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We prove that for every Borel equivalence relation E, either E is Borel reducible to E 0 , or the family of Borel equivalence relations incompatible with E has cofinal essential complexity. It follows that if F is a Borel equivalence relation and F is a family of Borel equivalence relations of non-cofinal essential complexity which together satisfy the dichotomy that for every Borel equivalence relation E, either E ∈ F or F is Borel reducible to E, then F consists solely of smooth equivalence relations, thus the dichotomy is equivalent to a known theorem.

Introduction

A reduction of an equivalence relation E on a set X to an equivalence relation F on a set Y is a function π : X → Y with the property that ∀x 1 , x 2 ∈ X (x 1 E x 2 ⇐⇒ π(x 1 ) F π(x 2 )). A topological space is Polish if it is second countable and completely metrizable, a subset of such a space is Borel if it is in the σ-algebra generated by the underlying topology, and a function between such spaces is Borel if pre-images of open sets are Borel. Over the last few decades, the study of Borel reducibility of Borel equivalence relations on Polish spaces has emerged as a central theme in descriptive set theory.

The early development of this area was dominated by dichotomy theorems. There are several trivial ones, such as the fact that if n is a natural number, then for every Borel equivalence relation E on a Polish space, either E is Borel reducible to equality on n, or equality on n + 1 is Borel reducible to E. Similarly, either there is a natural number n for which E is Borel reducible to equality on n, or equality on N is Borel reducible to E.

There are also non-trivial results of this form. By [START_REF] Silver | Counting the number of equivalence classes of Borel and coanalytic equivalence relations[END_REF], either E is Borel reducible to equality on N, or equality on 2 N is Borel reducible to E. And by [HKL90, Theorem 1.1], either E is Borel reducible to equality on 2 N , or E 0 is Borel reducible to E, where E 0 is the relation on 2 N given by x E 0 y ⇐⇒ ∃n ∈ N∀m ≥ n x(m) = y(m).

Whereas the results we have mentioned thus far concern the global structure of the Borel reducibility hierarchy, [KL97, Theorem 1] yields a local dichotomy of this form. Namely, that for every Borel equivalence relation E on a Polish space which is Borel reducible to E 1 , either E is Borel reducible to E 0 , or E 1 is Borel reducible to E, where E 1 is the relation on (2 N ) N given by x E 1 y ⇐⇒ ∃n ∈ N∀m ≥ n x(m) = y(m).

At first glance, one might hope the assumption that E is Borel reducible to E 1 could be eliminated, thereby yielding a new global dichotomy theorem. Unfortunately, [KL97, Theorem 2] ensures that if E is not Borel reducible to E 0 , then there is a Borel equivalence relation with which it is incomparable under Borel reducibility. It follows that only the pairs (F, F ′ ) discussed thus far (up to Borel bi-reducibility) satisfy both (1) there is a Borel reduction of F to F ′ but not vice versa, and (2) for every Borel equivalence relation E on a Polish space, either E is Borel reducible to F , or F ′ is Borel reducible to E.

As the latter result rules out further global dichotomies of the sort discussed thus far, it is interesting to note that its proof hinges upon the previously mentioned local dichotomy, as well as Harrington's unpublished theorem that the family of orbit equivalence relations induced by Borel actions of Polish groups on Polish spaces is unbounded in the Borel reducibility hierarchy. Here we utilize strengthenings of these results to provide a substantially stronger anti-dichotomy theorem.

Given a property P of Borel equivalence relations, we say that a Borel equivalence relation is essentially P if it is Borel reducible to a Borel equivalence relation on a Polish space with the given property. A Wadge reduction of a set A ⊆ X to a set B ⊆ Y is a continuous function π : X → Y such that ∀x ∈ X (x ∈ A ⇐⇒ π(x) ∈ B). We say that a Borel equivalence relation E has essential complexity at least the complexity of a set B ⊆ 2 N if B is Wadge reducible to every Borel equivalence relation to which E is Borel reducible. We say that a family F of Borel equivalence relations has cofinal essential complexity if for every Borel set B ⊆ 2 N , there is a Borel equivalence relation E ∈ F with essential complexity at least the complexity of B.

Much as in [START_REF] Kechris | The classification of hypersmooth Borel equivalence relations[END_REF], we obtain our anti-dichotomy theorem as a consequence of a result yielding the existence of incomparable Borel equivalence relations, albeit one considerably stronger than that given there.

