the RF circuitry power consumed at
transmitterk.

As mentioned earlier, one of the major objectives of this
work is to provide a framework for studying heterogeneous
multi-user systems in which each user can choose whether
to maximize its own SE or EE. To this end, we first recall
some fundamental results for the NE problem in which each
player (the transmitter-receiver pair) maximizes its own SE
(Section II-A). Then, the case of competitive players aiming at
maximizing the EE of the link is introduced and its Nash equi-
libria are mathematically characterized (Section II-B), using
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a fractional programming approach. Finally, in Section II-C
we combine the results from these two game formulations
to properly formalize and study the heterogeneous problem
sketched above.

A. Rate maximization

The rate maximization problem refers to a system in which
each transmitter-receiver pair aims at selfishly choosing the
power allocation strategy that maximizes its own rate for a
given set of other players’ power profile. Mathematically, this
amounts to jointly solving the following problems:

max
pk

Rk(pk,p−k) ∀k (5)

subject to pk ∈ Pk.

As is known, the joint solution of (5)p⋆ = [p⋆
1, . . . ,p

⋆
K ] =

[p⋆
k,p

⋆
−k], such thatp⋆

k = arg maxpk∈Pk
Rk(pk,p

⋆
−k), cor-

responds to the NE of the non-cooperative game with complete
information defined asGR = 〈K, {Pk}, {Rk}〉 in which:
K = {1, 2, . . . ,K} is the set of players ;Pk denotes the
strategy set of playerk, defined as in (1); andRk is player
k’s payoff function that is the rate defined in (3).

Proposition 1 ([11]). The Nash equilibriap⋆ of GR are found
to be the fixed points of the waterfilling mappings given by

p⋆k(n) =
[
wfk(p

⋆
−k, µ

⋆
k)
]
n

(6)

where

[
wfk(p

⋆
−k, µ

⋆
k)
]
n
=




1

µ⋆
k

−

σ2
k(n) +

∑
i6=k

|Hk,i(n)|
2
p⋆i (n)

|Hk,k(n)|
2




+

(7)
andµ⋆

k is the water level, chosen such that

1Tp⋆
k = Pk. (8)

In [13], the authors provide a convenient way to study
the properties ofp⋆ by showing that the rate maximization
NE problem is equivalent to the nonlinearVI(P ,F) in which
F(p) = {Fk(p)}Kk=1, with

Fk(p) = −∇pk
Rk(pk,p−k) (9)

=



−

(
ξk(n) +

K∑

i=1

Dk,i(n)pi(n)

)−1




N

n=1

(10)

with

ξk(n) =
σ2
k(n)

|Hk,k(n)|
2 and Dk,i(n) =

|Hk,i(n)|
2

|Hk,k(n)|
2 . (11)

Thanks to the equivalence between the NE problem and the
VI(P ,F), the following result can be proved.

Theorem 1 ([13]). A power allocation profilep⋆ is an NE of
the rate maximization problem if and only if

(p− p⋆)T F(p⋆) ≥ 0 ∀p ∈ P (12)

with P =
∏K

k=1 Pk.

Interestingly, in [11] it is also shown that the Nash equilibria
in (6) can be interpreted as a set of Euclidean projections
onto the facets ofK polytopes. To see how this comes
about, let ξk = [ξk(1), ξk(2), . . . , ξk(N)]T and Dk,i =

diag{Dk,i(n);n = 1, 2, . . . , N}. Define alsoP =
∏K

k=1 Pk

where eachPk is the simplex

Pk =
{
pk ∈ R

N
+ : hk (pk) = 0

}
(13)

obtained from (1) when the power constraint is satisfied with
equality.

Proposition 2 ([12]). A power allocation profilep⋆ is an NE
of the rate maximization problem if and only if

p⋆
k = ΠPk


−ξk −

∑

i6=k

Dk,ip
⋆
i


 ∀k (14)

whereΠPk
(z) computes the vector in the simplexPk that is

closest toz in the Euclidean norm.

One of the major advantages of reformulating the NE
problem as in (14) is that the sufficient conditions for the
uniqueness of the NE ofGR can be derived by simply studying
the contraction property ofΠPk

(·) with respect to the vector
p. In addition, the analysis of the convergence of iterative
waterfilling-inspired algorithms is greatly simplified (please
refer to [12] for more details on this subject). As we shall
see, similar results can be proved to hold true for the energy-
efficient maximization problem.

B. Energy-efficient maximization

The EE maximization problem refers to a network in which
each playerk aims at selfishly choosing a power vectorpk ∈
Pk to maximize its own energy efficiencyEk(pk,p−k) for a
given set of other players’ powersp−k. The problem can be
mathematically formulated as:

max
pk

Ek(pk,p−k) =
Rk(pk,p−k)

Ψk + 1Tpk

∀k (15)

subject to pk ∈ Pk.

Analogously to what is introduced in Section II-A, the
solution of (15) is the NE of the noncooperative gameGE =
〈K, {Pk}, {Ek}〉. Since the utility functionsEk(pk,p−k),
∀k ∈ K, are strictly quasiconcave andPk is a convex
set, the players’ best response to the opponent strategies
can be computed using different convex optimization tools.
Although possible, this direct approach, originally pursued in
[19], presents some disadvantages, mainly because it does
not bring any insights into the structure of the equilibrium
points. This makes it hard to provide closed-form conditions
for the uniqueness of the NE points ofGE and to study the
convergence properties of iterative algorithms based on best
response dynamics.

An alternative route (e.g., followed in [17]) relies on observ-
ing that (15) belongs to the class of concave-convex fractional
programs, sinceRk(pk,p−k) is a concave function ofpk

whereasΨk+1Tpk is affine and positive. Interestingly, the so-
lution of such problems can be computed through methods that
rely on different convex reformulations or duality approaches
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Algorithm 1: Dinkelbach method

Data. Seti = 0 andν(0) = ν̄1K , with a randomν̄ > 0. Choose
ǫ≪ 1.

Step 1. Sequentially, compute

z
(i)
k (ν

(i)
k ) = wfk(p−k, ν

(i)
k ).

Step 2. Sequentially, set

ν
(i+1)
k =

Rk

(

z
(i)
k (ν

(i)
k ),p−k

)

Ψk + 1T z
(i)
k (ν

(i)
k )

.

Step 3. If the condition
∣

∣

∣
Rk

(

z
(i)
k (ν

(i)
k ),p−k

)

− ν
(i+1)
k

(

Ψk + 1
T
z
(i)
k (ν

(i)
k )

)∣

∣

∣
< ǫ

is satisfied for anyk ∈ KE , then returnν⋆
k = ν

(i+1)
k and

STOP; otherwise, go to Step 4.

Step 4. Set i← i+ 1; and go back to Step 1.

