
HAL Id: hal-01098842
https://hal.science/hal-01098842

Submitted on 17 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Effects of mobility on user energy consumption and total
throughput in a massive MIMO system
Aris Moustakas, Luca Sanguinetti, Merouane Debbah

To cite this version:
Aris Moustakas, Luca Sanguinetti, Merouane Debbah. Effects of mobility on user energy consumption
and total throughput in a massive MIMO system. IEEE Information Theory Workshop (ITW), Nov
2014, Hobart, Australia. pp.292 - 296, �10.1109/ITW.2014.6970839�. �hal-01098842�

https://hal.science/hal-01098842
https://hal.archives-ouvertes.fr


Effects of Mobility on User Energy Consumption
and Total Throughput in a Massive MIMO System

Aris L. Moustakas⇤‡, Luca Sanguinetti†‡, and Mérouane Debbah‡
⇤Department of Physics, National & Capodistrian University of Athens, Athens, Greece

†Dipartimento di Ingegneria dell’Informazione, University of Pisa, Pisa, Italy
‡Alcatel-Lucent Chair, Ecole supérieure d’électricité (Supélec), Gif-sur-Yvette, France

Abstract—Macroscopic mobility of users is important to de-
termine the performance and energy efficiency of a wireless
network, because of the temporal correlations it introduces in
the consumed power and throughput. In this work, we introduce
a methodology that allows to compute the long time statistics
of such metrics in a network. After describing the general
approach, we consider a specific example of the uplink channel
of a mobile user in the vicinity of a base station equipped with
a large number of antennas (the so called ”massive MIMO”
base station). To guarantee a fixed signal-to-noise ratio and
rate, the user inverts the pathloss channel power, while moving
around in the cell. To calculate the long time distribution of the
corresponding consumed energy, we assume that its movement
follows a Brownian motion, and then map the problem to the
solution of the minimum eigenvalue of a partial differential
equation, which can be solved either analytically, or numerically
very fast. The single-user throughput is also treated. We then
present some results and discuss how they can be generalized
if the mobility model is assumed to be a Levy random walk. A
roadmap to use this methodology is eventually given to extend
results to a multiple user set-up with multiple base stations.

I. INTRODUCTION

One the most challenging property of the wireless propaga-
tion channel is its temporal variability. Since the first mobile
telephones appeared at a massive scale, engineers had to
address the temporal fluctuations of the received signal power
to make sure that a call connection remained active. Adverse
effects that needed to be countered include: (i) fading holes
of the channel due to multiple wave reflections; (ii) change
in the link distance due to physical movement of the wireless
device away from the base; or (iii) interference fluctuations
due to movement of interfering devices.

To understand the behavior of fading various models were
proposed with varying complexity, starting from the Jakes
model [1] to more involved correlated models in both fre-
quency and time [2]. The introduction of concise fading
models made it possible to obtain, together with numerical
simulations, analytical expressions for the quantities of inter-
est, such as ergodic and outage capacities [3]. This in turn
allowed the introduction of ways to counter the adverse effects
of fading, through scheduling and space-time coding.

The effects of pathloss have also been studied more recently
in a large body of work using the theory of Poisson point
processes (PPP) [4]–[6]. This approach has provided a good
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understanding of the effects of randomness in position of
mobile devices in a network and has allowed a thorough
characterization of the statistics of interference in wireless
networks. However, most of the analysis deals with static
or near-static networks and does not take into account the
consequences of macroscopic mobility of users.

This shortcoming is important when one realizes that due
to not too rapid mobility there are temporal correlations in
the necessary power for any given user. For example, an
untypically high density of users at the cell edge will result to
an increased energy consumption over an extended period of
time, which may drain the available energy resources of a base
station (BS). This, in turn, becomes important especially for
off-grid deployments, with finite energy resources. Therefore,
it is of paramount importance to quantify not only how often
such unlikely events happen, but also how long they last, which
depends on the user mobility.

To analyze the effects of mobility, simple yet effective
models that describe the statistics of humans moving around
are necessary. Several models have been proposed [7], [8] and
their statistical properties have been studied [9] in detail and
have been implemented in numerical simulators. In particular,
three types of mobility models are more popular. The first
and simplest one is a random walk (RW). This model is a
continuous time Markov process on a lattice with a step size
distribution, which has zero mean and finite variance. At long
times and distances this can be approximated by a Brownian
motion (BM). Another more involved model is a Markov pro-
cess (LRW) with infinite variance in the step size distribution,
which corresponding to Levy processes (due to the long tails
in the step sizes). This has been proposed as a more realistic
model for human mobility [10], [11]. Finally, the so-called
random waypoint process (RWP) has also been proposed, in
which a mobile user picks a random destination and travels
with constant velocity to reach it, which is also a Markov
process. However, despite the well-understood properties of
the mobility models above not much progress [12] has been
made towards providing analytical results for the long term
statistics of communications performance metrics, such energy
consumed or total throughput.