Theorem 1. Suppose that X is a Polish space and E is a Borel equivalence relation on X. Then exactly one of the following holds:

(1) The relation E is Borel reducible to E 0 .

(2) The family of Borel equivalence relations on Polish spaces which are incomparable with E under Borel reducibility has cofinal essential complexity.

We say that a family F of Borel equivalence relations on Polish spaces is dichotomical if there is a minimum Borel equivalence relation F on a Polish space which is not in F , meaning that whenever E is a Borel equivalence relation on a Polish space, either E ∈ F or there is a Borel reduction of F to E. The following consequence of Theorem 1 implies that the only such families are those associated with the dichotomies mentioned earlier.

Theorem 2. Suppose that F is a dichotomical class of Borel equivalence relations on Polish spaces of non-cofinal essential complexity. Then every equivalence relation in F is smooth.

In §1, we briefly review the preliminaries needed throughout the paper. In §2, we introduce a property of graphs G ensuring that if a Borel equivalence relation E on a Polish space, whose classes are all countable, is Borel reducible to the equivalence relation generated by G, then it is Borel reducible to E 0 . In §3, we introduce a family of ideals on N × N, and show that they are cofinal under Wadge reducibility. In §4, we introduce a family of trees on N × N, and show that the graphs determined by their branches interact nicely with equivalence relations induced by ideals. In §5, we consider a subfamily of these trees satisfying an appropriate density condition, and show that the graphs determined by their branches interact particularly nicely with equivalence relations induced by the ideals introduced earlier. And in §6, we establish our primary results.

Preliminaries

Two sets M, N ⊆ N are almost disjoint if |M ∩ N| < ℵ 0 .
Proposition 1.1. There is a continuous injection π : 2 N → P(N) into a family of pairwise almost disjoint infinite sets.

Proof. It is sufficient to observe that the function π : 2 N → P(2 <N ), given by π(c) = {c ↾ n | n ∈ N}, is a continuous injection into a family of pairwise almost disjoint infinite sets.

A set is comeager if it contains an intersection of countably many dense open sets.

Proposition 1.2. Suppose that X and Y are Polish spaces and the map π : X → Y is Borel. Then there is a comeager set C ⊆ X on which π is continuous.

Proof. See, for example, [START_REF] Kechris | Classical descriptive set theory[END_REF]Theorem 8.38].

A subset of a Polish space is analytic if it is the continuous image of a Borel subset of a Polish space. A subset of a Polish space is co-analytic if its complement is analytic.

Theorem 1.3 (Souslin). Suppose that X is a Polish space and B ⊆ X. Then B is Borel if and only if B is both analytic and co-analytic.

Proof. See, for example, [START_REF] Kechris | Classical descriptive set theory[END_REF]Theorem 14.11].

The projection from X × Y to X is given by proj

X (x, y) = x. A partial uniformization of a set R ⊆ X × Y is a function whose graph is contained in R. A uniformization of a set R ⊆ X × Y is a partial uniformization of R whose domain is proj X (R).
Theorem 1.4 (Lusin-Novikov). Suppose that X and Y are Polish spaces and R ⊆ X × Y is a Borel set whose vertical sections are all countable. Then proj X (R) is Borel, and R is a countable union of Borel uniformizations.

Proof. See, for example, [Kec95, Theorem 18.10].

For each x ∈ X, the x th vertical section of a set R ⊆ X ×Y is given by A graph on a set X is an irreflexive, symmetric set G ⊆ X ×X. Such a graph is locally countable if its vertical sections are countable. An edge

R x = {y ∈ Y | x R y}. The set of unicity of R is {x ∈ X | |R x | = 1}.
N-coloring of G is a map c : G → N with ∀(x, y) ∈ G c(x, y) = c(y, x) and ∀(x, y), (x, z) ∈ G (y = z =⇒ c(x, y) = c(x, z)).
Theorem 1.6 (Feldman-Moore). Suppose that X is a Polish space and G is a locally countable Borel graph on X. Then there is a Borel edge N-coloring of G.

Proof. This follows from the proof of [FM77, Theorem 1].

We say that a Borel equivalence relation is smooth if it is Borel reducible to equality on 2 N . An embedding is an injective reduction.

Theorem 1.7 (Harrington-Kechris-Louveau). Suppose that X is a Polish space and E is a Borel equivalence relation on X. Then exactly one of the following holds:

(1) The relation E is smooth.

(2) There is a continuous embedding of E 0 into E.