(see [23] for more details on this subject). Although different
in principle, all these methods are very closely related to each
other since they all lead to the same optimality condition. Fol-
lowing the parameter-free convex fractional program approach
(whose main steps are reported in Appendix A for the sake
of completeness), it turns out that playerk’s best response
Bk(p−k) to an opponents’ vectorp−k takes the form:

Bk(p−k) = wfk(p−k, λ
⋆
k(p−k)) (16)

whereλ⋆
k(p−k) must satisfy the condition

1TBk(p−k) = min

{
Pk,

1

t⋆k(p−k)
−Ψk

}
. (17)

The value of1/t⋆k(p−k) corresponds to the total (radiated
and fixed) power consumption for any givenp−k when the
constrainthk (pk) ≤ 0 in (15) is neglected, and can be
computed as (see Appendix A)

t⋆k(p−k) =
1

Ψk + 1T zk(ν⋆k)
(18)

wherezk(ν⋆k) is given by

zk(ν
⋆
k) = wfk(p−k, ν

⋆
k) (19)

with ν∗k being iteratively obtained via Algorithm 1 (originally
proposed by Dinkelbach in [24]) and such that

Rk (zk(ν
⋆
k),p−k)− ν⋆k

(
Ψk + 1T zk(ν

⋆
k)
)
= 0. (20)

Using the above results, the following proposition easily
follows from the observation that a pointp⋆ is an NE if and
only if p⋆ ∈ B(p⋆), with B(p) =

∏K

k=1 Bk(p−k).

Proposition 3. The Nash equilibriap⋆ of GE are obtained as
the fixed-point solutions of the following waterfilling mapping:

p⋆
k = Bk(p

⋆
−k) = wfk(p

⋆
−k, λ

⋆
k(p

⋆
−k)) (21)

with λ⋆
k(p

⋆
−k) being such that

1Tp⋆
k = min

{
Pk,

1

t⋆k(p
⋆
−k)

−Ψk

}
. (22)

Remark 1. Similarly to GR, the NE points ofGE are found
to be the fixed points of a waterfilling mapping, with the only
difference that the water level must be chosen so as to satisfy
(22) rather than(8).

Remark 2. Sincet⋆k(p−k) plays a major role in all subsequent
discussions, let us point out its physical meaning and prop-
erties. As mentioned before,1/t⋆k(p−k) ∈ [Ψk,∞) represents
the total power dissipation that is required to maximize the
EE for any givenp−k when the constrainthk (pk) ≤ 0 is
neglected. Mathematically,t⋆k(p−k) is obtained as the solution
of the following optimization problem (see Appendix A):

max
{yk,tk}∈R

N+1
+

tkRk(yk/tk,p−k) (23)

subject to tk(Ψk + 1Tyk/tk) = 1.

wherepk = yk/tk. From the above problem, it turns out that
1/t⋆k(p−k) − Ψk is the total radiated power that would be
needed by playerk to maximize its own EE for a givenp−k.
The maximum power constraint(1) acts as an upper bound to
the strategyp⋆

k, as follows from(17).

It is worth observing that computing the NE as in (21),
although useful to characterize its structure, does not provide
any particular advantage in deriving conditions for the unique-
ness of the NE points ofGE . Similarly, the analysis on the
convergence properties of the resulting iterative solutions is
still much open. For this reason, analogously to what was
done in [13] for the rate maximization game using the VI
approach, in Section III we will make use of the above results
to reformulateGE as a QVI so as to exploit the powerful
tools provided by the QVI theory. Before delving into this,
we briefly introduce the heterogeneous maximization problem
that will be analyzed in Section III-B.

C. Heterogeneous maximization

Consider now a heterogeneous scenario in which a setKR

of players follows a rate maximization strategy, while the
remaining setKE is interested in maximizing its own EE.
Let us defineG = 〈K, {Pk}, {uk}〉 the corresponding game
in which: K = KR ∪ KE is the set collecting both types of
users; the strategy setPk is defined as in (1); anduk(pk,p−k)
is the utility function, defined as

uk(pk,p−k) =

{
Rk(pk,p−k) if k ∈ KR

Ek(pk,p−k) if k ∈ KE .
(24)

The problem to be solved for each playerk can thus be
mathematically formalized as follows:

max
pk

uk(pk,p−k) ∀k (25)

subject to pk ∈ Pk

and the corresponding Nash equilibria are obtained as follows
using the results of Theorems 1 and 3.

Proposition 4. The Nash equilibriap⋆ of G are obtained as
the fixed-point solutions of the following waterfilling mapping:

p⋆
k = wfk(p

⋆
−k, λ

⋆
k(p

⋆
−k)) (26)
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with λ⋆
k(p

⋆
−k) being such that the following equality holds

true:

1Tp⋆
k =






Pk if k ∈ KR

min

{
Pk,

1

t⋆k(p
⋆
−k)

−Ψk

}
if k ∈ KE .

(27)

Similarly to the energy-efficient maximization problem,
characterizing the properties of the NE points ofG, such
as uniqueness conditions, and developing iterative solutions
for achieving these points in a distributed manner are open
problems that call for an alternative approach. As mentioned
earlier, we address all these issues reformulatingG as a QVI.

III. QVI F ORMULATION OF GE

Next, we make use of the results of Section II-B to show
how GE can be reformulated as a QVI. To this end, for any
given p−k, let us introduce the functiongk(pk,p−k) of pk,
defined as

gk(pk,p−k) = 1Tpk −

(
1

t⋆k(p−k)
−Ψk

)
(28)

where t⋆k(p−k) is computed through (18)-(20). Let us also
denote

Q (p) =

K∏

k=1

Qk(p−k) (29)

whereQk : P−k → 2Pk , ∀k collects the set-valued functions
given by

Qk(p−k) = Pk ∩
{
pk ∈ R

N
+ : gk(pk,p−k) ≤ 0

}
(30)

whereas2Pk is the power set collecting all the possible subsets
of Pk [25]. Then, the following result can be obtained.

Theorem 2. A power allocation profilep⋆ is an NE of the
EE maximization problem given in(15) if and only if it solves
theQVI(Q,F), whereF(p) = {Fk(p)}Kk=1, andFk(p) is the
mapping defined in(9). Stated formally,p⋆ is an NE ofGE if
and only if it is such that

(p− p⋆)T F(p⋆) ≥ 0 ∀p ∈ Q(p⋆). (31)

Proof: The proof is given in Appendix B and relies on
proving that the Karush-Kuhn-Tucker (KKT) conditions of
QVI(Q,F) are satisfied if and only if there exists a vector
p⋆ and a suitable Lagrange multiplierλ⋆ ∈ R

K
+ such that

(21) and (22) hold true.

Remark 3. The results of Theorem 2 are reminiscent of those
in [14] in which the authors make use of the VI framework
to solve the rate maximization problem in a cognitive radio
network under interference constraints. In that case, the indi-
vidual strategy setsQk(p−k), ∀k ∈ K, are defined as

Qk(p−k) = Pk ∩
{
pk ∈ R

N
+ : I(pk,p−k) ≤ 0

}
(32)

where I(pk,p−k) denotes the interference constraint. The
latter turns out to be the same for any linkk and moreover it
is shown to be convex with respect to the entire strategy profile
p. This property allows the authors in [14] to reformulate the
rate maximization problem as a VI. A close inspection of(28)

Fig. 1: Graphical illustration of SE and EE best responses.

reveals thatgk(pk,p−k) depends on the index linkk and it is
not jointly convex with respect to the power allocation profile
p. For this reason the VI approach adopted in [14] cannot be
applied to the problem at hand while the QVI framework is
shown to be of great help.