In this work, we take advantage of the Markovian property
of user mobility to analyze the long time statistics of these
performance metrics in a network with mobility. We believe
that the approach is fairly general to encompass (at least in
principle) all Markovian mobility models described above. The



methodology is based on a simple, but powerful theorem, the
so-called Feynman-Kac formula [13], [14], which maps the
average over all random walks to the minimum eigenvalue
of a partial differential equation that is related to the random
walk.

Next section defines the metrics of interest (in terms of an
integral over time), introduces the mobility model and show
how the probability of finding a user at a given location can be
computed using the diffusion equation. In Section III, the main
result of the paper is given, namely, Theorem 1 and outline
its proof. In Section IV, we calculate the long time statistics
of the energy consumption in the uplink of a single-user
massive MIMO system, while the long time statistics of the
corresponding throughput are computed in Section V. Finally,
in Section VI we discuss how the proposed methodology can
be generalized to other scenarios.

II. PROBLEM STATEMENT AND SETUP

The purpose of this paper is to present a methodology to
analyze the long time T statistics of quantities of the form

E
T

=

Z
T

0
dt V (r(t)) (1)

where V (x) is a function of the position of one or more mobile
devices in a network and the devices move around the region
of interest over time. In all subsequent discussions, we assume
that V (x) is greater than or equal to zero and it is bounded
from above.

A. Metrics of Interest

V (x) is a function that can represent a number of relevant
metrics of interest. In this work, we limit to consider the two
specific functions defined below.

1) Consumed energy: In this case, V (x) is proportional to
the inverse of the pathloss function between a given user and
the nearest BS. Hence, we have

V
p

(r) = P (r) = �r� (2)

where � is the pathloss exponent and r is the distance between
the user and the BS. Here, the integral in (1) will correspond
to the total energy consumption of the mobile over time T .
For simplicity, we treat only a single cell which we take to be
a square with side R and the BS located at the centre. This
problem may be generalized straightforwardly to a network of
many BSs located for example at a square grid. In this case, the
above distance r would be replaced by r

min

= minri |r� r

i

|�
where r

i

is the location of the ith BS.
The quantity in the right-hand-side of (2) is nothing else

than the power required by a user at a distance r from the
BS to maintain a signal-to-noise ratio (SNR) equal to � in the
presence of unit variance noise, no other interference and no
fading. Despite its simplicity, it is not difficult to show that
this is asymptotically correct in the uplink of a massive MIMO
system, where a finite number of users K is served with a very

large antenna array of N antennas at the BS. Indeed, the N
dimensional received signal vector y at the BS is given by

y =

KX

k=1

h

k

g(r
k

)

1/2x
k

+ z (3)

where h

k

for k = 1, . . . ,K is the N -dimensional channel
vector for user k, with elements assumed for simplicity to be
⇠ CN (0, N�1

), g(r) = |r|�� is the corresponding pathloss
function and x

k

the transmitted signal, with z being the N -
dimensional noise vector with elements ⇠ CN (0, 1). Then, in
the limit N � K the SINR for each user reduces to [3]

SNR
k

= g(r
k

)E
⇥
|x

k

|2
⇤
. (4)

Setting the right-hand-side of the above equation equal to
� leads to (2). The pathloss function inversion can easily
be implemented through the periodic feedback of a channel
quality indication (CQI) to the mobile device. Hence, the
above power control scheme corresponds to situations where
the user needs a constant rate.

2) Throughput: A dual uplink transmission strategy to the
above for a mobile user in a network corresponds to transmit
continuously at a constant power and take advantage of the
instances when the channel is good due to proximity to a
BS. In this case the power transmitted is fixed, but it is the
communication rate that is fluctuating with distance. This can
be expressed as

V
c

(r) = C(r) = ↵min

⇣
log

h
1 +

p

r�

i
, R

max

⌘
(5)

where r is defined as above, R
max

= log(1 + p/r�0 ) is the
maximum rate achieved at distance r0 and ↵, p are constant
parameters. Here, the integral of (1) will correspond to the total
throughput uploaded over time t in bits. The above expression
has two interpretations, depending on the context. In the case
of a single BS serving a single user, it corresponds to the
outage capacity at location r

min

. In this case, ↵ = 1�P
out

is
the probability of non-outage, while p = �P log(1�P

out

) andR
dtC(r(t)) will correspond to the total goodput. In a massive

MIMO multi-user setting, ↵ = 1 and p is the SNR.