Proof. See [HKL90, Theorem 1.1].

A partial transversal of an equivalence relation E on X is a set B ⊆ X intersecting every equivalence class of E in at most one point. A transversal of an equivalence relation E on X is a set B ⊆ X intersecting every equivalence class of E in exactly one point.

Following the standard abuse of language, we say that an equivalence relation is countable if all of its equivalence classes are countable.

Proposition 1.8. Suppose that X is a Polish space and E is a countable Borel equivalence relation on X. Then E is smooth if and only if X is the union of countably many Borel partial transversals of E.

Proof. This is a straightforward consequence of Theorem 1.4.

Again following the standard abuse of language, we say that an equivalence relation is finite if all of its equivalence classes are finite.

Proposition 1.9. Suppose that X is a Polish space and E is a finite Borel equivalence relation on X. Then E is smooth.

Proof. This is also a straightforward consequence of Theorem 1.4.

We say that a Borel equivalence relation is hyperfinite if it is the union of an increasing sequence (F n ) n∈N of finite Borel subequivalence relations. By [ 

Y is Π 1 1 1 1 1 1 -on-Σ 1 1 1 1 1 1 if whenever X is a Po- lish space and R ⊆ X × Y is an analytic set, the corresponding set {x ∈ X | R x satisfies P } is co-analytic. Theorem 1.12. Suppose that X is a Polish space, Φ is a Π 1 1 1 1 1 1 -on-Σ 1 1 1 1 1 1
property of subsets of X, and A ⊆ X is an analytic set on which Φ holds. Then there is a Borel set B ⊇ A on which Φ holds.

Proof. See, for example, [Kec95, Theorem 35.10].

A path through a graph G is a sequence (x i ) i≤n with the property that ∀i < n x i G x i+1 . Such a path is a cycle if n > 2, (x i ) i<n is injective, and

x 0 = x n . A graph is acyclic if it has no cycles.
The equivalence relation generated by a graph G on a set X is the smallest equivalence relation E G on X containing it. A graphing of an equivalence relation is a graph generating it. We say that a Borel equivalence relation is treeable if it has an acyclic Borel graphing.

Theorem 1.13 (Hjorth). Suppose that X is a Polish space and E is a treeable Borel equivalence relation on X. Then the following are equivalent:

(1) The relation E is essentially countable.

(2) There is a Borel set B ⊆ X whose intersection with each equivalence class of E is countable and non-empty.

Proof. See [Hjo08, Theorem 6].

Theorem 1.14. Suppose that X is a Polish space and E is a Borel equivalence relation on X essentially generated by a Borel subgraph of an acyclic compact graph. Then exactly one of the following holds:

(1) The relation E is essentially countable.

(2) There is a continuous embedding of E 1 into E.

Proof 

Partition stratifications

Suppose that X is a Polish space, E is a Borel equivalence relation on X, and G is a Borel graph on X. We use G E to denote the graph on X/E given by

G E = {(C, D) ∈ (X/E) × (X/E) | C = D and (C × D) ∩ G = ∅}.
We say that G has faithful cycles over E if among all G-paths (x i ) i≤k , only G-cycles have the property that ([

x i ] E ) i≤k is a G E -cycle.
A partition stratification of G is a sequence of the form (E n , G n ) n∈N , where (E n ) n∈N is a decreasing sequence of equivalence relations on X, each of which having only countably many classes, whose intersection is the diagonal, (G n ) n∈N is an increasing sequence of Borel graphs whose union is G, and G n has faithful cycles on E n .

Proposition 2.1. Suppose that X is a Polish space, E is a countable Borel equivalence relation on X, and G is a Borel graphing of E. Then E is hyperfinite if and only if there is a partition stratification of G.

Proof. Suppose first that E is hyperfinite, and fix an increasing sequence (F n ) n∈N of finite Borel subequivalence relations whose union is E. As Propositions 1.8 and 1.9 ensure that spaces underlying finite Borel equivalence relations are countable unions of Borel partial transversals, it follows that there is a decreasing sequence (E n ) n∈N of Borel equivalence relations such that every E n has only countably many classes, each of which is a partial transversal of F n of diameter at most 1/n. For each n ∈ N, set G n = F n ∩ G, and note that if

