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Abstract—Massive multiple-input multiple-output (MIMO)
techniques have been proposed as a solution to satisfy many
requirements of next generation cellular systems. One downside
of massive MIMO is the increased complexity of computing the
precoding, especially since the relatively “antenna-efficient” regu-
larized zero-forcing (RZF) is preferred to simple maximum ratio
transmission. We develop in this paper a new class of precoders
for single-cell massive MIMO systems. It is based on truncated
polynomial expansion (TPE) and mimics the advantages of RZF,
while offering reduced and scalable computational complexity
that can be implemented in a convenient pipelined fashion. Using
random matrix theory we provide a closed-form expression of the
signal-to-interference-and-noise ratio under TPE precoding and
compare it to previous works on RZF. Furthermore, the sum
rate maximizing polynomial coefficients in TPE precoding are
calculated. By simulation, we find that to maintain a fixed per-
user rate loss as compared to RZF, the polynomial degree does
not need to scale with the system, but it should be increased with
the quality of the channel knowledge and signal-to-noise ratio.

I. INTRODUCTION

Next generation cellular systems need to cope with the
dramatically growing number of user terminals (UTs) and data
traffic. A proposed solution to this challenge is to employ mas-
sive multiple-input multiple-output (MIMO) techniques [1].
Such systems are commonly defined as macro base stations
(BSs) being equipped with many antennas, e.g., hundreds,
while each BS only serves relative few UTs, e.g., tens,
at the same time [2]. These systems improve spectral and
energy efficiency by dense and adaptive spatial reuse, and are
robust to channel uncertainty. However, massive MIMO suffers
from potentially prohibitively high computational complexity
pertaining to the precoding. The first works on massive MIMO
have dismissed this issue, as the computationally simple max-
imum ration transmission (MRT) precoding becomes optimal
for an infinite number of BS antennas [3]. More recent works
have shown that more practically manageable numbers of BS
antennas, call for more involved linear precoding techniques,
such as regularized zero-forcing (RZF) [4]. The computational
complexity of RZF cannot be neglected in massive MIMO sys-
tems, as RZF involves the inversion of very large matrices [5].
In this paper, we propose a new class of truncated polynomial
expansion (TPE) precoders that replaces the matrix inversion
by a matrix polynomial with J terms. TPE precoding features
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reduced, as well as, scalable computational complexity, while
offering performance that is comparable to RZF.

The TPE technique enables the balancing of precoding com-
plexity and system throughput. Using random matrix theory
[6], we derive so-called large-scale approximations for the
achievable user rates for any order J of TPE precoding. These
are closed-form expressions that are tight when the number
of BS antennas and the number of UTs grow large with a
fixed ratio, but also provide close approximations at small
dimensions. These expressions allow for optimization of the
polynomial coefficients with respect to any metric; we derive
the coefficients that maximize the sum throughput. We note
that the combination of TPE and precoding is very new and
the only related work is [7] by Zarei et al.. Unlike this paper,
the precoding in [7] is conceived to minimize the sum-MSE
of all users. Although our approach originates from the same
TPE technique as in [7], our work is more comprehensive in
that we consider a channel model which takes into account
the transmit correlation at the base station and we optimize
the throughput. An extension of this paper for more involved
single-cell systems can be found in [5], which also proves the
results presented in this paper. The treatment of the multi-cell
case under a general channel model is available in [8].

II. SYSTEM MODEL

This section defines the single-cell downlink system with
flat-fading channels, linear precoding, and channel estimation
errors. The BS is equipped with M antennas and serves K
single-antenna UTs. Denoting the set of complex numbers by
C, the received complex baseband signal yk ∈ C at the kth
UT is

yk = hH
kx+nk, k = 1, . . . ,K (1)

where x ∈ CM×1 is the transmit signal and hk ∈ CM×1
represents the random channel vector between the BS and the
kth UT. The additive circularly-symmetric complex Gaussian
noise at the kth UT is denoted by nk ∼ CN (0, σ2) for k =
1, . . . ,K, where σ2 is the receiver noise variance.

Each channel vector hk, for k = 1, . . . ,K is modeled as

hk ∼ CN
(

0M×1,
1

K
Φ

)
(2)

where the channel covariance matrix Φ ∈ CM×M has bounded
spectral norm, as M →∞; thus its trace scales linearly with



M . Here, 0M×1 is a vector with M zeros. We consider a
Rayleigh block-fading model where hk has a fixed realization
for a coherence period and then takes a new independent
realization. The covariance scaling 1

K is only for technical
reasons.