A. Energy-efficiency maximization as a projector

For the sake of completeness, we observe that (similarly
to what has been done for the rate maximization problem in
[11]) the NE ofGE can also be interpreted as the Euclidean
projection of the vector−ξk−

∑
i6=k Dk,ipi onto the simplex

Qk(p−k) =
{
pk ∈ R

N
+ : max {hk(pk), gk(pk,p−k)} = 0

}

(33)
wheregk(pk,p−k) = 0 is an affine hyperplane inpk for any
givenp−k. This is summarized in the following proposition.

Proposition 5. A power allocation profilep⋆ is an NE ofGE

if

p⋆
k = ΠQk(p

⋆
−k

)


−ξk −

∑

i6=k

Dk,ip
⋆
i


 . (34)

Proof: The proof is given in Appendix C and relies on
proving that the KKT conditions of (34) are satisfied by the
solution to (15).

Capitalizing on the interpretation of the NE point as a
Euclidean projection, a graphical comparison between the
spectral-efficient (or rate-maximizing) and energy-efficient
best responses is provided in Fig. 1 for the caseN = 2.
In particular, Fig. 1 shows the playerk’s best response to
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two different strategies of the other players, namely,p−k and
p′
−k. As seen, the playerk’s best responses are obtained as

the projections of the interference vectors−ξk−
∑

i6=k Dk,ipi

and−ξk −
∑

i6=k Dk,ip
′
i onto the corresponding hyperplanes:

hk(pk) = 0 for rate maximization andgk(pk,p−k) = 0 for
energy-efficient maximization.2 In sharp contrast tohk(pk) =
0, the hyperplanegk(pk,p−k) = 0 (corresponding to the
straight lines below the grey regions) depends on the other
players’ strategies through1/t⋆k(p−k), which varies within
the interval[Ψk,∞). It is worth observing that all admissible
power allocation profiles lie into the grey zone between the
two hyperplanes. Due to space limitations, we cannot provide
more details on this interpretation of the best response. We
just observe that it can be useful to get further insights into
the energy-aware optimization problem and more specifically
into the trade-off between SE and EE policies in a competitive
environment. Moreover, it might turn useful in some cases to
study the convergence properties of distributed solutionsas
happened for the rate maximization problem (please refer to
[12] for more details on this subject). However, this is leftfor
future work and not pursued further in the sequel.

B. QVI Formulation ofG

Let us consider now the heterogeneous scenario. The fol-
lowing result can be proved.

Proposition 6. Let Sk denote the set given by

Sk(p−k) =

{
Pk if k ∈ KR

Qk(p−k) if k ∈ KE

(35)

and letS : P → 2P be the set-valued function defined as the
following Cartesian product:

S(p) =
∏

k∈K

Sk(p−k). (36)

Then, the NE problem in(25) is equivalent toQVI(S,F),
which is to find a vectorp⋆ such that

(p− p⋆)T F(p⋆) ≥ 0 ∀p ∈ S(p⋆) (37)

whereF : RNK → R
NK is obtained as in(9).

Proof: The proof follows the same steps as those used
in Appendix B to prove Theorem 2. In particular, it relies
on showing that the power allocation profilepk satisfying
the KKT conditions of the QVI is also a solution of thekth
maximization problem in (25).

IV. A NALYSIS OF THE NASH EQUILIBRIA

The existence and uniqueness of the NE points ofG are
now studied.

Proposition 7. The gameG admits a nonempty set of NE
points for any non-null maximum transmit power of the users.

Proof: The existence follows due to the quasi-concavity
of the utilitiesRk(pk,p−k) andEk(pk,p−k) in G.

2If the projection of the interference vector is outside the grey region then
all the power is allocated only over the subchannel with the highest gain.

As far as the uniqueness of the NE is concerned, the
following theorem provides a sufficient condition guaranteeing
the uniqueness of the power allocation vectorp⋆ in (37) and
thus in (25).

Theorem 3. (Uniqueness Conditions): LetΩ (p) be the map-
ping with elements given by

[Ω (p)]k =

{
Pk if k ∈ KR

1/t⋆k(p−k)−Ψk if k ∈ KE

(38)

and define the matricesA andB whose elements are

[A]k,i = max
n

{
|Hk,i(n)|

2 |Hk,k(n)|
2

σ4
k(n)

}
(39)

and

[B]k,i =

{
1, if i = k,

−max
n

{
|Hk,i(n)|

2

|Hi,i(n)|
2 ςk,i(n)

}
, if i 6= k,

(40)

with ςk,i(n) being defined as

ςk,i(n) =
σ2
i (n) +

∑
ℓ |Hi,ℓ(n)|

2 Pℓ

σ2
k(n)

. (41)

The uniqueness of the NE in(25) is guaranteed under the
following conditions.

• The matrixB is positive definite;
• There exists a nonnegative constantδ < 1/Γ such that

‖Ω (p)−Ω (p′)‖ ≤ δ ‖p− p′‖ ∀p,p′ ∈ P (42)

where

Γ = −

√
λmax(A)

λmin(B)
max

k
max
n

{ς̃k(n)} (43)

is the so-called condition number ofF with

ς̃k(n) =
σ2
k(n)

|Hk,k(n)|2
+
∑

i

|Hk,i(n)|2

|Hk,k(n)|2
Pi. (44)

Proof: The proof is given in Appendix D and relies on
[26, Theorem 4.1]. Observe that, unlike [14], the positive
definiteness ofB is not sufficient to guarantee the uniqueness
of the NE point (see discussion below).

Remark 4. Observe that whenKE = ∅ and thusK = KR

then (42) is always satisfied since‖Ω (p)−Ω (p′)‖ = 0.
Therefore, the uniqueness conditions only require the matrix
B to be positive definite. Not surprisingly, this result coincides
with that in [14], wherein the authors show that the positive
definiteness ofB is a sufficient condition to claim the unique-
ness of the NE for the rate maximization game. As rigorously
discussed in [14],B is positive definite if for anyk one (or
both) of the following conditions is fulfilled:

1

wk

∑

i6=k

wi max
n

{
|Hk,i(n)|2

|Hi,i(n)|2
ςk,i(n)

}
< 1 (45)

1

wi

∑

k 6=i

wk max
n

{
|Hk,i(n)|

2

|Hi,i(n)|2
ςk,i(n)

}
< 1 (46)
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Algorithm 2: Sequential penalty approach for solving
QVI(S,F).

Data. Choose an increasing sequence{ρ(i)}∞i=0 satisfying (48),
and a sequence of vectors{α(i)}∞i=0. Set j = 0 and choose
anyp(0)

k ∈ Pk for k = 1, 2, . . . ,K.

Step 1. Computep(j) as the solution of the penalized VI in (49).

Step 2. If a suitable termination criterion is satisfied, then return
pSPA = p(j) and STOP, otherwise go to Step 3.