B. Mobility Model

The dynamics of user mobility are now specified. In partic-
ular, we assume that the user of interest moves according to a
continuous time Markov process. The infinitesimal generator
of the process is denoted by the operator M0 acting on
the space of square integrable functions `2(R2

). Hence, the
probability that a user is at location r at time t, given that it
was at location r0 at time t = 0 can be expressed in terms of
M0 as follows [13]

P(r, t; r0, 0) = e�M0t
(r, r0) (6)

where the right-hand-side is the (r, r0)-th element of the ex-
ponential operator. For concreteness, we only assume the user
performs the simplest Markov process, namely, a Brownian
motion. This is known to be a good approximation for the
long time and large distance properties of a Markov process
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Fig. 1. In Fig. 1(a) we plot the rate function for the distribution of the energy of the mobile user. The rate function is plotted for both a one- and two-
dimensional square cell. To fit both curves in the same plot the x-axis indicates the energy value normalized to its maximal value. Although close to the point
where the rate function vanishes, which occurs at the mean value of the energy, the shape is quadratic, its distinctly non-Gaussian shape becomes evident
beyond that region. The diverging behavior at the two boundary values, as analyzed in Section IV are visible in the plot. In Fig. 1(b) the rate function for the
throughput distribution is plotted. The values � = 4, p = 0.01, r0 = 0.1 and ↵ = 1 are used. The very different behavior between one- and two-dimensional
rate values for large values of B are due to the lower density of points for r < r0 for two- versus one-dimensional cells.

with finite step variance [15]. In this case, the infinitesimal
generator is simply given by

M0 = �D

2

r2 (7)

where r is the Laplacian operator and D is the diffusion
constant. In this case, the probability in (6) satisfies the
diffusion equation

@ P(r, t; r0, 0)
@t

=

D

2

r2 P(r, t; r0, 0) (8)

with initial condition P(r, 0; r0, 0) = �(r� r0), where �(x) is
the two dimensional Dirac �-function. We also need to specify
the boundary conditions of the Brownian motion. Specifically,
we assume periodic boundary conditions. This means that the
mobile user, when it moves through the boundary of the cell,
re-appears from the other side with the same direction. While
this is not particularly realistic for a user, it is not hard to
see that this is a good way to mimic the hand-over to a
neighbouring cell region. This fact will be discussed further
later on.

III. MATHEMATICAL FRAMEWORK

In this section, the main result of this work is given, which
provides the long time behaviour of the metrics introduced
above. Then, the limiting behaviour for small and large values
of both energy and throughput as well as the behaviour close
to the mean will be analytically characterized.

Theorem 1. Let V (r) � 0 be a continuous, upper bounded
function of the distance r and E

T

be given by (1), in which
the time-dependence of the position r(t) is due to a Brownian

motion on a square B = (�R/2, R/2)2 with diffusion constant
D, periodic boundary conditions and initial condition r0 =

r(0). Then if A ⇢ R we have

lim

T!1

1

T
logP(E

T

/T 2 A) = � inf

x2A

I(x) (9)

I(x) = � inf

�2R
{�x� ✏0(�)}(10)

where ✏0(�) is the minimum eigenvalue of the operator

M

�

= �D

2

r2
+ �V (r). (11)

Proof. We now sketch the basic steps of the proof. We start
by applying Cramer’s theorem [16] to find that in the limit of
large T the quantity logP(E

T

2 A) obeys a large deviation
principle with rate function I(x) so that

lim

T!1

1

T
logP(E

T

/T 2 A) = � inf

x2A

I(x) (12)

I(x) = � inf

�2R
{�x+ ⇤(�)} (13)

⇤(�) = lim

T!1

1

T
logEr0

⇥
e��ET

⇤
. (14)

In the above, the expectation is computed over Brownian paths
(random walks) with initial condition r(0) = r0. Also, note
that the second line has an inf rather than a sup as it is
customary since we have ⇤(�) with a negative sign in the
exponent.

