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Abstract—This work proposes a distributed power allocation
scheme for maximizing the energy efficiency in the uplink of non-
cooperative small-cell networks based on orthogonal frequency-
division multiple-access technology. This is achieved by modeling
users as rational agents that engage in a non-cooperative game in
which every user selects the power loading so as to maximize his
own utility (the user’s throughput per Watt of transmit power)
while satisfying minimum rate constraints. In this framework,
we prove the existence of a Debreu equilibrium (also known as
generalized Nash equilibrium) and we characterize the structure
of the corresponding power allocation profile using techniques
drawn from fractional programming. To attain this equilibrium
in a distributed fashion, we also propose a method based
on an iterative water-filling best response process. Numerical
simulations are then used to assess the method’s convergence
and the performance of its end-state as a function of the system
parameters.

I. INTRODUCTION

Small-cell networks are nowadays considered as one of
the most promising solutions to address the seemingly contra-
dictory future requirements of the Information and Communi-
cation Technology industry: more cellular network capacity
and less energy consumption [1]. In a nutshell, the small-
cell network concept amounts to a very dense deployment
of operator-installed low-cost and low-power base stations
equipped with advanced self-organization capabilities. This
paradigm shift from carefully planned cellular networks to ir-
regularly deployed self-optimizing base stations with different
coverage makes the cellular architecture increasingly complex
and heterogeneous, and poses many challenging issues to
efficient network operation.

One of the key technical challenges in the deployment
of small-cell networks is the involved network interference.
A promising solution to this problem is commonly referred
to as distributed cooperation [1], and aims at finding algo-
rithmic solutions that approach the ideal cooperative gains
while exploiting mostly local information and requiring limited
interactions.

The research leading to these results has received funding from the People
Programme (Marie Curie Actions) of the European Union’s FP7 under REA
Grant agreements no. PIOF-GA-2011-302520 GRAND-CRU and PIEF-GA-
2012-330731 Dense4Green, from the European Commission in the framework
of the FP7 Network of Excellence in Wireless COMmunications NEWCOM#
(Grant agreement no. 318306), and from the French National Research Agency
(ANR) research grant NETLEARN (contract no. ANR-13-INFR-004).

Motivated by all this, in this paper, we analyze the up-
link component of an orthogonal frequency-division multiple-
access (OFDMA)-based small cell network. In particular, we
propose a game-theoretic framework to examine the optimal
power allocation over the available sub-carriers at each trans-
mitter, designed to maximize each link’s individual energy-
aware utility. Specifically, the utility of each transmitter is
defined as the achieved throughput per unit of power, ac-
counting for both the power required for data transmission
and that required by the circuit components of the wireless
device (such as amplifiers, mixer, oscillator, and filters) [2]–
[4]. In addition to the above, if the users also have a minimum
rate requirement that must be achieved, the resulting game
departs from the classical framework put forth by Nash [5], and
becomes a Debreu-type game in which the actions available
to each user depend on the power profile of other users
[6]. In this setting, the relevant solution concept is that of
a Debreu equilibrium (which is also commonly known as a
generalized Nash equilibrium); the existence of this state is
then proved by suitably extending the results of [6] to a setting
with non-compact action sets, and its structure is characterized
using techniques from fractional programming [7]. As we shall
see, Debreu equilibria correspond to the fixed points of a
water-filling best response operator where the water level is
a function of the minimum rate constraints and each user’s
power envelope [4]. The theoretical analysis is then adopted
to derive an iterative and distributed power allocation algorithm
whose convergence and performance are assessed by means of
numerical results.

The most relevant works in the above context are [8]
and [9]. In [8], the authors examine a similar distributed
energy-aware resource allocation problem but the users are not
assumed to have any hard minimum rate requirements, so the
resulting non-cooperative game is a classical Nash game with
continuous action sets. The added quality-of-service (QoS)
requirement complicates the analysis of the game considerably:
to prove the equilibrium existence, one must go beyond stan-
dard Nash equilibrium results, since a user’s admissible power
allocation profile depends on the power profile of all other
users; also, the question of the uniqueness of an equilibrium,
in our case, seems to be a very difficult issue, which is left as a
future work. Much closer in spirit is the very recent companion
paper [9], whose system model is essentially equivalent to the
one that we study in this paper (including the minimum QoS
constraint at the user level). That said, by taking an approach



based on fractional programming, we are able to chart out here
the convergence properties of the proposed water-filling best
response algorithm, and we are also able to provide a rigorous
proof of the existence of a Debreu equilibrium by extending
the results of [6] to a non-compact setting (by contrast, in [9]
this result is announced but not proven).