(x i ) i≤k is a G n -path for which ([x i ] En ) i≤k is a (G n ) En -cycle, then x 0 (E n ∩ F n ) x k , so x 0 = x k , thus (x i ) i≤k is a G n -cycle. It follows that each G n has faithful cycles on E n , so (E n , G n ) n∈N is a partition stratification of G.
Conversely, suppose that (E n , G n ) n∈N is a partition stratification of G. By Theorem 1.6, there is a Borel edge N-coloring c of G. Let H n denote the subgraph of G n consisting of all (x, y) ∈ G n \ E n for which c(x, y) is minimal both among natural numbers of the form c(x ′ , y) where x E n x ′ G y, and those of the form c(x, y ′ ) where x G y ′ E n y. Then (H n ) n∈N is an increasing sequence of Borel graphs whose union is G. By Theorem 1.11, to see that E G is hyperfinite, we need only check that the relations F n = E Hn are smooth. By Proposition 1.8, it is sufficient to show that for all n ∈ N, every equivalence class of E n is a partial transversal of F n .

Suppose, towards a contradiction, that k ∈ N is least for which there is an injective H n -path (x i ) i≤k beginning and ending at distinct E n -related points. The definition of partition stratification ensures that ([x i ] En ) i≤k is not a (G n ) En -cycle, so there exists 0 < i < k for which x i-1 E n x i+1 . Set x = x i-1 , y = x i , and x ′ = x i+1 . Then c(x, y) = c(x ′ , y), so the definition of H n ensures that ¬x H n y or ¬x ′ H n y, the desired contradiction.

We say that properties P and Q of Borel equivalence relations coincide below a given Borel equivalence relation F if the family of Borel equivalence relations on Polish spaces which are Borel reducible to F and satisfy P is the same as the family of Borel equivalence relations on Polish spaces which are Borel reducible to F and satisfy Q.

Proposition 2.2. Suppose that X is a Polish space, E is a Borel equivalence relation on X, and G is a Borel graphing of E which admits a partition stratification. Then countability and hyperfiniteness coincide below E.

Proof. Fix a partition stratification (E n , G n ) n∈N of G.
Lemma 2.3. There are only countably many injective G-paths between any two points.

Proof. Suppose, towards a contradiction, that k ∈ N is the least natural number for which there exist x, y ∈ X between which there are uncountably many injective G-paths (z i ) i≤k from x to y. Then for n ∈ N sufficiently large, there are uncountably many injective G npaths (z i ) i≤k from x to y with the further property that ([z i ] En ) i≤k is an injective (G n ) En -path. Fix such an injective G n -path (z i ) i≤k from x to y for which there are uncountably many injective G n -paths (z ′ i ) i≤k from x to y inducing the same injective (G n ) En -path as (z i ) i≤k . The minimality of k then ensures that there are uncountably many injective G n -paths (z ′ i ) i≤k from x to y inducing the same injective (G n ) En -path as (z i ) i≤k but avoiding {z i | 0 < i < k}. Then for n ′ ∈ N sufficiently large, there are uncountably many injective G n -paths (z ′ i ) i≤k from x to y inducing the same injective (G n ) En -path as (z i ) i≤k but for which the corresponding injective (

G n ) E n ′ -path avoids {[z i ] E n ′ | 0 < i < k}.
It follows that there is such an injective G n -path (z ′ i ) i≤k from x to y for which there are uncountably many such injective G n -paths (z ′′ i ) i≤k inducing the same injective (G n ) E n ′ -path as (z ′ i ) i≤k . By one more appeal to the minimality of k, there are uncountably many such injective

G n - paths (z ′′ i ) i≤k inducing the same injective (G n ) E n ′ -path as (z ′ i ) i≤k but avoiding {z ′ i | 0 < i < k}. Fix any such injective G n -path (z ′′ i ) i≤k , and observe that (z ′ 1 , . . . , z ′ k = z k , . . . , z 0 = z ′′ 0 , z ′′ 1 ) is an injective G n -path inducing a (G n ) E n ′ -cycle, contradicting the fact that G n ′ has faithful cycles on E n ′ .
By Theorem 1.4 and Proposition 1.10, it is sufficient to show that E is hyperfinite on every Borel set B ⊆ X on which it is countable. Towards this end, let C denote the convex closure of B with respect to G, that is, the set of points lying along an injective G-path between two points of B. As Theorem 1.4 and Lemma 2.3 ensure that C is also a Borel set on which E is countable, Proposition 2.1 implies that E is hyperfinite on C, thus hyperfinite on B.

In the treeable case, we can say even more.