Step 3. Setj ← j + 1; and go back to Step 1.

wherew = [w1, w2, . . . , wK ]T is some positive vector. The
above inequalities say that the positive definiteness ofB is
ensured if the received and/or generated multi-user interfer-
ence is relatively low. On the other hand, ifKE 6= ∅ then

‖Ω (p)−Ω (p′)‖
2
=
∑

k∈KE

([Ω (p)]k − [Ω (p′)]k)
2 (47)

where[Ω (p)]k is the total power consumption on linkk given
by (38). Therefore, the positive definiteness ofB alone is no
longer sufficient since(42) is not always satisfied. A close
inspection of (42)-(43) leads to the following interpretation
of this additional condition: The gameG has a unique NE if
at a variation of the opponent players’ strategy corresponds
a relatively small variation of the total power consumption
in (47). This comes from the definition itself of the condition
number, which is formally defined as the value of the asymp-
totic worst-case relative change in output for a relative change
in input. Observe also thatΓ in (43) is always bounded since
F is a smooth function.

V. I TERATIVE ALGORITHMS TO SOLVEG

In what follows, we show how to exploit the above theoret-
ical framework to compute the NE ofG. Towards this goal,
two different solutions are proposed. The first one exploits
the equivalence betweenG andQVI(S,F) and show how the
solution of G can be computed by resorting to an iterative
method for solving QVIs. As we shall see, this results into
an iterative procedure that, in principle, requires a centralized
implementation. The second approach relies on showing that
QVI(S,F) is equivalent to a nonlinear complementary prob-
lem (NCP), which gives each player the possibility to reach
the NE ofG in a distributed manner without the need for any
centralized processing.

A. A sequential penalty approach

The solution toG is next numerically obtained through
the iterative procedure for solving QVIs known as sequential
penalty approach (SPA) (e.g., see [22]). The latter is inspired
by the augmented Lagrangian approach for nonlinear program-
ming and its key idea is to solve the QVI by iteratively solving
a properly defined sequence of penalized VIs on the setP .

Specifically, letj be the iteration index and let{ρ(j)} ∈ R+

be a sequence of given positive scalars satisfyingρ(j) < ρ(j+1)

and tending to∞, i.e.,

lim
j→∞

ρ(j) → ∞. (48)

Let also {α(j)} ∈ R
K×1 be a sequence of some arbitrary

vectors, and denote byp(j) the solution of the following
penalizedVI(j)(P ,F+∇C) on the setP :

(p− p(j))T
(
F(p(j)) +∇

p(j)C(p(j))
)
≥ 0 ∀p ∈ P

(49)

where ∇
p(j)C(p(j)) = {∇

p
(j)
k

Ck(p
(j))}Kk=1 is the penalty

mapping at thejth iteration, with

Ck(p
(j)) =

1

KE

k

2ρ(j)

([
α
(j)
k + ρ(j)gk

(
p
(j)
k ,p

(j)
−k

)]+)2

. (50)

The resulting iterative procedure is reported in Algorithm2
and its convergence properties are stated in the following
proposition.

Proposition 8. Let pSPA denote

pSPA = lim
j→∞

p(j) (51)

with p(j) being the solution of(49). If {α(j)} is a bounded
sequence of vectors, i.e.,

max
k

∣∣∣α(j)
k

∣∣∣ < ᾱ ∀j (52)

with ᾱ some non-negative number, thenpSPA is a solution of
QVI(S,F) and thus ofG.

Proof: The proof is given in Appendix E and exploits
the most general result provided by [22, Theorem 3] which,
in turn, requires to prove thatgk(pk,p−k) is a continuous
function with respect to the entire power vectorp.

As seen, each iteration of Algorithm 2 requires only to solve
a penalized VI. Next, we briefly illustrate how this can be
done using standard optimization techniques. Let us introduce
a slack variableλ(j)

k such thatλ(j)
k = 0 if k ∈ KR and

0 ≤ λ
(j)
k ⊥ (λ

(j)
k − α

(j)
k − ρ(j)gk(p

(j)
k ,p

(j)
−k)) ≥ 0 (53)

if k ∈ KE . From the KKT conditions of (49) and observing
that the squared max function (50) is once continuously
differentiable with
[
∇

p
(j)
k

Ck(p
(j))
]

n
=
[
α
(j)
k + ρ(j)gk

(
p
(j)
k ,p

(j)
−k

)]+
(54)

it follows that p(j) is the solution ofVI(j)(P ,F + ∇C) if
and only if there exist some vectorsµ(j) ∈ R

K
+ such that the

following stationarity condition is satisfied for anyk:

Fk(p
(j)
k ,p

(j)
−k) + λ

(j)
k + µ

(j)
k = 0 (55)

with 0 ≤ µ
(j)
k ⊥ hk(p

(j)
k ) ≤ 0 and λ

(j)
k defined above.

Moreover, for any givenλ(j) = [λ
(j)
1 , λ

(j)
2 , . . . , λ

(j)
K ]T and

µ(j), the vectorp(j) solving (55) can be easily found in closed
form as a function ofλ(j) andµ(j). Therefore, the solution of
the jth iteration can be obtained solving a constrained system
of equations inλ(j) andµ(j). This can be done using standard
methods for nonsmooth continuous equations [27, Chapter 8].

In general, the implementation of Algorithm 2 requires
a centralized unit or an excessive exchange of information
among the users. Although possible, this is clearly not suited
for those applications (such as small-cell networks) wherein
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Algorithm 3: Distributed algorithm for solving QVI(S,F)

Data. Setj = 0, γ(0) = 0K andΦ(γ(0)) = 0K . Chooseǫ≪ 1.

Step 1. Useγ(j) to computepVI(γ(j)) solving

(p− p
VI(γ(j)))T

(

F(pVI(γ(j))) + γ
(j)

)

≥ 0 ∀p ∈ P

using the IWFP (e.g., via Algorithm 4).

Step 2. UsepVI(γ(j)) to computet⋆k(p
VI

−k(γ
(j))) for anyk ∈ KE

via the Dinkelbach method (e.g., via Algorithm 1).

Step 3. UsepVI

k (γ(j)) and t⋆k(p
VI

−k(γ
(j))) to set

[

Φ(γ(j))
]

k
=

1

t⋆k(p
VI

−k(γ
(j)))

−Ψk − 1
T
p
VI

k (γ(j))

for any k ∈ KE .

Step 4. If maxk

∣

∣

∣γ
(j)
k

[

Φ(γ(j))
]

k

∣

∣

∣ ≤ ǫ, then return

p⋆ = pVI(γ(j)) and STOP, otherwise go to Step 5.

Step 5. Chooseτ (j) > 0. Set

γ
(j+1)
k =

[

γ
(j)
k − τ

(j)
[

Φ(γ(j))
]

k

]+

for any k ∈ KE .

Step 6. Setj ← j + 1; and go back to Step 1.

the exchange of information among the users is unreliable or
even impossible. For this reason, in what follows we propose
an alternative solution, which operates in a distributed manner
and requires only local information.

B. An NCP-based approach

Assume thatγ ∈ R
K
+ is a given vector and denotepVI(γ)

as the solution of the following penalized VI:

(p− pVI(γ))T
(
F(pVI(γ)) + γ

)
≥ 0 ∀p ∈ P . (56)

Let us also define the mappingΦ : RK
+ → R

K as

[Φ(γ)]k =

{
0 if k ∈ KR

1
t⋆
k
(pVI

−k
(γ))

−Ψk − 1TpVI
k (γ) if k ∈ KE

(57)

with t⋆k(p
VI

−k(γ)) being obtained via (18)-(20) after replacing
p−k with pVI

−k(γ). Then, the following result can be proven.