Paper outline: In Sect. II, we introduce the small-cell
network model, which is then formulated as a Nash/Debreu
energy-aware power allocation game in Sect. III (where we
prove the existence of a Debreu equilibrium and characterize
its structure). In Sect. IV, we propose a distributed algorithm,
which allows the users to converge to the game’s equilibrium
in a distributed fashion. The convergence of the proposed
distributed algorithm and the energy-efficiency of the algo-
rithm’s end state are then evaluated via numerical simulations
in Sect. V.

Notational conventions: Matrices and vectors are denoted
by bold letters, IL, 0L, and 1L are the L × L identity
matrix, the L × 1 all-zero column vector, and the L × 1 all-
one column vector, respectively, and ‖ · ‖2, (·)T and (·)H
denote Euclidean norm of the enclosed vector, transposition
and Hermitian transposition respectively. The notation (x)+

stands for max(0, x) whereas W (·) denotes the Lambert W
function [10], defined to be the multivalued inverse of the
function z = W (z) eW(z) for any z ∈ C. Finally, if Ak,
k = 1, . . . ,K is a finite family of sets, and ak ∈ Ak, we
will use the notation (ak; a−k) ∈

∏

k Ak as shorthand for the
profile (a1, . . . , ak, . . . , aK).

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the uplink of a network composed by S
small cells operating in an OFDMA-based open-access li-
censed spectrum. The sth small cell uses a set of orthogonal
subcarriers to serve the Ks user equipments (UEs) falling
within its coverage radius ρs. For simplicity, we assume that
the same set of subcarriers N = {1, . . . , N} is used by all
small cells. The latter is assigned by the macrocell network
and does not represent a parameter of our problem. To exploit
the frequency diversity, we assume that the subcarrier spacing
is larger than the coherence bandwidth Bc experienced by each
user. Each small-cell access point (SAP) is equipped with M
receiving antennas while a single antenna is employed at the
UEs to keep the complexity of the front-end limited.

Let hkj,n ∈ CM×1 denote the uplink channel vector whose
entries [hkj,n]m represent the (frequency) channel gains over
subcarrier n from the jth UE to the mth receive antenna of user
kth serving SAP, i.e., the sth SAP whose distance from user
k is smaller than ρs with k, j ∈ K = {1, . . . ,K} and K =
∑S

s=1 Ks. The vector xk,n ∈ CM×1 collecting the samples
received at the UE k’s serving SAP over the nth subcarrier
can be written as

xk,n =
K
∑

j=1

hkj,n
√
pj,nzj,n +wk,n (1)

where wk,n ∈ CM×1 is a Gaussian vector with zero mean
and covariance matrix σ2IM accounting for background noise,
whereas pj,n and zj,n denote UE j’s transmit power and data
symbol over subcarrier n, respectively. To keep the complexity

of the SAP at a tolerable level, a simple linear detection scheme
is employed for data detection. This means that the entries of
xk,n are linearly combined to form yk,n = gH

k,nxk,n, where
gk,n is the vector employed for recovering the data transmitted
by user k over subcarrier n. The signal-to-interference-plus-
noise ratio (SINR) achieved by user k at its serving SAP over
subcarrier n takes the form

γk,n = µk,n(p−k,n)pk,n (2)

with

µk,n(p−k,n) =
‖gH

k,nhkk,n‖2
‖gk,n‖2σ2 +

∑

j 6=k ‖gH
k,nhkj,n‖2pj,n

(3)

where we have explicitly reported the dependence on p−k,n =
[p1,n, . . . , pk−1,n, pk+1,n, . . . , pK,n]

T , which is the vector col-
lecting all powers transmitted over subcarrier n except user
k’s one. Using (2), the achievable rate (normalized to the
subcarrier bandwidth, and thus measured in b/s/Hz) of the kth
user is given by

rk (p) =

N
∑

n=1

log2 (1 + γk,n/Γ) (4)

where Γ is the SINR gap with respect to the Shannon capacity
[11], and p = [pT

1 , . . . ,p
T
K ]T ∈ R

K×N
+ collects the transmit

powers by all users over all subcarriers, where the (row)
vector pk = [pk,1, . . . , pk,N ]T denotes user k’s powers over
all subcarriers, with pk,n ≥ 0 (if pk,n = 0, user k is not
transmitting over subcarrier n). Note that user k’s multiple
access interference (MAI), measured by the summation at the
denominator of (3), comes from both intra-cell interference
(generated by other UEs being served by the same SAP) and
inter-cell interference (from UEs served by all other S − 1
SAPs), whereas macro-cell users are assumed to be orthogonal
thanks to a proper frequency resource planning operated by the
macro-cell network (if needed, macro-cell interference can be
included into σ2). To simplify notations, the dependence of
µk,n and rk is not made explicit from now on.