Proposition 2.4. Suppose that X is a Polish space, E is a treeable Borel equivalence relation on X, and countability and hyperfiniteness coincide below E. Then essential countability and essential hyperfiniteness also coincide below E.

Proof. Suppose that Y is a Polish space and F is an essentially countable Borel equivalence relation on Y which admits a Borel reduction φ : Y → X to E. Fix a Polish space Y ′ and a countable Borel equivalence relation F ′ on Y ′ for which there is a Borel reduction ψ :

Y → Y ′ of F to F ′ . Then the set R 0 = {(x, ψ(y)) | φ(y) = x} induces a partial injection of X/E into Y ′ /F ′ , in the sense that x 1 E x 2 ⇐⇒ y ′ 1 F ′ y ′ 2 , for all (x 1 , y ′ 1 ), (x 2 , y ′ 2 ) ∈ R 0 . The product of the equivalence relations E and F ′ is the relation on X × Y ′ given by (x 1 , y ′ 1 ) (E × F ′ ) (x 2 , y ′ 2 ) ⇐⇒ (x 1 E x 2 and y ′ 1 F y ′ 2 ). Lemma 2.5. There is an (E×F ′ )-invariant Borel set R ⊇ R 0 inducing a partial injection of X/E into Y ′ /F ′ .
Proof. As the property of inducing a partial injection of X/E into Y ′ /F ′ is Π 1 1 1 1 1 1 -on-Σ 1 1 1 1 1 1 and closed under (E ×F ′ )-saturation, by repeatedly applying Theorem 1.12, we obtain Borel sets

R n+1 ⊇ [R n ] E×F ′ inducing Borel partial injections of X/E into Y ′ /F ′ . Define R = n∈N R n .
As F ′ is countable, Theorem 1.4 ensures that the set C = proj X (R) is Borel, and that there is a Borel uniformization π : C → Y ′ of R. As any such function is necessarily a reduction of E to F ′ on C, it follows that E is essentially countable on C. An application of Theorem 1.13 then yields a Borel set D ⊆ C, whose E-saturation is C, on which E is countable. As countability and hyperfiniteness coincide below E, it follows that E is hyperfinite on D, and one more application of Theorem 1.4 yields a Borel reduction of E ↾ C to E ↾ D, so E is essentially hyperfinite on C, thus F is essentially hyperfinite.

Ideals

We say that a family K of subsets of N × N is determined by cardinalities on vertical sections if

A ∈ K ⇐⇒ B ∈ K, whenever ∀n ∈ N |A n | = |B n |.
For each family N ⊆ P(N) of subsets of the natural numbers, we use cl(N ) to denote the closure of N under finite unions, and we define K N = N ∈cl(N ) K N , where

K N = {A ⊆ N × N | ∀n ∈ N (|A n | = ℵ 0 =⇒ n ∈ N)}.
Note that every such family is both determined by cardinalities on vertical sections and an ideal, in the sense that it is closed under containment and finite unions.

Proposition 3.1. Suppose that N ⊆ P(N) is a family of pairwise almost disjoint infinite subsets of N. Then there is a continuous function π :

N → P(N × N) Wadge reducing M to K M , for all M ⊆ N . Proof. Define π(N) = N × N. Given M ⊆ N , observe first that if M ∈ M , then π(M) ∈ K M ⊆ K M . Conversely, if N ∈ N and π(N) ∈ K M , then there exist n ∈ N and M 1 , . . . , M n ∈ M such that π(N) ∈ K M 1 ∪•••∪Mn , in which case N ⊆ M 1 ∪ • • • ∪ M n . As N consists of pairwise almost disjoint infinite sets, it follows that N = M i , for some 1 ≤ i ≤ n, thus N ∈ M .
A weak converse to this result is provided by the following. Proposition 3.2. Suppose that N ⊆ P(N) is a Borel family of pairwise almost disjoint infinite subsets of N. Then K N is also Borel.

Proof. Clearly K N is analytic, so by Theorem 1.3, it is sufficient to show that it is co-analytic. But this follows from Theorem 1.5 and the fact that a set A is in K N if and only if there exist k ∈ N and a unique subfamily F of N of cardinality k for which there is a finite subset F of a set in cl(N ) such that ∀n ∈ N

(|A n | = ℵ 0 =⇒ n ∈ F ∪ F ).