Now, the main trick in the proof is to take advantage of a
famous result, namely, the Feynman-Kac (FK) formula, which
states that [13], [14]

e�M�T
(r0, rT ) = P(r

T

, T ; r0, 0)Er0,rT

⇥
e��ET

⇤
(15)



where the right-hand-side is an expectation over all Brownian
motions starting at r0 and ending at r

T

after a time interval
T . The operator M0 is the infinitesimal generator of the
semigroup corresponding to the mobility process and it is
given by (7) when the simple Brownian motion is considered.
To relate the above equation to the right-hand-side of (14), we
need to integrate the above result over r

T

with the appropriate
probability of the path given by P(r

T

, T ; r0, 0).
The left-hand side of the FK formula can be expressed very

simply using the spectral decomposition of M

�

. Let �
n

(r)

be the eigenfunctions of M

�

with corresponding eigenvalue
✏
n

(�). Then, we obtain

e�M�T
(r0, r) =

1X

n=0

�
n

(r0)�n

(r) e�✏n(�)T . (16)

The periodic boundary conditions imposed above mean that
the eigenfunctions �

n

(r) and their derivatives r�
n

(r) have
to be continuous on opposite boundaries, i.e., (x,�R/2) !
(x,R/2) and (�R/2, y) ! (R/2, y). Integrating over the final
position r

T

yields

Er0

⇥
e��ET

⇤
=

1X

n=0

✓
n

�
n

(r0) e
�✏n(�)T (17)

✓
n

=

Z

r2B
�
n

(r)dr.

As a result, in the large T limit one gets

Er0

⇥
e��ET

⇤
⇡ ✓0�0(r0) e

�✏0(�)T . (18)

Combining the above result with (13) and (14) completes the
proof.

Remark. It should be pointed out that there are analogous (but
non-local) expressions for generators of stable processes as
well [17]. Also, discrete analogues of the Laplacian can also
be found, corresponding to discrete space (continuous time)
Markov processes. The FK formula essentially finds the right
way to weight the dynamics of the user for which all locations
in the cell are equal and the weighting of V , which is different
as a function of r.

As seen, in the large T limit we only need to find the
minimum eigenvalue ✏0(�) of the operator M

�

for all �.
The latter must be then plugged into (13) from which � is
eventually computed. Both steps can be done numerically with
a reasonable effort. However, limiting results for the tails of
the distribution can also be computed analytically as shown
next.

IV. ENERGY STATISTICS

In this section, we analyze the energy statistics, computing

E
T

= �

Z
T

0
r(t)�dt. (19)

Plugging this into the methodology above we obtain the rate
function I

e

(x), which provides the leading (exponential) term
in the distribution of E

T

for large T . We first find the

minimum eigenvalue of the operator in (11) for V (r) = �r� .
We initially derive limiting results for large and small values
of E

T

. We start with the case of large positive �. This corre-
sponds to the probability tails for small energy values. In this
case, the minimum eigenvalue has an eigenfunction localized
close to the centre of the cell. As a first approximation, we
can neglect the cell boundary. Therefore, the distance variable
can be rescaled to r = rx, where r =

�
D��1��1

�1/(�+2)

eliminating the dependence on �. The resulting minimum
eigenvalue becomes approximately equal to

✏(�) ⇡ D
�

�+2 �
2

�+2�
2

�+2 "0 (20)

where "0 is the minimum energy of M
�

in R2 with � = D =

1. After some algebra, we obtain for E
T

⌧ �R�T

I
e

(x) ⇡ D

R2

(
�

2

✓
2"0
� + 2

◆1+ 2
�

)✓
x

�R�

◆� 2
�

(21)

To obtain the tails for E
T

� P
mean

T , we analyze the case
for large negative values of �. We observe that the minimum of
�V (r) is achieved at the cell corners. This means that the term
|r|� must be expanded around the value r�

max

, r
max

= R/
p
2.