As mentioned in Sect. I, an energy-efficient design of the
network, which is of primary importance when dealing with
mobile, battery-power UEs, must properly take into account
the energy consumption incurred by each UE. To this aim,
it is worth noting that, beside the radiative powers pk at the
output of the radio-frequency front-end, each terminal k also
incurs circuit power consumption during transmission, mostly
due to the power dissipated in the power amplifier [2], [4]. The
overall power consumption PT,k of the kth UE is thus given
by

PT,k = pc + Pk = pc +
N
∑

n=1

pk,n (5)

where
∑N

n=1 pk,n = pT
k 1N is the radiative power consumed

by user k over the whole spectrum, and pc represents the
average current power consumed by the device electronics,
which is assumed to be independent of the transmission state
and equal for all UEs. Following [4], [12], the energy efficiency
of the link can be measured (in b/J/Hz) by the utility function

uk(p) =
rk
PT,k

=

∑N
n=1 log2 (1 + µk,npk,n/Γ)

pc +
∑N

n=1 pk,n
(6)



where the dependence of all others’ transmit powers over all
subcarriers is collected by the gains {µk,n}Nn=1. Observe that,
in data-oriented wireless networks, users are usually required
to satisfy QoS requirements in terms of minimum achieved
rates θk ≥ 0, i.e., rk ≥ θk.

To summarize, the design of an energy-efficient resource
allocation scheme, that encompasses both subcarrier allocation
and power control (by setting, for each UE k, pk,n = 0 on
unused subcarriers, and pk,n > 0 on used subcarriers), requires
to solve, for each UE k, the following optimization problem:

p⋆
k = arg max

pk∈R
N
+

∑N

n=1 log2 (1 + µk,npk,n/Γ)

pc +
∑N

n=1 pk,n
(7)

subject to pk,n ≥ 0 ∀n = 1, . . . , N (8)
∑N

n=1 log2 (1 + µk,npk,n/Γ) ≥ θk (9)

where the constraint (8) ensures each transmit power to be
positive, whereas (9) forces each user to fulfill a requirement
on the minimum normalized rate θk. Note that, unlike other
formulations in the field of OFDMA resource allocation (see
for example [13], [14]), here the subcarrier selection and power
loading problems are tackled in a joint manner. Furthermore,
the interplay among the UEs in K makes (7) a multidimen-
sional optimization problem in which each UE k ∈ K aims at
unilaterally choosing its own transmit power allocations pk so
as to optimize its own link energy efficiency uk(p). In doing
this, each UE affect the choice of all other UEs as well.

III. GAME-THEORETIC RESOURCE ALLOCATION

A natural framework for studying the strategic inter-user
interactions that arise from the system model of the previous
section is offered by the theory of non-cooperative games
with continuous (and action-dependent) action sets. Following
Debreu [6] (see also [15]), we will thus consider a non-
cooperative game G ≡ G(K,P , u) defined as follows:

a) The players of G will comprise the set K of UEs.
b) The total action set of player k representing all transmit

power profiles (including possibly unfeasible ones) will be:

P
nc
k = {pk ∈ R

N : pk,n ≥ 0 for all n = 1, . . . , N}. (10)

Otherwise, in the presence of the rate constraints (9), the
feasible action set of player k given a power allocation
profile p−k ∈ P

nc
−k ≡∏ℓ 6=k P

nc
ℓ of other users will be:

Pk(p−k) = {pk ∈ P
nc
k : rk(p) ≥ θk} . (11)

c) The utility function of player k will be given by (6).