Trees

Suppose that t i,n ∈ 2 n , for all i < 2 and n ∈ N. Associated with (t i,n ) i<2,n∈N are the graphs T n on 2 n obtained recursively by letting T n+1 be the union of the graph {(s

(i), t (i)) | i < 2 and (s, t) ∈ T n } with the singleton edge {(t i,n (i), t 1-i,n (1 -i)) | i < 2}, as well as the set T = {(∅, ∅)} ∪ n∈N T n .
A straightforward induction shows that each T n is a tree on 2 n . It follows that if the set T is closed under initial segments, then the set

[T ] = {(x, y) ∈ 2 N × 2 N | ∀n ∈ N (x ↾ n, y ↾ n) ∈ T n }
of branches through T is an acyclic compact graph admitting a partition stratification, thus all of its Borel subgraphs admit partition stratifications as well. As equivalence relations induced by acyclic Borel graphs are themselves Borel (by Theorems 1.3 and 1.5), Propositions 2.2 and 2.4 therefore imply that essential countability and essential hyperfiniteness coincide below equivalence relations generated by such subgraphs.

The support of a sequence c ∈ 2 N is given by supp(c) = c -1 (1). Proposition 4.2. Suppose that t i,n ∈ 2 n for all i < 2 and n ∈ N, the corresponding set T is closed under initial segments, and I is an ideal on N containing all finite subsets of N.

Then E I ∩ [T ] is a graphing of E I ∩ E [T ] .
Proof. It is sufficient to show that if n ∈ N, (c i ) i≤n is an injective [T ]path, and c 0 E I c n , then (c i ) i≤n is an (E I ∩ [T ])-path. Towards this end, appeal to Proposition 4.1 repeatedly to obtain a finite set F ⊆ N containing (supp(c i ) △ supp(c i+1 )) ∩ (supp(c j ) △ supp(c j+1 )), for all i < j < n. Then supp(c 0 ) △ supp(c n ) and i<n supp(c i ) △ supp(c i+1 ) agree off of F , so supp(c i ) △ supp(c i+1 ) ⊆ F ∪ (supp(c 0 ) △ supp(c n )), and is therefore in I, for all i < n.

Density

Suppose that t i,n ∈ 2 n , for all i < 2 and n ∈ N, and the corresponding set T is closed under initial segments. Then for each n ∈ N, there exist k ∈ {0, . . . , n} and s ∈ 2 n-k with t i,n+1 = t i,k (i) s. Conversely, if k n ∈ {0, . . . , n} and s n ∈ 2 n-kn for all n ∈ N, then the set T associated with (t i,n ) i<2,n∈N , where t i,0 = ∅ and t i,n+1 = t i,kn (i) s n for i < 2 and n ∈ N, is closed under initial segments. We say that (k n , s n ) n∈N is suitable if k n ∈ {0, . . . , n} and s n ∈ 2 n-kn , for all n ∈ N.

Fix an injective enumeration (i n , j n ) n∈N of N × N with i 0 = 0, and let e denote its inverse. We say that (k n , s n ) n∈N is dense (with respect to Theorem 5.2. The family of treeable Borel equivalence relations below which essential hyperfiniteness and the inexistence of a continuous embedding of E 1 coincide has cofinal essential complexity.

Proof. By appealing to Proposition 1.1, we obtain a continuous injection π : 2 N → P(N) into a family of pairwise almost disjoint infinite sets. Given a Borel set B ⊆ 2 N , set N = π(B). Proposition 3.1 then ensures that B is Wadge reducible to K N , and Proposition 3.2 implies that the latter is Borel, thus the same holds of the ideal I = e * K N .

Fix a dense suitable sequence (k n , s n ) n∈N , and let T be the associated set. Proposition 4.2 then ensures that the equivalence relation E on 2 N given by E = E I ∩ E [T ] is generated by a Borel subgraph of an acyclic compact graph, and since it is clearly Borel, by Theorem 1.14 we need only check that its essential complexity is at least the complexity of B.

Towards this end, suppose that Y is a Polish space, and F is a Borel equivalence relation on Y for which there is a Borel reduction φ : X → Y of E to F . Proposition 1.2 then yields a comeager Borel set C ⊆ X on which φ is continuous. By Proposition 5.1, there is a Wadge reduction ψ : P(N) → [T ] ↾ C of I to E, and it follows that (φ × φ) • ψ is a Wadge reduction of I to F , so B is Wadge reducible to F , thus the essential complexity of E is at least the complexity of B.