Proposition 9. A power allocation profilep⋆ is an NE ofG
if it solves(56) andγ is solution of theNCP(Φ) given by:

NCP(Φ) : 0 ≤ γ⊥ Φ(γ) ≥ 0. (58)

Proof: The proof is provided in Appendix F and relies on
showing that the solution ofNCP(Φ) along with the solution
of the penalized VI satisfies the KKT ofQVI(S,F), and thus
p⋆ is also an NE point ofG.

Taking advantage of the above proposition, we develop the
iterative scheme illustrated in Algorithm 3, which operates
through a 2-layer procedure. More in details, at thejth
iteration the inner layer represented by Step 1 makes use of
γ(j) to compute the solution of (56). This is achieved using the

Algorithm 4: Sequential IWFP for a given γ(j) � 0

Data. Setm = 0 and choose anyξ(0)
k ∈ Pk for k = 1, 2, . . . ,K.

Step 1. Sequentially fork = 1, 2, . . . ,K compute

ξ
(m)
k = wfk

(

ξ
(m)
−k , χ

(m)
k + γ

(j)
k

)

wherewfk is defined as in (7), andχ(m)
k is chosen to satisfy

the power constraint1T
Kξ

(m)
k = Pk if

1
T
Kwfk

(

ξ
(m)
−k , γ

(j)
k

)

≥ Pk

whereasχ(m)
k = 0 otherwise.

Step 2. If a suitable termination criterion is satisfied, then
pVI(γ(j)) = ξ(m) and STOP, otherwise go to Step 3.

Step 3. Setm← m+ 1; and go back to Step 1.

iterative waterfilling with pricing (IWFP) procedure proposed
in [14] and reported in Algorithm 4 for completeness. The
outer layer makes use ofpVI

k (γ(j)) (provided by Step 1) to
updateγ(j) through Steps 2 – 5. The convergence properties of
Algorithm 3 are stated in the following proposition, in which
{τ (j)} represent the scalar parameters used in Step 5.

Proposition 10. Assume that:

• The matrixB defined in (40) is positive definite;
• The mappingΦ(γ) is a co-coercive function ofγ with

constantκ > 0, i.e.,

(γ1 − γ2)
T (Φ(γ1)−Φ(γ2)) ≥ κ ‖Φ(γ1)−Φ(γ2)‖

2

(59)
for anyγ1, γ2 ∈ R

K
+ .

If the scalarsτ (j) are chosen such that

0 ≤ inf
j

τ (j) ≤ sup
j

τ (j) ≤ 2κ (60)

then the sequence of vectors{pVI(γ(j))} generated by Algo-
rithm 3 converges to the NE ofG.

Proof: The convergence of the inner layer to the solution
of (56) follows from the results in [14], in which the authors
prove that if the mappingF is strongly monotone thenpVI(γ)
can be computed in a distributed manner for any givenγ � 0

through IWFP. As pointed out in Appendix D, the condition
on the strong monotonicity ofF holds true whenever the
matrix B in (40) is positive definite. On the other hand,
the convergence of the outer layer can be proved by simply
observing that it is equivalent to the projection method with
variable steps described in [27, Algorithm 12.1.4]. Therefore,
the convergence proof follows from [27, Theorem 12.1.8].

Unlike Algorithm 2, Algorithm 3 enables the computation
of the NE points ofG in a distributed manner without the
need for any centralized processing. To see how this comes
about, observe that the evaluation ofpVI

k (γ(j)) through IWFP
in the inner layer only requires knowledge of the local measure
of the overall interference plus noise. This information can
easily be estimated at each transmitter during its own reception
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phase. The same information is needed in the outer layer
by each playerk for updating the value oft⋆k(p

VI

−k(γ
(j))) in

Step 2. Oncet⋆k(p
VI

−k(γ
(j))) is computed, then

[
Φ(γ(j))

]
k

is

evaluated in Step 3 and later used in Step 5 to updateγ
(j+1)
k .

Remark 5 (On the design of{τ (j)} in Algorithm 3). From
(60), it follows that a judicious design of{τ (j)} would require
to computeκ in closed form as a function of the system
parameters. Unfortunately, this is a challenging task, which is
still much open. In Appendix F, we make use of some heuristic
arguments to conjecture that if the uniqueness conditions of
Theorem 3 are satisfied, thenΦ(γ) is a co-coercive function
of γ with constant

κ =
β

1 + Γ−2
(61)

where

β = −
λmin(B)

max
k

max
n

{ς̃k(n)}
(62)

is the strong monotonicity constant ofF while Γ is its
condition number (see also Appendix D). A formal proof of
(61) is beyond the scope of this work, and it is currently
under investigation. Herewith, we limit to observe that, al-
though building upon heuristics, such a condition has been
validated by means of the extensive simulations shown in the
next section. In particular, we observed that the proposed
distributed algorithm converges with probability one whenever
the uniqueness conditions depicted in Theorem 3 are satisfied.

VI. N UMERICAL RESULTS

Numerical results are now provided to assess the perfor-
mance of the proposed solutions when applied to a hetero-
geneous network. In particular, we consider a scenario with
K = 8 players in which four of them aim at maximizing the
EE and the other four are focused on the SE maximization. The
system parameters are as follows:i) the interference channel is
composed ofN = 16 subchannels;ii) the channel coefficients
Hk,i(n) are assumed to beCN (0, 1) ∀k, i, n; iii) the average
signal-to-noise ratio (SNR) on the generic subchanneln over
link k is defined as SNRk(n) = E{|Hk,k(n)|2}/σ2

k and it
is set to0 dB ∀k, n; iv) the maximum normalized power is
fixed to Pk = N for any k; v) the static power consumption
is assumed to beΨk = 1 for all k; vi) the starting point
of the distributed algorithms is the uniform power allocation
strategy, i.e.,p(0)

k = 1; vii) the tolerance parameter of the
Dinkelbach’s algorithm is set toǫ = 10−6, viii) the sequence
{τ (j)} is chosen such that the upper bound in (60) is met with
equality withκ given by (61).

Fig. 2 shows the probability that Algorithm 3 converges
to the solution of the QVI obtained via Algorithm 2.
The convergence probabilityPc is plotted as a function
of the average signal to interference ratio (SIR) on the
generic subchanneln over link k defined as SIRk(n) =
E{|Hk,k(n)|2}/(

∑
i6=k E{|Hk,i(n)|2}). As it is seen, in the

low SIR regime Algorithm 3 does not always converge to the
solution of the QVI and thus to the NE point ofG. This is
because the co-coercivity ofΦ is not guaranteed for small
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Fig. 3: Energy efficiency dynamics when SIRk(n) = 3 dB.

values of SIRs. On the other hand, the convergence is ensured
with almost probability one for moderate-to-high values of
SIR.

Figs. 3 – 4 show respectively the EE and the SE dynamics
during the time interval needed by Algorithm 3 to converge.
As it is seen, a stable power allocation strategy is achieved
while enhancing the EE of the energy efficient users up to
the 113% at the price of a consistent information rate loss.
The equilibrium is also achieved for the SE users with a final
SE more than doubled with respect the initial uniform power
allocation.