A first question that arises is whether this game is feasible
in the sense that there exists a power allocation profile p =
(p1, . . . ,pK) ∈ ∏k P

nc
k such that

pk ∈ Pk(p−k) for all k ∈ K. (12)

The feasibility of the game depends non-trivially on the
users’ channels and rate constraints [9], and it is easy to
construct examples where there are no feasible profiles with
finite power.1 Albeit important in its own right, this feasibility

1From a mathematical viewpoint, a compactification argument can be used
to show that the game always admits a feasible point if infinite powers and
finite rates are allowed, but, of course, this has little practical relevance.

question will not be addressed here; instead, assuming that the
problem is feasible, we will focus on power allocation profiles
that are unilaterally stable for all users – and thus provide a
sense of system-wide stability as well.

In this framework, the most widely used solution concept
is a generalization of the notion of Nash equilibrium, known
as Debreu equilibrium [6] (and sometimes also referred to as
a generalized Nash equilibrium [15]). Formally:

Definition 1: A transmit power profile p⋆ is a Debreu
equilibrium of G(K,P , u) if, for all players k ∈ K, we have
p⋆
k ∈ Pk(p

⋆
−k) and

uk(p
⋆) ≥ uk(pk;p

⋆
−k) (13)

for all pk ∈ Pk(p
⋆
−k). �

Debreu equilibria are of particular interest in the context of
distributed systems because they offer a stable solution of the
game in which every player (in this case, the small-cell UE) is
satisfied with its action choices and does not wish to deviate
from (and thus destabilize the system) if other players stick to
their chosen actions. Accordingly, in the rest of this section,
we will treat the problem of equilibrium existence in the power
allocation game G, leaving the question of convergence to such
state to Sect. IV.

Debreu’s original paper [6] provides a general existence
result for games of this kind under the assumptions that:

1) the players’ constrained action sets Pk(p−k) are com-
pact, convex and nonempty for all p−k ∈ P−k;

2) Pk(p−k) varies continuously with p−k (in the sense
that the graph of the set-valued correspondence p−k 7→
Pk(p−k) is closed); and

3) each player’s utility function is quasi-concave over the
player’s individual actions.

In our setting, the Shannon rate function rk(pk;p−k) (4)
is concave in pk and unbounded from above, so Pk(p−k)
is convex and nonempty for all p−k ∈ P

nc
−k; moreover,

Pk(p−k) varies continuously with p−k since constraints (9)
are themselves continuous in p−k. Finally, it can be easily
shown that uk(pk;p−k) is quasi-concave in pk since, for any
ξ ∈ R, uk(pk;p−k) ≥ ξ if and only if

rk(pk;p−k)− ξ
(

pc +
∑N

n=1 pk,n

)

≥ 0, (14)

and since the set defined by this inequality is convex for every
p−k ∈ P−k (recall that rk(pk;p−k) is concave in pk), our
claim follows.

Unfortunately however, the sets Pk(p−k) are not com-
pact, so Debreu’s equilibrium existence result does not apply.
Nonetheless, an extension of the reasoning of [6] leads to the
following result (see Appendix A for the proof).

Proposition 1: If the game G ≡ G(K,P , u) is feasible,
then it admits a Debreu equilibrium.



Having established the existence of a Debreu equilibrium,
we now turn to investigate its structure. Denoting by

αk =
1

N

(

pc −
N
∑

n=1

Γ/µk,n

)

(15)

βk =
1

N

N
∑

n=1

ln (µk,n/Γ) (16)

the following result is proved in Appendix B using the frac-
tional programming paradigm.

Proposition 2: At the Debreu equilibrium of G, the ele-
ments p⋆k,n of the optimal transmit power profile p⋆ are the
solutions to the following fixed-point system of equations:

p⋆k,n =

(

1

λ⋆
k

− Γ

µk,n

)+

(17)

where

λ⋆
k = min

(

λk, λk

)

(18)

with

λk = e(βk−1)−W(αk·e
βk−1) (19)

being the water level of the water-filling operator (17) when the
problem (7) is solved without the minimum-rate constraints (9)
(or equivalently, θk = 0 ∀k), where W (·) denotes the Lambert
W function [10], and2

λk =
1

Γ
N

√

1

2θk

∏N
n=1 µk,n (20)

is the water level of (17) when all minimum-rate constraints
(9) are simultaneously met with equality (i.e., (7) reduces to a
power minimization given rate constraints rk = θk).