Anti-basis results

We say that a family F of Borel equivalence relations on Polish spaces is unbounded if for every Borel equivalence relation E on a Polish space, there is a Borel equivalence relation F ∈ F which is not Borel reducible to E.

We say that the non-linearity of Borel reducibility is captured off of a family F of Borel equivalence relations if every non-essentiallyhyperfinite Borel equivalence relation is incompatible with a Borel equivalence relation outside of F . Theorem 6.1. Suppose that F is a class of Borel equivalence relations whose complement contains unboundedly many Borel equivalence relations below which essential hyperfiniteness and the inexistence of a Borel reduction of E 1 coincide, as well as unboundedly many Borel equivalence relations to which E 1 does not admit a Borel reduction. Then the non-linearity of Borel reducibility is captured off of F . Proof. Suppose that E is a Borel equivalence relation compatible with every Borel equivalence relation outside of F . Fix a Borel equivalence relation E ′ , outside of F and not Borel reducible to E, below which essential hyperfiniteness and the inexistence of a Borel reduction of E 1 coincide. In addition, fix a Borel equivalence relation E ′′ , outside of F and not Borel reducible to E, to which E 1 does not admit a Borel reduction. As E is Borel reducible to E ′′ , it follows that E 1 is not Borel reducible to E. As E is Borel reducible to E ′ , it therefore follows that E is essentially hyperfinite.

The following corollary strengthens [KL97, Theorem 2]. Theorem 6.2. Suppose that X is a Polish space and E is a Borel equivalence relation on X. Then the following are equivalent:

(1) The relation E is not essentially hyperfinite.

(2) There is a Borel equivalence relation on a Polish space which is incompatible with E.

(3) The family of Borel equivalence relations on Polish spaces which are incompatible with E under Borel reducibility has cofinal essential complexity.

Proof. As (3) =⇒ (2) is trivial and (2) =⇒ (1) is a consequence of Theorem 1.7, it is sufficient to show (1) =⇒ (3). Towards this end, note that Theorem 5.2 ensures that the family of Borel equivalence relations on Polish spaces below which essential hyperfiniteness and the inexistence of a Borel reduction of E 1 coincide has cofinal essential complexity, and Theorems 1.15 and 1.16 imply that the family of Borel equivalence relations on Polish spaces to which E 1 does not Borel reduce has cofinal essential complexity. So, by Theorem 6.1, the family of Borel equivalence relations on Polish spaces which are incompatible with E under Borel reducibility has cofinal essential complexity.

We can now establish our primary result.

Theorem 6.3. Suppose that F is a dichotomical class of Borel equivalence relations on Polish spaces of bounded essential complexity. Then every equivalence relation in F is smooth.

Proof. Fix a Borel equivalence relation F witnessing that F is dichotomical. Then F is necessarily essentially hyperfinite, since otherwise Theorem 6.2 would yield a Borel equivalence relation outside of F and incompatible with F . But Theorem 1.7 then implies that every relation in F is smooth.

  Theorem 1.5 (Lusin). Suppose that X and Y are Polish spaces and R ⊆ X × Y is Borel. Then the set of unicity of R is co-analytic.Proof. See, for example,[START_REF] Kechris | Classical descriptive set theory[END_REF] Theorem 18.11].

Proposition 4. 1 .

 1 Suppose that t i,n ∈ 2 n for all i < 2 and n ∈ N, the corresponding set T is closed under initial segments, (a, b), (c, d) ∈ [T ], and {a, b} = {c, d}. Then (supp(a) △ supp(b)) ∩ (supp(c) △ supp(d)) is finite.Proof. For each n ∈ N, let T n denote the tree on 2 n associated with (t i,n ) i<2,n∈N , and note that if n ∈ supp(a) △ supp(b), then the pair of restrictions (a↾ (n + 1), b ↾ (n + 1)) is in T n+1 , from which it follows that {a ↾ (n + 1), b ↾ (n + 1)} = {t i,n (i) | i < 2}, and therefore that {a ↾ n, b ↾ n} = {t i,n | i < 2}. In particular, if n ∈ N is sufficiently large that {a ↾ n, b ↾ n} = {c ↾ n, d ↾ n}, then n is not in (supp(a) △ supp(b)) ∩ (supp(c) △ supp(d)).Given a family I of subsets of N, let E I denote the binary relation on 2 N given by c E I d ⇐⇒ supp(c) △ supp(d) ∈ I.