The BS employs Gaussian codebooks and linear precoding,
where gk ∈ CM×1 denotes the precoding vector and sk ∼
CN (0, 1) is the data symbol of the kth UT. Based on this
assumption, the transmit signal in (1) can be expressed as

x =

K∑
n=1

gnsn = Gs. (3)

The matrix notation is obtained by letting G = [g1 . . . gK ] ∈
CM×K be the precoding matrix and s = [s1 . . . sK ]T ∼
CN (0K×1, IK) be the vector containing all UT data symbols.

Consequently, the received signal (1) can be expressed as

yk = hH
kgksk+

K∑
n=1,n6=k

hH
kgnsn+nk. (4)

Let Gk be the matrix G with column gk removed. Then the
signal-to-interference-and-noise ratio (SINR) at the kth UT
becomes

SINRk =
hH
kgkg

H
khk

hH
kGkGH

khk+σ
2
. (5)

By assuming that each UT has perfect CSI, the ergodic
achievable data rates at the UTs are

rk = E[log2(1+SINRk)], k = 1, . . . ,K.

The transmitter is assumed to have imperfect knowledge
of the instantaneous channel realization ĥk of each UT, for
k = 1, . . . ,K. We adopt the Gauss-Markov formulation [9]:

ĥk =
√
1−τ2hk+τnk (6)

where hk is the true channel and nk ∼ CN (0M×1,
1
KΦ)

models the independent error. The scalar parameter τ ∈ [0, 1]
indicates the quality of the instantaneous CSI; τ = 0 gives per-
fect instantaneous CSI and τ = 1 corresponds to having only
statistical knowledge. The matrix Ĥ = [ĥ1 . . . ĥK ] ∈ CM×K
denotes the joint imperfect knowledge of all user channels.

III. LINEAR PRECODING

Many heuristic linear precoding schemes have been pro-
posed in the literature, mainly because finding the optimal
precoding (e.g., in terms of sum rate) is very computationally
demanding and thus unsuitable for fading systems. Among the
heuristic schemes we chose RZF precoding [10], which can
provide close-to-optimal performance in many scenarios.

A. Review on RZF Precoding in Massive MIMO Systems

Suppose we have a total transmit power constraint
1

K
tr (GGH) = P (7)

where tr(·) is the trace function and we note that the scaling
factor 1

K neutralizes the corresponding channel variance scal-
ing in (2), which is possible via (8) and taking normalization

into account. We stress that the total power P is fixed, while
we let the number of antennas M and UTs K grow large.

Similar to [9], we define the RZF precoding matrix as

GRZF = βĤ
(
ĤHĤ+ξIK

)−1
= β

(
ĤĤH+ξIM

)−1
Ĥ (8)

where the power normalization parameter β is set such that
GRZF satisfies the power constraint in (7). The scalar reg-
ularization coefficient ξ can be selected in different ways,
depending on P , σ2, τ , and system dimensions [9], [10].

In [9], the performance of each UT under RZF precoding
is studied in the large-(M,K) regime, where M and K tend
to infinity at the same speed:

0 < lim inf
K

M
≤ lim sup

K

M
< +∞. (9)

The achievable user performance is characterized by SINRk
in (5). Although the SINR is a random quantity that depends
on the instantaneous values of the random users channels in
H and the instantaneous estimate Ĥ, it can be approximated
using deterministic quantities in the large-(M,K) regime; see
[9]. These are quantities that only depend on the statistics of
the channels and are referred to as deterministic equivalents,
since they are almost surely (a.s.) tight in the asymptotic limit.
When the deterministic equivalents are applied at finite M and
K, they are often referred to as large-scale approximations.

The RZF precoding matrix in (8) is a function of the
instantaneous CSI at the transmitter. The computation of
the precoding matrix includes large matrix multiplications
and inversions, which gives a computational complexity of
approximately 2MK2 operations per coherence time [5]. This
complexity scaling is intractable for large values of M and K.

B. Truncated Polynomial Expansion Precoding
Next, we derive a new class of low-complexity linear pre-

coders based on TPE. The following result from [11] provides
a motivation behind the use of polynomial expansions.

Lemma 1. For any positive definite Hermitian matrix X,

X−1 = α
(
I−(I−αX)

)−1
= α

∞∑
`=0

(I−αX)` (10)

where the second equality holds if the parameter α is selected
such that 0 < α < 2

maxn λn(X) .