IV. DISTRIBUTED IMPLEMENTATION

To derive a practical criterion to let each small-cell UE
k ∈ K reach the Debreu equilibrium of G in a distributed
fashion, we start by assuming that the UEs with indices j 6= k
have already chosen their optimal transmit powers (i.e., in an
asynchronous resource allocation scenario). This amounts to
assuming p−k = p⋆

−k. Hence, from (3), we have that the
gains µk,n(p

⋆
−k,n) needed to implement (17) can be obtained

by

µk,n(p
⋆
−k,n) =

γk,n
pk,n

(21)

for all n ∈ N . This means that the only information that is
not locally available at the kth UE to compute the optimal
powers {p⋆k,n} is the set of SINRs {γk,n} measured at UE k’s
serving SAP, that can be fed back with a modest feedback rate
requirement on the return channel (a discussion on the impact
of a limited feedback can be adapted to this specific scenario
from [16]).

Based on the above considerations, we can derive an
iterative and fully decentralized algorithm to be adopted by
each UE k at each time step t to solve the fixed-point

2The closed-form expressions (19) and (20) apply only when all subcarriers
n are active, i.e., pk,n > 0. Please refer to Sect. IV for a practical method to

compute λk and λk in the general case pk,n ≥ 0.

Algorithm 1 Iterative algorithm to solve problem (7).

set t = 0.
initialize pk[t] = 0N for all users k ∈ K
repeat

for k = 1 to K do
{loop over the users}
receive {γk,n[t]}Nn=1 from the serving SAP
compute λk using Algorithm 2
compute λk using inverse water-filling
set λ⋆

k = min
(

λk, λk

)

for n = 1 to N do
{loop over the carriers}
update pk,n[t+ 1] = max

(

0, 1
λ⋆
k

− Γ·pk,n[t]
γk,n[t]

)

end for
end for
update t = t+ 1

until pk[t] = pk[t− 1] for all k ∈ K

Algorithm 2 Iterative algorithm to compute λk as in (19).

set a tolerance ε ≪ 1
{initialization of the Dinkelbach method}
repeat

select a random λk ∈ R

for n = 1 to N do
set pk,n = (1/λk − Γ/µk,n)

+

end for
compute ϕ(pk) using (25)
compute χ(pk) using (26)
set Φ(λk) = ϕ(pk)− λk · χ(pk)

until Φ(λk) ≥ 0
{Dinkelbach method}
while Φ(λk) ≥ ε do

set λk = ϕ(pk)/χ(pk)
for n = 1 to N do

set pk,n = (1/λk − Γ/µk,n)
+

end for
update ϕ(pk) using (25)
update χ(pk) using (26)
set Φ(λk) = ϕ(pk)− λk · χ(pk)

end while

system of equations (17) with a low-complexity, scalable and
adaptive procedure. The pseudo-code for the whole network
is summarized in Algorithm 1. Note that, in practice, each
UE k needs only to implement the steps enclosed in the inner
cycle, and this algorithm is thus suitable for a dynamic network
configuration, since each UE only requires the SINRs fed back
by the serving SAP, without any further information on the
network and/or small-cell status.

For the sake of clarity, the algorithm to compute λk as
in (19) is reported in Algorithm 2, whereas λk can easily
be computed using standard water-filling algorithms (e.g.,
see [7]). Note that, although (19) is derived analytically in
a closed form, it is attractive to use the iterative method
outlined in Algorithm 2, that takes advantage of the Dinkelbach
method [17], a numerical method based on the application of
Newton’s method that significantly reduces the computational
complexity compared to the evaluation of the Lambert W
function. For the sake of brevity, Algorithm 2 makes use
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Fig. 1. Average normalized rate at the equilibrium as a function of the
normalized distance from the SAP.

of some functions introduced in Appendix B. Throughout
the simulations reported in Sect. V, the tolerance is set to
ε = 10−5.

The convergence of Algorithm 1 to the equilibrium point is
assessed numerically in the next section by means of extensive
simulations. A formal proof of the convergence is beyond the
scope of this work, and it is currently under investigation. A
possible solution in this direction comes from the observation
that the power allocation pk,n[t + 1] in Algorithm 1 is up-
dated according to a water-filling strategy, in which the water
level λ⋆

k is computed as λ⋆
k = min

(

λk, λk

)

. Studying the
contraction properties of this water-filling operator is likely to
represent the right way to prove the convergence towards the
equilibrium (e.g., see [18] for more details).