  DJK94, Theorem 1], a countable Borel equivalence relation is hyperfinite if and only if it is Borel reducible to E 0 . Borel equivalence relation is hypersmooth if it is the union of an increasing sequence (F n ) n∈N of smooth Borel subequivalence relations. By [KL97, Propositions 1.1 and 1.3], a Borel equivalence relation is hypersmooth if and only if it is Borel reducible to E 1 . Theorem 1.11 (Dougherty-Jackson-Kechris). Suppose that X is a Polish space and E is a Borel equivalence relation on X. Then E is hyperfinite if and only if E is both countable and hypersmooth.

	A property P of subsets of
	Proof. See [DJK94, Proposition 5.2].
	We say that a Proof. See, for example, [DJK94, Theorem 5.1].

Proposition 1.10 (Dougherty-Jackson-Kechris). Suppose that X and Y are Polish spaces, E and F are countable Borel equivalence relations on X and Y , E is Borel reducible to F , and F is hyperfinite. Then E is hyperfinite.

  Suppose that X is a Polish space and E is the orbit equivalence relation induced by a Borel action of a Polish group on a Polish space. Then E 1 is not Borel reducible to E.

	Proof. See [KL97, Theorem 4.2].

. See [CLM14, Theorem 6.3 and Proposition 6.4].

A topological group is Polish if it is Polish as a topological space. Theorem 1.15 (Hjorth-Kechris-Louveau). The family of orbit equivalence relations induced by Borel actions of Polish groups on Polish spaces has cofinal essential complexity. Proof. See [HKL98, Theorem 4.1]. Theorem 1.16 (Kechris-Louveau).
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our fixed enumeration) if for all i, k ∈ N and all s ∈ 2 <N , there exists n ∈ N such that i = i n+1 , k = k n , and s ⊑ s n .

The push-forward of a family K of subsets of N × N through e is given by e * K = {e(A) | A ∈ K}.

Proposition 5.1. Suppose that (k n , s n ) n∈N is dense and suitable, T is the corresponding set, C ⊆ 2 N is comeager, K is a family of subsets of N × N which is determined by cardinalities on vertical sections and invariant under finite alterations of the leftmost column, and I = e * K. Then there is a Wadge reduction π :

Proof. Fix dense open sets U n ⊆ 2 N whose intersection is contained in C, and let t i,n denote the sequences associated with (k n , s n ) n∈N . We will recursively construct natural numbers ℓ n > 0, in addition to natural numbers n u < ℓ n and sequences t u ∈ 2 ℓn-nu-1 for u ∈ 2 n , from which we define π i,n : 2 n → 2 ℓn by π i,n (u) = t i,nu (i) t u , for i < 2 and u ∈ 2 n . We will ensure that the following conditions hold:

(1) ∀i,

= (supp(π 0,n (u)) △ supp(π 1,n (u))) ∪ {n u (1) }. We begin by setting ℓ 0 = 1, n ∅ = 0, and t ∅ = ∅.

Suppose now that n ∈ N and we have already found ℓ n , n u , and t u , for u ∈ 2 n . For each u ∈ 2 n , set n u (0) = n u , and fix t ′ u ∈ 2 <N with the property that N π i,n (u) t ′ u ⊆ U n for all i < 2. By density, there exists n u (1) > 0 with i n = i n u (1) , n u = k n u (1) -1 , and t u t ′ u ⊑ s n u (1) -1 . Define ℓ n+1 = max u∈2 n n u (1) + 1, and for each u ∈ 2 n , fix an extension t u (0) ∈ 2 ℓ n+1 -nu-1 of t u t ′ u , as well as t u (1) ∈ 2 ℓ n+1 -n u (1) -1 . By condition (1), the function π : P(N) → 2 N × 2 N which is given by π(A) = (π 0 (χ A ), π 1 (χ A )), where π i (c) = n∈N π i,n (c ↾ n) for all i < 2, is well-defined and continuous. Condition (2) then ensures that π i (2 N ) ⊆ C for all i < 2, so π(P(N)) ⊆ C × C, thus condition (3) implies that π(P(N)) ⊆ [T ] ↾ C. And conditions (4) -(6) ensure that for all N ⊆ N, the cardinalities of all but the leftmost vertical sections of e -1 (supp(π 0 (χ N )) △ supp(π 1 (χ N ))) and e -1 (N) agree, whereas the cardinalities of their leftmost vertical sections differ by at most one, thus N ∈ I if and only if π(N) ∈ E I .

As a consequence, we obtain the following.