VII. C ONCLUSIONS AND PERSPECTIVES

In this work, we have studied a non-cooperative game
modelling the power allocation problem that arises in an
heterogenous multipoint-to-multipoint network wherein each
transmit and receiver pair can arbitrarily choose whether to
selfishly maximize its own SE or EE. To overcome the main
limitations of existing methodologies, we have reformulated
the underlying game as a QVI problem and then we have
exploited the powerful tools of the QVI theory:i) to study the
uniqueness of the NE points;ii ) and to derive novel algorithms
to converge to the NE points in an iterative manner both with
and without the need for a centralized processing. Numerical
results have been used to validate the performance of the
proposed solutions in a heterogeneous network.
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This work must be considered as a first attempt in using the
QVI theory for dealing with EE in a competitive environment.
We do believe that the developed framework will be of great
help to deal with several interesting extensions (as the VI the-
ory was useful to better study the rate maximization problem).
For example, the above results might be in principle extended
to any t⋆k(p−k) that is a continuously differentiable function
of the set of other players’ powersp−k. This means that any
additional constraint in (15) or (25) could be easily handled
by QVI(S,F) whenever it can be incorporated int⋆k(p−k).
This might be the case of minimum data rate requirement or
maximum allowed interference levels.

Another interesting result that builds upon the developed
framework is as follows. Exploiting the well-established re-
lationship between QVIs and GNE problems (e.g., see [22],
[28]), the heterogeneous gameG turns out to be equivalent to
G′ = 〈K, {Sk}, {Rk}〉 in which the problem to be solved for
each playerk takes the form:

max
pk

Rk(pk,p−k) (63)

subject to pk ∈ Sk(p−k).

This means that an heterogeneous gameG in which each
player can choose whether to maximize its own SE or EE
is basically equivalent to a gameG′ in which the utility to
maximize is always the rate but the strategy set of each player
depends on the opponents’ strategiesp−k throughSk(p−k).
This result may be useful to get valuable insights into the
tradeoff between SE and EE in competitive environments.

APPENDIX A
PROBLEM (15) AS A FRACTIONAL PROGRAM

In this appendix, the solution of (15) is computed by means
of the parameter-free convex fractional program approach
(e.g., see [17]). To this end, we set

yk =
pk

Ψk + 1Tpk

(64)

and definetk as the inverse of the total power dissipation

tk =
1

Ψk + 1Tpk

. (65)

Then, thekth maximization problem in (15) can be rewritten
in the following equivalent parameter-free form:

max
{yk,tk}∈R

N+1
+

tkRk(yk/tk,p−k) (66)

subject to tk(Ψk + 1Tyk/tk) = 1

1Tyk/tk − Pk ≤ 0

which is convex in(yk, tk), since the perspective of a function
preserves convexity [29]. To proceed further, let us define the
slack vectorzk = yk/tk and denote byνk andµk the dual
variables associated with the constraintstk(Ψk+1Tzk)−1 = 0
and1T zk −Pk ≤ 0. Let us also denotet⋆k(p−k) the optimum
value of tk when the constraint1T zk − Pk ≤ 0 on the
maximum transmit power is neglected. The KKT conditions
of (66) yield

z⋆k = wfk(p−k, ν
⋆
k + µ⋆

k) (67)

where the waterfilling operator is defined as in (7). From (67),
using the complementary slackness conditions it follows that,
if 1/t⋆k(p−k) − Ψk ≤ Pk, thenµ⋆

k = 0, whereasν⋆k 6= 0 and
such that

1T
wfk(p−k, ν

⋆
k) =

1

t⋆k(p−k)
−Ψk. (68)

On the other hand, if1/t⋆k(p−k) − Ψk > Pk, then ν⋆k = 0
whereasµ⋆

k 6= 0 and such that1Twfk(p−k, µ
⋆
k) = Pk.

Consequently, it turns out thatz⋆k has the following waterfilling
structure:

z⋆k = wfk(p−k, λ
⋆
k) (69)

whereλ⋆
k must satisfy the power constraint

1T z⋆k = min

{
Pk,

1

t⋆k(p−k)
−Ψk

}
. (70)

Recalling thatz⋆k = y⋆
k/t

⋆
k, from (64) and (65) the results (16)

and (17) easily follow.

APPENDIX B
PROOF OFTHEOREM 2

We start observing thatgk(pk,p−k) in (28) is convex and
continuously differentiable with respect topk for any possible
vector p−k ∈ P−k. Therefore, we can make use of [21,
Theorem 1] and state thatp⋆ is a solution ofQVI(Q,F) if
and only if there exist some vectorsν⋆ ∈ R

K
+ andµ⋆ ∈ R

K
+

satisfying the following KKT conditions for anyk:

Fk

(
p⋆
k,p

⋆
−k

)
+ ν⋆k + µ⋆

k = 0 (71)

with

0 ≤ ν⋆k ⊥ gk
(
p⋆
k,p

⋆
−k

)
≤ 0 (72)

0 ≤ µ⋆
k ⊥ hk (p

⋆
k) ≤ 0. (73)

From (71) – (73), using (2) and (28), we can easily verify that
p⋆ is thus a solution ofQVI(Q,F) if and only if

p⋆
k = wfk(p

⋆
−k, λ

⋆
k) (74)

with λ⋆
k being such that

1Twfk(p
⋆
−k, λ

⋆
k) = min

{
Pk,

1

t⋆k(p
⋆
−k)

−Ψk

}
. (75)
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The above condition coincides exactly with the definition of
an NE inGE as stated in Theorem 3. This means thatp⋆ is
also an NE ofGE .

APPENDIX C
PROOF OFPROPOSITION5

Let us consider the following problem:

z⋆k = ΠQk(p−k)



−ξk −
∑

i6=k

Dk,ipi



 (76)

which corresponds to the Euclidean projection of the vector
−ξk −

∑
i6=k Dk,ipi onto the simplexQk(p−k) defined as in

(33). Mathematically,z⋆k is computed looking for the solution
of the following minimization problem:

z⋆k = argmin
zk

1

2

∥∥∥zk −
(
−ξk −

∑
i6=k

Dk,ipi

)∥∥∥
2

(77)

subject to zk ∈ Qk(p−k)

which is in a convex form for any givenp−k. Therefore, its
solution is such that the following KKT conditions are satisfied
for any k andn:

z⋆k(n) + ξk(n) +
∑

i6=k

Dk,i(n)pi(n)− θ⋆k = 0 (78)

z⋆k � 0 (79)

1T z⋆k = min

{
Pk,

1

t⋆k(p−k)
−Ψk

}
(80)

whereθ⋆k ≥ 0 is a free parameter. From (78), imposingz⋆k � 0

we obtain

z⋆k(n) =



θ⋆k − ξk(n) +
∑

i6=k

Dk,i(n)pi(n)




+

(81)

with θ⋆k being such that

1T z⋆k = min

{
Pk,

1

t⋆k(p−k)
−Ψk

}
. (82)

Setting θ⋆k = 1/λ⋆
k, we can see that (81) and (82) are

equivalent to (69) and (70), respectively. This means that the
parameter-free optimization problem in (66) is equivalentto
the minimization problem in (77). Since the optimal power
allocation profilep⋆

k of playerk is always an instance ofz⋆k,
it follows thatp⋆ is a NE of the energy-efficient maximization
problem if and only if it is such that:

p⋆ = ΠQ(p⋆)


−ξk −

∑

i6=k

Dk,ipi


 . (83)

The claim of Proposition 5 is thus proved.