V. SIMULATION RESULTS

In this section, we propose some numerical results to eval-
uate the performance of the proposed algorithm for different
working conditions. Throughout the simulations, we adopt
the following parameters (see [2] and references therein). We
consider a 200m × 200m area populated by S = 8 randomly
distributed small cells, each having a radius ρs = ρ = 20m
and a forbidden area with radius 0.2m. The set of available
subcarriers is composed by N = 32 subcarriers, each having a
bandwidth B ≅ 11 kHz and spaced by 350 kHz, whereas each
UEs coherence bandwidth is assumed to be Bc ≅ 90 kHz,
using a 24-tap channel model to reproduce multipath effects.
To include the effects of fading and shadowing into our model,
we use a path-loss exponent equal to ς = 4. For simplicity,
we assume perfect channel estimation at the receiver side, and
we consider the maximum ratio combining (MRC) technique,
which amounts to setting gk,n = hkk,n for all k ∈ K and
n ∈ N . We also assume an SINR gap equal to Γ = 1 = 0 dB
and an AWGN per-subcarrier power equal to σ2 = 0.137 fW.
Without loss of generality, we will measure the performance
for a specific user (say user 1) within a small cell, by averaging
over all possible positions of the users, uniformly randomizing
their minimum-rate constraints θk in [0, 20] [b/s/Hz] for k 6= 1.
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Fig. 2. Average transmit power at the equilibrium as a function of the
normalized distance from the SAP.

Unless otherwise specified, we assume each SAP s to be
equipped with M = 2 received antennas, the number of users
per small cell to be Ks = 8, the nonradiative power to be
pc = 100mW, and the rate constraint for the user of interest
to be θ1 = 10 b/s/Hz.

Figs. 1 and 2 depict the average total transmit powers and
the achievable (normalized) rates at the equilibrium as func-
tions of the (normalized) distance between the observed user
and its SAP, respectively, averaged over 10, 000 independent
network realizations. Red lines represent the case without rate
constraints θ1 = 0 b/s/Hz, whereas blue and green lines report
the cases θ1 = 10 b/s/Hz and θ1 = 20 b/s/Hz, respectively.
As can be seen, when the UE is close to the serving SAP
d1/ρ ≤ 0.3, the equilibrium point in the three cases is exactly
the same, as the energy-efficient formulation lets the user
achieve an equilibrium rate which is significantly larger than
the minimum one. When on the contrary the reference user
is close to the cell edge (say d1/ρ ≥ 0.8), the MAI becomes
significant, and thus the equilibrium rate given by the energy
efficient formulation approaches the minimum one. This is
particularly apparent in Fig. 1, and is reflected in the average
total power consumption reported in Fig. 2. This behavior,
although dependent from the particular network settings, is true
in general. Note that the critical normalized distance, at which
r1(p

⋆) ≅ θ1, decreases as either the constraint θ1 increases,
or the degrees of freedom N ·M , that is directly connected to
the number of available resources in the network, decreases
with respect to the number of users K =

∑

s Ns = 64.3

Interestingly, as confirmed by numerical results not reported
here for the sake of brevity, which are also in line with the
simulations reported in [9], the energy efficiency (in terms of
the utility (6) achieved at the equilibrium) is weakly dependent
on the constraint θ1: although it decreases as θ1 increases,
the variation is negligible, thus introducing fairness into the
network.

3A rule of thumb to properly drive the network is to have N · M ≥ K .
In this case, we have on purpose reported a borderline scenario, in which
N = 32, M = 2, and K = 64 = N ·M .
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Fig. 3. Average transmit power at the equilibrium as a function of the circuit
power.
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Fig. 4. Average utility at the equilibrium as a function of the circuit power.

To evaluate the impact of the circuit power pc on the
energy efficiency of the system, in Figs. 3 and 4 we report
the performance of the proposed algorithm as a function of pc,
averaged over 100, 000 independent network realizations. Note
that, for all selected nonradiative powers pc ∈ [1, 100]mW, the
hypothesis pc ≫ σ2 holds, which is in line with the state of
the art for radio-frequency and baseband transceiver modeling
[2]. As can be seen in Fig. 3, the total power consumption
at the equilibrium P1(p

⋆) is directly proportional to pc. Oth-
erwise stated, the energy-efficient equilibrium point is highly
impacted by the nonradiative power, and bit-per-Joule metric
tells us to use a radiative power which is comparable with
the nonradiative one. Interestingly, the (normalized) achiev-
able rates at the equilibrium point are r1(p