After a shift and 45

o rotation of axes, we obtain

M

�

⇡ �P
max

+M0 � ���r��1
max

max(|x|, |y|) +O(|�|r��2
max

)

(22)
where P

max

= �r�
max

. In this case, one gets

I
e

(x) ⇡ D

R2

4"3
m

27

✓
1� x

P
max

◆�2

(23)

where "
m

is the minimum eigenvalue of the “inverted tetra-
hedron” L2

(R2
) operator

M

eff

= �1

2

r2
+max(|x|, |y|) (24)

Finally, we may obtain the behavior for E
T

⇡ TP
mean

.
With some hindsight, we look in the region of small |�|. In
this case, �V (r) is assumed to be small and after performing
second order perturbation theory [18] we find that

✏0(�) ⇡ �P
mean

� �2
X

n 6=0

V 2
n0

✏
n

(25)

where V
n0 is the expectation of V (r) over the eigenfunction

�
n0(r) of the Laplacian and ✏

n0 the corresponding eigenvalue
in the square domain. It then turns out that I(x) takes the form

I
e

(x) ⇡ (x� P
mean

)

2

4�2
(26)

with �2 is the term multiplying �2 above, recovering [19].
In Fig. 1(a) we plot the numerically generated rate function

of the energy I
e

(x) by calculating the minimum eigenvalue
✏0(�) of (11) with V (r) = ��r� in a square of unit length
for various values of �. Then for any given value of x, we
use this function to find the minimum of �x � ✏0(�). This
minimum value is plotted in the figure. The same is done for
a unit length line by finding the minimum eigenvalue of the
same operator. We see that I

e

(x) vanishes when x = P
mean

=



Er[P (r)]. The rate function plotted provides information about
the distribution of the energy E

T

as discussed in (10). Indeed
for E

T

> P
mean

T the probability distribution of E
T

is (to
logarithmic accuracy) given by

P(E
T

> xT ) ⇠ e�Ie(x)T . (27)

V. THROUGHPUT STATISTICS

Next, the statistics of uplink user throughput are given.
As discussed earlier, the appropriate functional here is the
integrated rate given by B

T

=

R
T

0 C(r(t))dt. As in the
previous section, this is used to obtain the rate function
I
b

(x), which provides the leading (exponential) term in the
distribution of the total transmitted bits B

T

for large T .
In Fig. 1(b) we plot the numerically generated rate function

of the throughtput I
b

(B
T

/T ) evaluated similarly as in the
previous section for the energy. The larger difference between
one- and two-dimensional values of the rate for larger values of
the throughput are due to the lower density close to the center
in two-versus one-dimensional geometries. As also discussed
above, the rate function I

b

(x) provides to logarithmic accuracy
the probability that B

T

< xT , thus providing a metric for
the “outage” probability of the total throughput. Indeed, when
B

T

< C
mean

T with C
mean

= Er[C(r)] being the value of
x = B

T

/T , I
b

(x) = 0 and the probability distribution of B
T

is, to logarithmic accuracy equal to

P(B
T

> xT ) ⇠ e�Ib(x)T . (28)

VI. DISCUSSION AND OUTLOOK

In summary, we have introduced a methodology to obtain
the distribution tails of performance metrics, such as the total
throughput and the consumed energy over time by exploiting
the statistics of mobility. This can help improve network
design and dimensioning, by providing analytic results for low
probability events. As specific examples, we calculated the
long time distribution of the consumed uplink power and the
corresponding total throughput of a single user in a massive
MIMO cell under the assumption of Brownian motions.

We can generalize the above discussion for Levy random
Markov processes that have infinite variance of each step,
corresponding to long tailed distributions [10], [11]. The only
difference is the introduction of an appropriate infinitesimal
generator of the process, which is a symmetric stable law
of index ↵ < 2 [20]. In this case M0 does not have a
local representation (as a derivative), but is still well defined
[17], [20], [21]. It is worth mentioning briefly how the above
results are expected to change, focusing for brevity only on
the energy case. Since M0 will have scale dimensions of
R�↵, we can rescale the equations to find that for large
positive � the minimum eigenvalue will be ✏0(�) ⇠ �↵/(↵+�).
Conversely, for large negative � the minimum eigenvalue will
be ✏0(�)� �r�

max

⇠ �↵/(1+↵). Putting all this together leads
to a rate function

I
e,low

(x,↵) ⇠ x�↵/� (29)

I
e,high

(x,↵) ⇠
�
1� xr��

max

��↵

. (30)

The above results can also be generalized to larger systems
with many BSs. In such situations, a user switches between
BSs when crossing the cell boundary in which case the
energy consumption in the uplink continues to increase, or
in the downlink the power associated to that user is switched
off. Mathematically, this has the effect of having a periodic
power function, when the cells are assumed to appear in an
ordered fashion. Another obvious generalization has to do with
taking into account orthogonal (such as OFDMA) channels
and treating the total downlink sum-throughput and/or power
consumption. In this system, we end up with an operator M

describing multiple Brownian motions.
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