APPENDIX D
PROOF OFTHEOREM 3

The uniqueness result of Theorem 3 is a consequence
of the following theorem [26, Theorem 4.1] (see also [30,
Theorem 9]).

Theorem 4. Let the following assumptions hold.

• The operatorF is strongly monotone∀p,p′ ∈ P , i.e.,

(p− p′)
T
(F(p)− F(p′)) ≥ β ‖p− p′‖

2 (84)

with β > 0 being the strong monotonicity constant;
• The operatorF is Lipschitz continuous∀p,p′ ∈ P with

modulusL > 0, i.e.,

‖F(p)− F(p′)‖ ≤ L ‖p− p′‖ ; (85)

• There exists a constantδ ≥ 0 such that∀z,p,p′ ∈ P
∥∥ΠS(p)(z)−ΠS(p′)(z)

∥∥ ≤ δ ‖p− p′‖

with δ < β/L.

Then,QVI(S,F) has a unique solution.

The first condition easily follows from [14, Proposition 2]
in which it is stated that ifB in (40) is positive definite then
the operatorF is strongly monotone∀p,p′ ∈ P with

β = −
λmin(B)

max
k

max
n

{ς̃k(n)}
(86)

where

ς̃k(n) =
σ2
k(n)

|Hk,k(n)|2
+
∑

i

|Hk,i(n)|2

|Hk,k(n)|2
Pi. (87)

To prove thatF is Lipschitz continuous, we make use of (10)
to get

‖Fk(p)− Fk(p
′)‖ ≤∥∥∥∥∥∥

{
−

∑K

i=1 Dk,i(n)pi(n)−
∑K

i=1 Dk,i(n)p
′
i(n)

ξ2k(n)

}N

n=1

∥∥∥∥∥∥
(88)

sinceξk(n) +
∑K

i=1 Dk,i(n)pi(n) ≥ ξk(n). Letting Ãk,i be a
diagonal matrix with elements

[
Ãk,i

]

n,n
=

Dk,i(n)

ξ2k(n)
=

|Hk,i(n)|
2 |Hk,k(n)|

2

σ4
k(n)

(89)

from (88) we obtain

‖Fk(p)− Fk(p
′)‖ ≤

∥∥∥∥∥

K∑

i=1

Ãk,i (pi − p′
i)

∥∥∥∥∥ . (90)

Observe now that
∥∥∥∥∥

K∑

i=1

Ãk,i (pi − p′
i)

∥∥∥∥∥ ≤
K∑

i=1

max
n

{[
Ãk,i

]

n,n

}
‖pi − p′

i‖

(91)

so that from (90) one gets

‖Fk(p)− Fk(p
′)‖ ≤

K∑

i=1

[A]k,i ‖pi − p′
i‖ (92)

with A being defined as in (39). Then, we may write

‖F(p)− F(p′)‖
2
≤

K∑

k=1

(
K∑

i=1

[A]k,i ‖pi − p′
i‖

)2

(93)
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or, equivalently,

‖F(p)− F(p′)‖
2
≤ ‖A (p− p′)‖

2
. (94)

Observe that‖A (p− p′)‖ ≤ ‖A‖ ‖p− p′‖ with ‖A‖ =
max‖x‖=1 {‖Ax‖} =

√
λmax(A) being the induced norm of

matrix A. Therefore, we may write

‖F(p) − F(p′)‖ ≤
√
λmax(A) ‖p− p′‖ (95)

wich proves thatF is Lipschitz continuous∀p,p′ ∈ P with
modulusL =

√
λmax(A).

We now proceed proving that the third condition of The-
orem 4 holds true if (42) is satisfied. To this end, we start
observing that

∥∥ΠS(p)(z)−ΠS(p′)(z)
∥∥2 =

∑

k∈KE

∥∥∥ΠSk(p−k)(zk)−ΠSk(p′

−k
)(zk)

∥∥∥
2

. (96)

Since the boundaries ofSk(p−k) and Sk(p
′
−k) are two

parallel hyperplanes inpk, we may write
∑

k∈KE

∥∥∥ΠSk(p−k)(zk)−ΠSk(p
′

−k
)(zk)

∥∥∥
2

≤

∑

k∈KE

[
max
pk

(
gk(pk,p−k)− gk(pk,p

′
−k)
)]2

. (97)

Observing that

∑

k∈KE

[
max
pk

(
gk(pk,p−k)− gk(pk,p

′
−k)
)]2

=

=
∑

k∈KE

(
1

tk(p′
−k)

−
1

tk(p−k)

)2

= ‖Ω(p)−Ω(p′)‖
2

and using (96) and (97) yields
∥∥ΠS(p)(z) −ΠS(p′)(z)

∥∥2 ≤ ‖Ω(p)−Ω(p′)‖
2

from which taking into account (42) we eventually obtain
∥∥ΠS(p)(z)−ΠS(p′)(z)

∥∥ ≤ δ ‖p− p′‖ (98)

as required by the third condition of Theorem 4.

APPENDIX E
PROOF OFPROPOSITION8

The proof of Proposition 8 follows from the most general
result provided by [22, Theorem 3], according to which
the SPA leads to the solution of a genericQVI(S,F) with
S (p) =

∏K

k=1 Sk(p−k), andSk(p−k) defined as in (35), if
the following conditions are satisfied:

• F is continuous inp andhk(pk) is continuously differ-
entiable and convex inpk;

• gk(pk,p−k) is continuously differentiable and convex in
pk;

• gk(pk,p−k) is continuous inp.
From (2) and (10), it follows that the first condition is verified
for the problem at hand. The second condition is also met
since gk(pk,p−k) in (28) is an affine function ofpk for
any given p−k. Therefore, we are only left with proving
that gk(pk,p−k) is continuous inp. From (28), this amounts

to showing thatt⋆k(p−k) is continuous∀p−k ∈ P−k with
P−k =

∏
i6=k Pi. This is proved by contradiction as follows.

Assume that there exists a pair of vectorsd′,d′′ ∈ R
N(K−1)

with d′ 6= d′′ such that

lim
ǫ→0

t⋆k(p−k − ǫd′) 6= lim
ǫ→0

t⋆k(p−k − ǫd′′). (99)

From (18)-(19), this implies that there exist two distinct values
of the Lagrangian multiplierν⋆k , namely,ν′ andν′′, such that
the condition (20) is fulfilled. At the same time, from (20) it
follows that any instance ofν⋆k is such that

ν⋆k =
Rk (zk(ν

⋆
k),p−k)

Ψk + 1T zk(ν⋆k)
(100)

which is nothing else than the maximum value of the EE
function Ek(pk,p−k) = tkRk(pk,p−k) in (23). Since
Ek(pk,p−k) is strictly quasiconcave [19], it follows thatν⋆k
must be unique. Accordingly, we must conclude that there
are no distinct vectorsd′,d′′ such that (99) is satisfied. This
concludes the proof.