⋆) ≅ 20 b/s/Hz
irrespectively of pc. This justifies the behavior of the achieved
utilities at the equilibrium, reported in Fig. 4, and confirms a
result which is well-known in the literature (e.g., see [4], [19]):
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Fig. 5. Average normalized rate at the equilibrium as a function of the
number of users per small cell.
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Fig. 6. Average utility at the equilibrium as a function of the number of
users per small cell.

the energy efficiency increases as the circuit (nonradiative)
power decreases. Hence, reducing pc can achieve a two-fold
goal, thus further boosting the research in this field: not only
is it expedient to reduce the constant power consumption
(from an electronics point of view), but also it leads energy-
aware terminals to reduce their radiative power when they
aim at maximizing their bit-per-Joule performance (from an
information-theoretic and resource-allocation perspective).

Finally, Figs. 5 and 6 report the performance of the pro-
posed resource allocation scheme as a function of the number
of users per cell Ks for three different receive architectures:
M = 1 (red lines), M = 2 (blue lines), and M = 3 (green
lines) antennas, respectively. As can easily be guessed, the
degrees of freedom N ·M impact on the occurrence of feasible
scenarios: as confirmed by simulations, when the total number



of users K = 8Ns is larger than N ·M = 32M , the resources
available in the network are scarce to accommodate all the rate
requests θk. To provide significant performance results, we plot
only network configurations that yield feasible scenarios with
an occurrence larger than 70% of the times. This is the reason
why only Ks ≤ 5 is reported for the case M = 1, whereas
M = {2, 3} are able to accommodate a larger population of
users without impacting on the required minimum performance
θk. As can be seen in Fig. 5, increasing the number of users
Ks increases the contribution from both intra-cell and inter-cell
MAI, which in turn decreases the average normalized achiev-
able rate at the equilibrium. However, note that increasing
M yields a larger r1(p

⋆), since the SAP can better separate
the users due to a larger space diversity given by the single-
input-multiple-output (SIMO) configuration (and thus a larger
number of degrees of freedom).

This behavior is confirmed by Fig. 6, that measured the
utility (6) as a function of the same parameters. As expected,
in all network configurations increasing Ks decreases u1(p

⋆),
due to increasing the MAI. However, note that the difference is
not significant for all receiver configurations. This means that,
if the only concern is the energy efficiency of the system, then
increasing the number of antennas does not yield significant
advantages. On the contrary, if also the spectral efficiency is
critical (i.e., if larger θk’s are needed), then increasing M is
a viable solution to achieve a proper resource allocation, as
witnessed by larger achievable rates at the equilibrium (see
Fig. 5). It is worth noting that these considerations hold true
due to adopting a MRC technique, which is suboptimal for a
proper MAI management. Other schemes, such as zero-forcing
(ZF) or minimum mean-square error (MMSE) approaches,
which are out-of-scope of the present contribution, might
lead to exploiting better the spatial diversity of the MISO
configurations, and thus larger differences in the achieved
energy efficiency.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we proposed a distributed power allocation
scheme for energy-aware, non-cooperative wireless users with
minimum rate constraints in an uplink multicarrier small-
cell network. By modeling this scenario as a non-cooperative
game in the sense of Debreu, we proved the existence of an
equilibrium state and we characterized it as the fixed point
of a water-filling operator using techniques borrowed from
fractional programming. To attain this equilibrium in a dis-
tributed fashion, we also proposed an iterative solution method
based on an iterative water-filling best response process, whose
convergence and performance was assessed by numerical
simulations. Performance results show that reducing the non-
radiative power consumed by the user device electronics is
particularly critical to improve the performance of mobile
terminals in terms of energy efficiency, which is also highly
impacted by the receiver configuration.

Further work is needed: i) to assess the feasibility of
the problem given a particular network realization; ii) to
analytically prove the convergence of the iterative algorithm
to the equilibrium point; iii) to assess its complexity as a
function of the system parameters; and iv) to evaluate the
impact of different receiver architectures on the spectral and
energy efficiency of the network.

APPENDIX A
PROOF OF PROPOSITION 1

Fix some power vector pk ∈ P
nc
−k, and let P

⋆
k(p−k) ≡

arg max{uk(pk;p−k) : pk ∈ Pk(p−k)} be the best response
set of player k to the power profile p−k of the other players.
By the quasi-concavity of uk and Lemma 1 below, it follows
that P⋆

k is compact; as a result, letting Mk(p−k) denote the
maximum value of uk over Pk(p−k), it follows that the set

P
′
k(p−k) ≡ {pk ∈ P

nc
k : uk(pk;p−k) ≥ (1− ε)Mk(p−k)}

(22)
will also be compact if ε is chosen sufficiently small.