This lemma shows that the inverse of any Hermitian matrix
can be expressed as a matrix polynomial. More importantly,
the low-order terms are the most influential ones, since the
eigenvalues of (I−αX)` go to zero as ` grows large. Thus, it
makes sense to consider a TPE using only the first J terms.

TPE has been successfully applied for low-complexity
multi-user detection in [11]. Next, we apply this technique to
approximate RZF precoding by a matrix polynomial. Starting
from GRZF in (8), we note that

β
(
ĤĤH+ξIM

)−1
Ĥ

≈
J−1∑
`=0

(
βα

J−1∑
n=`

(
n

`

)
(1−αξ)n−`(−α)`

)
(ĤĤH)`Ĥ. (11)



Inspecting (11), we have a precoding matrix with the structure

GTPE =

J−1∑
`=0

w`

(
ĤĤH

)`
Ĥ (12)

where w0, . . . , wJ−1 are scalar coefficients. Although the
bracketed term in (11) provides a potential expression for
w`, these are not the optimal values for J < ∞. Also, these
coefficients do not satisfy the power constraint in (7).

The precoding in (12) is coined TPE precoding and actually
defines a whole class of precoding matrices for different J .
For J = 1, we obtain G = w0Ĥ, which equals MRT.
Furthermore, RZF precoding can be obtained by choosing
J = min(M,K) = K and coefficients based on the charac-
teristic polynomial of (ĤĤH+ξIM )−1 (this follows from the
Cayley-Hamilton theorem). We refer to J as the TPE order.

Let the transmit signal with TPE precoding at channel use
t be denoted x(t) and observe that it can be expressed as

x(t) = GTPEs(t) =

J−1∑
`=0

w`x̃
(t)
`

where s(t) is the vector of data symbols at channel use t and

x̃
(t)
` =

{
Ĥs(t), ` = 0,

Ĥ(ĤHx̃
(t)
`−1), 1 ≤ ` ≤ J−1.

This is an iterative way of computing the J terms in TPE pre-
coding, which removes precoding precomputation delays and
enables parallelization over multiple processing cores (e.g.,
application-specific integrated circuits) and pipelining [11].
The total computational complexity is approximately 4JMK

per channel use [5], but each term x̃
(t)
` is obtained by a simple

matrix-vector multiplication which is easily implemented in
hardware. This means that the factor J in the complexity
expression is not causing any extra delays since it can be
handled by adding more processing cores that operate in
parallel. Thus, we can select the TPE order J as large as
needed to obtain a certain precoding accuracy and still enable
real-time computation of the transmit signal x.

IV. ANALYSIS AND OPTIMIZATION OF TPE PRECODING

Recall the SINR in (5) and observe that gk = Gek and
hH
kGkG

H
khk = hH

kGGHhk−hH
kgkg

H
khk, where ek is the kth

column of the identity matrix IK . By substituting the TPE
precoding matrix (12) into (5), the SINR writes as

SINRk =
wHAkw

wHBkw−wHAkw+σ2
(13)

where w = [w0 . . . wJ−1]
T and the matrices Ak, Bk ∈ CJ×J

have entries (numbered from 0 for convenience) given by

[Ak]`,m = hH
k

(
ĤĤH

)`
Ĥeke

H
kĤ

H
(
ĤĤH

)m
hk (14)

[Bk]`,m = hH
k

(
ĤĤH

)`+m+1

hk (15)

for ` = 0, . . . , J−1 and m = 0, . . . , J−1.

In the previously defined large-(M,K) regime (see (9)),
it can be seen that all SINRs in (13) converge to the same
asymptotic equivalent. This is formalized in our main theorem:

Theorem 2. In the large-(M,K) regime, SINRk converges
almost surely to

SINRk−
wHAw

wH(B−A)w+σ2

a.s.−−−−−−−→
M,K→+∞

0

with[
A
]
`,m

=
(−1)`+m

`!m!
z`zm and

[
B
]
`,m

=
(−1)`+m+1

(`+m+1)!
x`+m+1.

The formulations for x` and z` are given in Corollary 3 and
for the proof we refer to [5].

Corollary 3. Denote by x0 and z0 the deterministic quantities

x0 ,
1

K
tr(Φ) and z0 ,

√
1−τ2 1

K
tr(Φ).