APPENDIX F
PROOF OFPROPOSITION9

We start observing thatp⋆ is a solution ofQVI(S,F) if and
only if there exist some vectorsν⋆ ∈ R

K
+ andµ⋆ ∈ R

K
+ such

that the following KKT conditions are satisfied [21], [22]:

Fk(p
⋆) + ν⋆k + µ⋆

k = 0 (101)

0 ≤ µ⋆
k ⊥ hk(p

⋆
k) ≤ 0 (102)

with ν⋆k = 0 if k ∈ KR, and

0 ≤ ν⋆k ⊥ gk(p
⋆
k,p

⋆
−k) ≤ 0 (103)

if k ∈ KE . Next, we look for a procedure that allows to
compute a triplet(p⋆,ν⋆,µ⋆) in a distributed manner. To this
end, we observe that the solutionpVI(γ) of (56) must be such
that there exists some vectorχ⋆ ∈ R

K
+ satisfying

Fk(p
VI(γ)) + γk + χ⋆

k = 0 (104)

0 ≤ χ⋆
k ⊥ hk(p

VI

k (γ)) ≤ 0. (105)

Let γ⋆ be the solution of the following nonlinear complemen-
tarity problemNCP(Φ), with Φ defined as in (57):

find γ � 0 (106)

subject to Φ(γ) � 0

0 ≤ γ⊥ Φ(γ) ≥ 0.

We can easily see that the triplet(pVI(γ⋆),γ⋆,χ⋆) satisfies the
KKT conditions ofQVI(S,F) (see also [27] for more details
on finite-dimensional VIs and complementarity problems).

APPENDIX G

According to Proposition 10, the main condition for the
convergence of the proposed algorithm is the co-coercivityof
the operatorΦ, i.e., there exists a constantκ such that

(γ1−γ2)
T (Φ(γ1)−Φ(γ2)) ≥ κ ‖Φ(γ1)−Φ(γ2)‖

2 (107)
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where, from (38) and (57), we can observe that

(γ1 − γ2)
T (Φ(γ1)−Φ(γ2)) =

= (γ1 − γ2)
T (Ω(pVI(γ1))−Ω(pVI(γ2)))

−
K∑

k=1

(γ1,k − γ2,k)(1
TpVI(γ1)− 1TpVI(γ2)). (108)

Let us assume that the uniqueness conditions presented in
Theorem 3 are fulfilled and consider the right side of (107).
Exploiting the Cauchy-Schwarz inequality, we may write

‖Φ(γ1)−Φ(γ2)‖
2 ≤

‖Ω(p(γ1))−Ω(p(γ2))‖
2 +

∥∥pVI(γ1)− pVI(γ2)
∥∥2 (109)

where, from (42), one gets

‖Φ(γ1)−Φ(γ2)‖
2 ≤

δ2
∥∥pVI(γ1)− pVI(γ2)

∥∥2 +
∥∥pVI(γ1)− pVI(γ2)

∥∥2 =
(
1 + Γ−2

) ∥∥pVI(γ1)− pVI(γ2)
∥∥2 (110)

with Γ = L/β. To proceed further, we take advantage of the
results in [14, Proposition 8] wherein it is proved that

−
K∑

k=1

(γ1,k − γ2,k)(1
TpVI(γ1)− 1TpVI(γ2)) ≥

β
∥∥pVI(γ1)− pVI(γ2)

∥∥2 ≥
β

1 + Γ−2
‖Φ(γ1)−Φ(γ2)‖

2
.

(111)

At this point, we are only left with the scalar product:

(γ1 − γ2)
T
[
Ω(pVI(γ1))−Ω(pVI(γ2))

]
=

K∑

k=1

(γ1,k − γ2,k)

(
1

t⋆k(p
VI

−k(γ1))
−

1

t⋆k(p
VI

−k(γ2))

)
. (112)

From (18), on gets

[Ω(pVI(γ))]k =
1

t⋆k(p
VI

−k(γ))
−Ψk = 1Twfk(p

VI
−k(γ), ν

⋆
k)

represents the radiated power we would have at the transmitter
k when the EE is maximized givenpVI

−k(γ). Intuitively speak-
ing, when the penalty coefficients inγ increase, the interfering
powers inpVI

−k(γ) decrease and the userk experiences larger
SINRs. According to the waterfilling principle, a larger SINR
implies a larger radiated power, or, in other words,

(γ1 − γ2)
T (Ω(pVI(γ1))−Ω(pVI(γ2))) ≥ 0. (113)

Then, collecting (108) and (110)-(111), one gets

(γ1−γ2)
T (Φ(γ1)−Φ(γ2)) ≥

β

1 + Γ−2
‖Φ(γ1)−Φ(γ2)‖

2
.

(114)
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tiques et jeux diffrentiels linéaires aN personnes,”SIAM Journal on
Control, Mar.-Apr. 1974.

[21] F. Facchinei, C. Kanzow, and S. Sagratella, “Solving quasi-variational
inequalities via their KKT conditions,”Mathematical Programming, pp.
1 – 44, 2013.

[22] J.-S. Pang and M. Fukushima, “Quasi-variational inequalities, general-
ized Nash equilibria, and multi-leader-follower games,”Computational
Management Science, vol. 2, no. 1, pp. 21 – 56, 2005.

[23] R. Jagannathan, “Duality for nonlinear fractional programs,”Mathemat-
ical methods for Operations Research, vol. 17, no. 1, pp. 1 – 3, 1973.

[24] W. Dinkelbach, “On nonlinear fractional programming,” Management
Science, vol. 13, no. 7, pp. 492 – 498, 1967.

[25] K. J. Devlin, Fundamentals of Contemporary Set Theory. New York:
Springer-Verlag, 1979.

[26] Y. Nesterov and L. Scrimali, “Solving strongly monotone variational
and quasi-variational inequalities,”Discrete and Continuous Dynamical
Systems, vol. 31, no. 4, pp. 1383–1396, 2011.

[27] J.-S. Pang and F. Facchinei,Finite-dimensional variational inequalities
and complementarity problems : vol. 1, ser. Springer series in operations
research. New York: Springer, 2003.

[28] P. Harker, “Generalized Nash games and quasi-variational inequalities,”
European Journal of Operational Research, vol. 54, pp. 81 – 94, 1991.

[29] S. Boyd and L. Vandenberghe,Convex Optimization. Cambridge
University Press, 2004.

[30] M. A. Noor and W. Oettli, “On general nonlinear complementarity
problems and quasi-equilibria,”Le Matematiche, vol. 49, no. 2, 1995.


	I Introduction 
	I-A Related works
	I-B Contributions
	I-C Organization

	II Nash equilibrium problems
	II-A Rate maximization 
	II-B Energy-efficient maximization
	II-C Heterogeneous maximization 

	III QVI Formulation of GE
	III-A Energy-efficiency maximization as a projector
	III-B QVI Formulation of G

	IV Analysis of the Nash equilibria 
	V Iterative algorithms to solve G
	V-A A sequential penalty approach
	V-B An NCP-based approach 

	VI Numerical Results
	VII Conclusions and perspectives
	Appendix A: Problem (??) as a fractional program
	Appendix B: Proof of Theorem ??
	Appendix C: Proof of Proposition ??
	Appendix D: Proof of Theorem ??
	Appendix E: Proof of Proposition ??
	Appendix F: Proof of Proposition ??
	Appendix G
	References