Define now the restricted game G′ ≡ G
′(K,P ′, u) with the

same data as G except for the fact that the players’ constrained
action sets are now given by (22). Seeing as the sets P ′

k(p−k)
are compact (by construction) and vary continuously with p−k

(simply note that all the functions involved in the definition of
P

′
k(p−k) are themselves continuous),4 G′ will admit a Debreu

equilibrium by Theorem 1 in [6]. On the other hand, given that
the best response set P⋆

k(p−k) of player k against p−k in G is
contained in P

′
k(p−k) for all p−k ∈ P

nc
−k and for all k ∈ K,

it follows that any equilibrium of the restricted game G
′ will

also be an equilibrium of G, and our proof is complete. �

Lemma 1: Let an > 0, n = 1, . . . , N , be positive con-
stants, and let b > 0. Then, the solution set of the problem

maximize f(p) =

∑N

n=1 log (1 + anpn)

b+
∑n

n=1 pn
subject to pn ≥ 0

(23)

is compact.

Proof: If the maximum set Ωf of f is not compact,
there will exist an unbounded sequence pm ∈ Ωf , so,
by descending to a subsequence of pm if necessary, we
may assume that pn,m → ∞ for some n. However, since
limp→∞ log(1 + ap)/p = 0 for all a > 0, this implies that
the maximum value of f will be 0, a contradiction.

APPENDIX B
PROOF OF PROPOSITION 2

The constrained optimization (7) can be cast into the
paradigm of fractional programs, which are nonlinear programs
where the objective function is a ratio of two real-valued
functions. In particular, (7) can be rewritten as

p⋆
k = arg max

pk∈Pk(p−k)

ϕ(pk)

χ(pk)
(24)

where Pk(p−k) is defined as in (11), and

ϕ(pk) =

N
∑

n=1

ln(1 + µk,npk,n/Γ), (25)

χ(pk) = pc +

N
∑

n=1

pk,n. (26)

4Importantly, given that the arg max operator is not continuous, this
continuity property might fail if we had taken P

′

k(p−k) ≡ P
⋆
k(p−k). By

artificially enlarging the players’ best-response set, continuity is guaranteed.



Using [4, Sect. II.A] we can see that solving problem (24)
is equivalent to finding the root of the following nonlinear
function:

Φ(λk) = max
pk∈Pk(p−k)

ϕ(pk)− λkχ(pk) (27)

where λk ∈ R. To compute the solution of (24), let us first use
(25) – (26), but without the constraint (9), so that pk ∈ RN

+
(i.e., only nonnegative powers are considered). The stationarity
condition given by

∂ϕ(pk)

∂pk,n

∣

∣

∣

∣

pk,n=p⋆
k,n

− λk

∂χ(pk)

∂pk,n

∣

∣

∣

∣

pk,n=p⋆
k,n

= 0 (28)

for all n = 1, . . . , N using (25) – (26) becomes

µk,n/Γ

1 + µk,np⋆k,n/Γ
− λk = 0 n = 1, . . . , N. (29)

Hence, considering p⋆k,n ≥ 0, the optimal power allocation
becomes the waterfilling criterion (17), in which the water level
λ⋆
k is replaced by λk. By plugging (29) back into (27), we can

finally compute the optimal power level λk:

− lnλk + (βk − 1) = αkλk (30)

where the functions αk and βk are defined as in (15) and (16),
respectively. To provide a better insight on (30), let us try to
write it in a closed form. To this aim, let us define

νk = − lnλk + (βk − 1) (31)

so that (30) can be rewritten as

νk · eνk = αk · eβk−1. (32)

Using the Lambert function W (·), and inverting (31), after
straightforward manipulation we get λk as in (19).

When introducing back the constraint (9), we are placing
a lower bound on ϕ(pk): ϕ(pk) ≥ θk. Following [4], this is

equivalent to placing an upper bound λk on λk, that comes
out of the inverse waterfilling criterion that minimizes χ(pk)
given ϕ(pk) = θk, and is equal to (20). Hence, the solution
to (7) is given by (17), with λ⋆

k computed as in (18). �
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