One can iteratively compute the deterministic sequences xk,`
and zk,` until a fixed order p as

x` = µ`+τ
2
∑̀
m=1

(
`

m

)
mµm−1µ`−m

−
`−1∑
m=0

(
`

m

)
xm(`−m)µ`−m−1, 1 ≤ ` ≤ p

z` =
√
1−τ2µ`−

`−1∑
m=0

(
`

m

)
zm(`−m)µ`−m−1, 1 ≤ ` ≤ p.

where µ` = 1
K tr(ΦT`), T` =

d`T(t)
dt`
|t=0 and T(t) = (IM+

tΦ
1+tδ(t) )

−1, with δ(t) > 0 being the unique solution for every
t > 0 of the fixed point equation:

δ(t) =
1

K
tr (ΦT(t)) .

The matrix T` can be computed iteratively (see [12]).

A. Optimization of the Asymptotic SINRs

Next, we optimize the asymptotic SINRs with respect to the
polynomial coefficients w = [w0 . . . wJ−1]

T under the power
constraints in (7). Since the asymptotic SINRs are all equal,
this corresponds to the optimization problem

maximize
w

wHAw

wH(B−A)w+σ2

subject to wHCw = P

(16)

where A and B are already given in Theorem 2 and[
C
]
`,m

=
(−1)`+m+1

(`+m+1)!

1

K
tr (T`+m+1) .

Theorem 4. Let a be an eigenvector corresponding to the
maximum eigenvalue λmax of(

B−A+
σ2

P
C

)− 1
2

A

(
B−A+

σ2

P
C

)− 1
2

. (17)
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Fig. 1. Average per UT rate vs. transmit power to noise ratio for varying CSI
errors at the BS (J = 3, M = 128, K = 32).
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Fig. 2. Average UT rate vs. transmit power to noise ratio for different orders
J in the TPE precoding (M = 512, K = 128, τ = 0.1).

Then λmax is the optimum of Problem (16) and attained by

wopt =

√
P∥∥∥C 1

2
(
B−A+ σ2

P C
)− 1

2 a
∥∥∥
(
B−A+

σ2

P
C
)− 1

2

a.

This theorem shows that the J polynomial coefficients that
maximize the asymptotic SINR can be computed beforehand,
using only the channel statistics. At finite M and K, there are
other polynomial coefficients that provide higher achievable
rates, however, these depend on the current channel estimate
Ĥ and thus must be recomputed in each coherence period.

V. SIMULATION RESULTS

In this section, we compare the RZF precoding from [10],
utilizing the asymptotically optimal regularization parameter
from [9], with the proposed TPE precoding stated in (12). The
performance measure is the average achievable UT rate r =
1
K

∑K
k=1 E[log2(1+SINRk)]. In the simulations, we model

the channel covariance matrix as [Φ]i,j = a|j−i| for a = 0.1,
which is known as the exponential correlation model.

We first take a look at Fig. 1 where M = 128 and K = 32.
It considers the TPE order J = 3 and three levels of channel
knowledge at the BS: τ ∈ {0.1, 0.4, 0.7}. We see that RZF
and TPE achieve almost the same performance when a bad
channel estimate is available (τ = 0.7). Furthermore, TPE
and RZF perform almost equal at low SNRs, at any τ .

Fig. 2 shows more directly the relationship between the UT
rates and TPE order J . We consider τ = 0.1, M = 512 and
K = 128, in order to be in a regime where TPE performs
relatively bad (see Fig. 1) and the precoding complexity is an
issue. From Fig. 2, we see that choosing a larger value for
J gives a TPE performance closer to that of RZF. However,
doing so also requires more hardware. The proposed TPE
precoding never surpasses the RZF performance, which is
natural since TPE precoding is an approximation of RZF.

VI. CONCLUSION

In this paper, we have proposed a new class of low-
complexity TPE precoders, which approximates RZF precod-
ing to any accuracy using the TPE concept with an order in the
interval 1 ≤ J ≤ K. In terms of complexity, TPE precoding
has several advantages in massive MIMO systems: 1) There
is no need to compute the precoding matrix beforehand; 2)
the multistage structure enables parallelization and pipelining;
and 3) the parameter J can be tailored directly to the available
hardware. Although the polynomial coefficients depend on the
instantaneous channels, we have shown that the SINRs con-
verge to a deterministic value in the large-(M,K) regime. This
enabled us to compute the asymptotically optimal coefficients,
using only the statistics of the channels.
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